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ABSTRACT

Over the last decade, research has highlighted the importance of integrating the perfor-
mance analysis in the software development process. Software Performance Engineering
(SPE) has been recognized as the discipline that represents the entire collection of engi-
neering activities, used throughout the software development cycle, and directed to meet
performance requirements. Performance is in fact an essential quality attribute of every
software system, it is a complex and a pervasive property difficult to understand. If perfor-
mance targets are not met, a variety of negative consequences (such as damaged customer
relations, business failures, lost income, etc.) can impact on a significant fraction of
projects. Performance problems cause delays, failures on deployment, redesigns, even a
new implementation of the system or abandonment of projects, which lead to significant
costs.

All these factors motivate the activities of modeling and analyzing the performance of
software systems at the earlier phases of the lifecycle by reasoning on predictive quantita-
tive results in order to avoid an expensive rework, possibly involving the overall software
system. To this purpose, many model-based performance analysis techniques have been
successfully proposed. Nevertheless, the problem of interpreting the results of perfor-
mance analysis is still critical in the software performance domain: mean values, vari-
ances, and probability distributions are hard to interpret for providing feedback to soft-
ware architects. Support to the interpretation of performance analysis results that helps to
fill the gap between numbers and architectural alternatives is still lacking.

The aim of this thesis is to provide an automated feedback to make the performance anal-
ysis results usable at the software architectural level. We devise a methodology to keep
track of the performance knowledge that usually tends to be fragmented and quickly lost.
The purpose is to interpret the performance analysis results and to suggest the most suit-
able architectural reconfigurations, while the development progresses. The framework
we propose is aimed at addressing this problem with performance antipatterns that are
recurring solutions to common mistakes (i.e. bad practices) affecting performance. Such
antipatterns can play a key role in the software performance domain, because they can be
used in the search of performance problems as well as in the formulation of solutions in
terms of architectural alternatives. The approach we propose is validated with two case
studies: (i) E-Commerce system, modeled with UML, where the performance model has
been analytically solved; (ii) Business Reporting system, modeled with the Palladio Com-
ponent Model, where the performance analysis has been conducted through simulation.
Experimental results finally demonstrate its applicability and validity.

Key words: Software Architecture, Performance Evaluation, Antipatterns, Feedback
Generation, Architectural Alternatives, Unified Modeling Language (UML), Palladio
Component Model (PCM).
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CHAPTER 1

INTRODUCTION

Over the last decade, research has highlighted the importance of integrating non-
functional analysis activities in the software development process, in order to meet non-
functional requirements. Among these, performance is one of the most influential factors
to be considered since performance problems may be so severe that they can require
considerable changes at any stage of the software lifecycle, in particular at the software
architecture level or design phase and, in the worst cases, they can even impact the re-
quirements level.

In the software development process it is fundamental to understand if performance re-
quirements are fulfilled, since they represent what end users expect from the software
system, and their unfulfillment might produce critical consequences. The early devel-
opment phases may heavily affect the quality of the final software product, and wrong
decisions at early phases may imply an expensive rework, possibly involving the overall
software system. Therefore, performance issues must be discovered early in the software
development process, thus to avoid the failure of entire projects [74, 75].

In the research community there is a growing interest in the early validation of perfor-
mance requirements. The model-based approach, pioneered under the name of Software
Performance Engineering (SPE) by Smith [117, 131, 116] creates performance models
early in the development cycle and uses quantitative results from these models to adjust
the architecture and design [40] with the purpose of meeting performance requirements
[133]. Software architectures [63, 41] have emerged as a foundational concept for the
successful development of large, complex systems, since they support five aspects of the
software development: understanding, reuse, evolution, analysis and management [62].

The Software Architecture is the earliest model of a software system created along the
lifecycle. Perry and Wolf in [109] defined the architecture as the selection of architectural
elements, their interactions, and the constraints on those elements. Garlan and Shaw in
[64] defined the architecture as a collection of computational components together with
a description of the interactions between these components. In this thesis we adopt the
latter definition.

Several approaches have been successfully applied by modeling and analyzing the per-
formance of software systems on the basis of predictive quantitative results [19, 89, 135,

1



2 Chapter 1. Introduction

134, 111]. However we are still far from considering the performance analysis as an in-
tegrated activity into the software development that effectively supports all the phases of
the software lifecycle. In practice it is generally acknowledged that the lack of perfor-
mance requirement validation during the software development process is mostly due to
the knowledge gap between software engineers/architects and performance experts (as
special skills are required) rather than to foundational issues. Moreover, short time to
market constraints make this situation even more critical.

The problem of interpreting the performance analysis results is still quite critical, since it
is difficult to understand mean values, variances, and probability distributions. Addition-
ally, a large gap exists between the representation of performance analysis results and the
feedback expected by software architects. The former usually contains numbers (such as
mean response time, throughput variance), whereas the latter should embed architectural
suggestions useful to overcome performance problems (such as split a software compo-
nent in two components and re-deploy one of them). Such activities are today exclusively
based on the analysts’ experience, and therefore their effectiveness often suffers the lack
of automation. In this scenario, we believe that the automated generation of feedback
may work towards the problem solution, since it has the important role of making perfor-
mance analysis results usable at the software architectural level. It means, for example,
that from a bad throughput value, it is possible to identify the software components and/or
interactions responsible for that bad value.

1.1 MOTIVATION

Software performance is a pervasive quality difficult to understand, because it is affected
by every aspect of the design, code, and execution environment [133]. By conventional
wisdom performance is a serious problem in a significant fraction of projects. Perfor-
mance failures occur when a software product is unable to meet its overall objectives due
to inadequate performance. Such failures negatively impact the projects by increasing
costs, decreasing revenue or both. Furthermore they cause delays, cost overruns, fail-
ures on deployment, and even abandonment of projects, as documented in the following,
quoted from [122]:

“Consider, as an example, that the National Aeronautics and Space Administration
(NASA) was forced to delay the launch of a satellite for at least eight months. The satel-
lite and the Flight Operations Segment (FOS) software running it are a key component of
the multi billion-dollar Earth Science Enterprise, an international research effort to study
the interdependence of the Earth’s ecosystems. The delay was caused because the FOS
software had unacceptable response times for developing satellite schedules, and poor
performance in analyzing satellite status and telemetry data. There were also problems
with the implementation of a control language used to automate operations. The cost of
this rework and the resulting delay has not yet been determined. Nevertheless it is clearly
significant, and the high visibility and bad press is potentially damaging to the overall
mission. Members of Congress also questioned NASA’s ability to manage the program.”
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Performance management is a hot topic for the Information Technology (IT) industry and
media, and it is interesting to know to what extent real organizations are getting to grips
with the performance issues. A recent survey [1] has been conducted on the performance
management practice inviting 150 senior IT managers (i.e. responsible for testing and
performance working at large organizations across Europe) to fill a questionnaire about
their experiences in the field. The survey demonstrates that performance failures are still
occurring in many organizations, as more than half of organizations said they experience
unexpected performance issues in 20% or more of their newly deployed applications.

The primary cause of performance failures is a reactive approach to performance during
the development process. Cost and schedule pressures encourage project managers to
adopt a fix-it-later approach in which performance is ignored until there is a problem.
When a problem is discovered, more hardware is needed, developers must try to tune
the software to meet performance objectives or both, but in some cases it is simply not
possible to meet performance objectives by tuning.

The fundamental lesson learned from the documented projects is that it is better to prevent
performance failures and the resulting project crises. A proactive approach to software
performance management has the benefit of anticipating probable performance problems,
because it is based on techniques for identifying and responding to those problems early
in the process. The goal is to produce a software that meets performance objectives, thus
to avoid project crises due to the late discovery of performance issues.

1.2 PROBLEM STATEMENT

Figure 1.1 schematically represents the typical steps that are executed at a generic phase of
the software lifecycle to conduct a model-based performance analysis process. Rounded
boxes in the Figure represent operational steps whereas square boxes represent input/out-
put data. Vertical lines divide the process in three different phases: in the modeling phase
an (annotated) software architectural model is built; in the performance analysis phase a
performance model is obtained through model transformation, and such model is solved
to obtain the performance results of interest; in the refactoring phase the performance
results are interpreted and, if necessary, feedback is generated as refactoring actions on
the original software architectural model.

A software architectural model (see Figure 1.1) is an abstract view of the software sys-
tem. Complementary types of model provide different system information. Such different
models present the system from different perspectives, such as external perspective show-
ing the system’s context or environment, behavioral perspective showing the behavior of
the system, etc. [125]. We refer to (annotated) models, since annotations are meant to add
information that led to execute performance analysis such as the incoming workload to
the system, service demands, hardware characteristics, etc. There exists many notations
to describe all these aspects of a software system (e.g. automata, process algebras, petri
nets and process algebras), surveyed in [19] and shortly reported in Appendix B.1.
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Figure 1.1: Automated software performance process.

A performance model (see Figure 1.1) describes how system operations use resources,
and how resource contention affects operations. The solution of a performance model
supports the prediction of the properties of a system before it is built, or the effect of
a change before it is carried out. This gives a special warning role to early modeling.
However as the implementation proceeds, more accurate models can be created by other
means, and may have additional uses, in particular: (i) design of performance tests; (ii)
configuration of products for delivery; (iii) evaluation of planned evolutions of the de-
sign, while recognizing that no system is ever final [133]. There exists many notations to
describe all these aspects of a software system (e.g. queueing networks, layered queues,
stochastic petri nets and process algebras), surveyed in [19] and shortly reported in Ap-
pendix B.2.

Performance results (see Figure 1.1) refer to the following performance indices [81]:

- Response time is defined as the time interval between a user request of a service
and the response of the system. Usually, upper bounds are defined in “business”
requirements by the end users of the system.

- Utilization is defined as the ratio of busy time of a resource and the total elapsed
time of the measurement period. Usually, upper bounds are defined in “system” re-
quirements by system engineers on the basis of their experience, scalability issues,
or constraints introduced by other concurrent software systems sharing the same
hardware platform.

- Throughput is defined as the rate at which requests can be handled by a system,
and is measured in requests per time. Throughput requirements can be both “busi-
ness” and “system” requirements, depending on the target it applies; for the same
motivation it can represent either an upper or a lower bound.

The modeling and performance analysis phases (i.e. arrows numbered from 1 through
4) represent the forward path from an (annotated) software architectural model all the
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way through the production of performance results of interest. While in this path quite
well-founded approaches have been introduced for inducing automation in all steps (e.g.
[19, 89, 137]), there is a clear lack of automation in the backward path that shall bring the
analysis results back to the software architecture.

The core step of the backward path (i.e. the shaded box of Figure 1.1) is where the
performance analysis results have to be interpreted in order to detect, if any, performance
problems; once performance problems have been detected (with a certain accuracy) some-
where in the model, solutions have to be applied to remove those problems1. A perfor-
mance problem originates from a set of unfulfilled requirement(s), such as the estimated
response time of a service is higher than the required one. If all the requirements are
satisfied then the feedback obviously suggests no changes.

In Figure 1.1, the (annotated) software architectural model (label 5.a) and the performance
results (label 5.b) are inputs to the core step that searches problems in the model. The
search of performance problems in architectural models may be quite complex and needs
to be smartly driven towards the problematic areas of the model. The complexity of this
step stems from several factors:

(i) performance indices are basically numbers and often they have to be jointly exam-
ined: a single performance index (e.g. the utilization of a service) might not be
enough to localize the critical parts of a software architecture, since a performance
problem might emerge only if other indices (e.g. the throughput of a neighbor ser-
vice) are analyzed;

(ii) performance indices can be estimated at different levels of granularity (e.g. the
response time index can be evaluated at the level of a cpu device, or at the level of
a service that spans on different devices) and it is unrealistic to keep under control
all indices at all levels of abstraction;

(iii) software architectural models can be quite complex, and the origin of performance
problems emerges only looking at the architectural elements described in different
views of a system (such as static structure, dynamic behavior, deployment configu-
rations, etc.).

The problem tackled in this thesis is to interpret performance analysis results and to intro-
duce automation in the backward path (label 6 of Figure 1.1) in the form of architectural
alternatives (e.g. split a software component in two components and re-deploy one of
them) that do not suffer of the original performance problems. Such automation provides
several gains since it notifies the software architect of the interpretation of the analysis
results. Performance issues and subsequent architectural emendations aimed at removing
such issues are outlined without the intervention of performance experts. We believe that
both the software architectural and performance models represent suitable instruments

1Note that this task very closely corresponds to the work of a physician: observing a sick patient (the
model), studying the symptoms (some bad values of performance indices), making a diagnosis (perfor-
mance problem), prescribing a treatment (performance solution).
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that can be refined accordingly to the feedback we provide, while the development pro-
gresses, thus to act early in the software lifecycle.

1.3 THESIS FOCUS AND KEY CONTRIBUTIONS

The research activity of this thesis is focused on the core step of Figure 1.1, and in Figure
1.2 the most promising elements that can drive this search have been explicitly repre-
sented, i.e. performance antipatterns (input labeled 5.c to the core step). The rationale
of using performance antipatterns is two-fold: on the one hand, a performance antipat-
tern identifies a bad practice in the software architectural model that negatively affects
the performance indices, thus to support the results interpretation step; on the other hand,
a performance antipattern definition includes a solution description that lets the software
architect devise refactoring actions, thus it supports the feedback generation step.
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Figure 1.2: Automated software performance process by introducing the antipatterns.

The main reference we consider for performance antipatterns is the work done across
the years by Smith and Williams [123] that have ultimately defined fourteen notation-
independent antipatterns. Some other works present antipatterns that occur throughout
different technologies, but they are not as general as the ones defined in [123] (more
references are provided in Chapter 2).

The key contribution of this thesis is to address the problem of interpreting the perfor-
mance results and generating architectural alternatives. This is achieved with a framework
named PANDA: Performance Antipatterns aNd FeeDback in Software Architectures. The
main activities performed within such framework are schematically shown in Figure 1.3:
specifying antipatterns, to define in a well-formed way the properties that lead the soft-
ware system to reveal a bad practice as well as the changes that provide a solution; detect-
ing antipatterns, to locate antipatterns in software architectural models; solving antipat-
terns, to remove the detected performance problems with a set of refactoring actions that
can be applied on the software architectural model.
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Figure 1.3: The main activities of the PANDA framework.

The activity of specifying antipatterns is performed by introducing a neutral and a coher-
ent set of interrelated concepts to represent the software architectural model elements as
well as the performance indices that occur in the definition of antipatterns (e.g. software
resource, network resource utilization, etc.). Such activity is meant to be the basis for a
machine-processable definition of antipatterns. An antipattern definition in fact includes:
(i) the specification of the problem, i.e. a set of antipattern-based rules that interrogate the
system elements to look for occurrences of the corresponding antipattern; (ii) the speci-
fication of the solution, i.e. a set of antipattern-based actions that can be applied on the
system elements to remove a performance problem.

The activities of detecting and solving antipatterns are performed by respectively defining
the antipattern-based rules and actions into concrete modeling notations. In fact, the mod-
eling language used for the system is of crucial relevance, since the antipatterns (neutral)
concepts must be translated into actual concrete modeling languages. The framework cur-
rently considers two notations: a system modeling language such as UML [12], and the
Palladio Component Model (PCM) [22], i.e. a domain specific modeling language.

Figure 1.4 details the software performance modeling and analysis process of Figure 1.2.
The core step is explicitly represented in two main operational steps: (i) detecting antipat-
terns that provides the localization of the critical parts of software architectural models
thus to address the results interpretation problem; (ii) solving antipatterns that suggests
the changes to be applied to the architectural model under analysis, thus to address the
feedback generation problem.

Several iterations can be conducted to find the software architectural model that best fits
the performance requirements, since several antipatterns may be detected in an architec-
tural model, and several refactoring actions may be available for solving each antipattern.
At each iteration the actions we propose are aimed at building a new software architec-
tural model, i.e. a Candidate (see Figure 1.4), that replaces the one under analysis. For
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Figure 1.4: An antipattern-based process for the software performance process.

example, the (annotated) software architectural model Candidatei−j is generated at the
i-th iteration and it denotes the j-th candidate for the iteration it belongs to. Then, the de-
tection and solution approach can be iteratively applied to all newly generated candidates
to further improve the system, if necessary.

Different termination criteria can be defined in the antipattern-based process:

(i) fulfilment criterion, i.e. all requirements are satisfied and a suitable software archi-
tectural model is found;

(ii) no-actions criterion, i.e. no antipatterns are detected in the software architectural
models therefore no refactoring actions can be experimented;

(iii) #iterations criterion, i.e. the process can be terminated if a certain number of itera-
tions have been completed.

It is worth to notice that the solution of one or more antipatterns does not a priori guarantee
performance improvements, because the entire process is based on heuristic evaluations.
However, an antipattern-based refactoring action is usually a correctness-preserving trans-
formation that improves the quality of the software. For example, the interaction between
two components might be refactored to improve performance by sending fewer messages
with more data per message. This transformation does not alter the semantics of the
application, but it may improve the overall performance.
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We can conclude that performance antipatterns represent a promising instrument to in-
troduce automation in the backward path of the software performance cycle. The benefit
of using antipatterns is that they are descriptions of problems commonly encountered by
performance engineers in practice. Such knowledge is acquired while analyzing complex
software systems and exploited at the software architectural level.

1.4 THESIS OUTLINE

This thesis is organized as follows.

Chapter 2 reviews the main existing approaches in the research area referring to the gen-
eration of the architectural feedback. In particular, three categories of approaches are out-
lined: (i) antipattern-based approaches that make use of antipatterns knowledge to cope
with performance issues; (ii) rule-based approaches that define a set of rules to overcome
performance problems; (iii) search-based approaches that explore the problem space by
examining options to deal with performance flaws. In the context of the search-based
process two techniques can be applied: design space exploration that blindly examine all
architectural alternatives, and metaheuristic search techniques (e.g. genetic algorithms)
that search for local changes in the architectural model.

Chapter 3 describes the performance antipatterns we consider for the generation of the
architectural feedback. A classification of antipatterns (i.e. single-value, multiple-values
antipatterns) is discussed on the basis of the performance analysis (i.e. analytic method,
simulation) results that we need to capture the bad practices. A graphical representa-
tion supports the interpretation of the natural language-based definitions of antipatterns,
followed by a logic-based specification that better formalizes such interpretation. A struc-
tured description of the architectural model elements that occur in the definitions of an-
tipatterns is provided in Appendix A, and it represents a groundwork for the definition of
antipatterns as logical predicates.

Chapter 4 gives an overview of how model-driven engineering techniques can be applied
to tackle the problem of automating the interpretation of performance analysis results and
the generation of architectural feedback. A Performance Antipattern Modeling Language
(PAML) is defined to build a user-friendly representation of antipatterns. They become
here models conform to PAML, or in other words they are expressed by the concepts en-
coded in our modeling language. The antipatterns representation as PAML-based models
allows to manipulate their (neutral) definition with model-driven techniques (e.g. weaving
models) by deriving important features across different modeling notations.

Chapter 5 examines the performance antipatterns within the concrete modeling languages
we consider for the validation of the approach. In particular, we discuss the semantic
relations between PAML and UML and PCM metamodel elements respectively, in order
to investigate the expressiveness of such notations. These experiences have allowed to
classify the antipatterns in three categories: (i) detectable and solvable; (ii) semi-solvable
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(i.e. the antipattern solution is only achieved with refactoring actions to be manually
performed); (iii) neither detectable nor solvable.

Chapter 6 provides the experimentation on the UML and PCM modeling languages to
validate the whole approach. Two case studies are analyzed: (i) the first one, i.e. an E-
commerce system, is modeled with UML, transformed in a Queueing Network and solved
with the analytic method; (ii) the second one, i.e. a Business Reporting system, is modeled
with PCM, transformed in a Queueing Network and solved with simulation. In both cases
our antipattern-based approach is applied: the detection of antipatterns leads to identify
the most critical parts of software architectures; the solution of antipatterns gives rise to a
set of architectural alternatives that actually demonstrate performance improvements for
the case study under analysis.

Chapter 7 exploits the requirements analysis to achieve a step ahead in the antipatterns
solution. Requirements are used to decide the most promising refactoring actions that
can rapidly lead to remove performance problems. The antipatterns detected in software
architectural models are ranked on the basis of their guiltiness for violated requirements
in order to give a priority in the sequential solution of antipatterns, thus to quickly convey
the desired result of requirements satisfaction. In this direction several interesting issues
emerge, e.g. the simultaneous solution of multiple antipatterns is briefly discussed.

Chapter 8 collects the cross-cutting concerns (e.g. workload, operational profile, etc.) that
influence the software performance analysis results and the generation of the architectural
feedback in order to give a wide explanation of domain features that might emerge in this
context. These features can be used to prioritize the solution of the detected antipatterns,
thus to quickly achieve the requirements fulfillment.

Chapter 9 concludes the thesis. It gives a summary of the achieved results by pointing
out the assumptions and the limitations from using the antipatterns in the software perfor-
mance process. A list of open issues that remain uncovered in this thesis is provided and
they represent the future works we intend to pursue.



CHAPTER 2

SOFTWARE PERFORMANCE FEEDBACK: STATE OF THE

ART

In literature few related works can be found dealing with the interpretation of performance
analysis results and the generation of architectural feedback. Most of them are based on
monitoring techniques and therefore are conceived to only act after software deployment
for tuning its performance. We are instead interested in model-based approaches that can
be applied early in the software lifecycle to support design decisions.

In the following the main existing approaches for the automated generation of architec-
tural feedback are surveyed. In particular, we identified three principal categories of ap-
proaches: (i) antipattern-based approaches (see Section 2.1) that make use of antipatterns
knowledge to cope with performance issues; (ii) rule-based approaches (see Section 2.2)
that define a set of rules to overcome performance problems; (iii) search-based approaches
(see Section 2.3) that explore the problem space by examining options to deal with per-
formance flaws. In the context of the search-based process two techniques can be applied:
design space exploration (see Section 2.3.1) and metaheuristic (see Section 2.3.2).

2.1 ANTIPATTERN-BASED APPROACHES

The term Antipattern appeared for the first time in [33] in contrast to the trend of fo-
cus on positive and constructive solutions. Differently from patterns, antipatterns look
at the negative features of a software system and describe commonly occurring solutions
to problems that generate negative consequences. Antipatterns have been applied in dif-
ferent domains. For example, in [128] data-flow antipatterns help to discover errors in
workflows and are formalized through the CTL* temporal logic. As another example, in
[31] antipatterns help to discover multi threading problems of Java applications and are
specified through the LTL temporal logic.

Performance Antipatterns, as the name suggests, deal with performance issues of the soft-
ware systems. They have been previously documented and discussed in different works:
technology-independent performance antipatterns have been defined in [123]; technology-
specific antipatterns have been defined in [52] and [127].

11
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Williams et al. in [130] introduced the PASA (Performance Assessment of Software Ar-
chitectures) approach. It aims at achieving good performance results [118] through a
deep understanding of the architectural features. This is the approach that firstly intro-
duces the concept of antipatterns as support to the identification of performance problems
in software architectural models as well as in the formulation of architectural alternatives.
However, this approach is based on the interactions between software architects and per-
formance experts, therefore its level of automation is still low.

Cortellessa et al. in [43] introduced a first proposal of automated generation of feedback
from the software performance analysis, where performance antipatterns play a key role
in the detection of performance flaws. However, this approach considers a restricted set of
antipatterns, and it uses informal interpretation matrices as support. Performance scenar-
ios are described (e.g. the throughput is lower than the user requirement, and the response
time is greater than the user requirement) and, if needed, some actions to improve such
scenarios are outlined. The main limitation of this approach is that the interpretation of
performance results is only demanded to the analysis of Layered Queue Networks (LQN)
[110, 68, 69], i.e. a performance model. Such knowledge is not enriched with the features
coming from the software architectural models, thus to hide feasible refactoring actions.

Enterprise technologies and EJB performance antipatterns are analyzed by Parsons et al.
in [108]: antipatterns are represented as sets of rules loaded into a JESS [2] engine, and
written in a Lisp-like syntax [100]. A rule-based performance diagnosis tool, named Per-
formance Antipattern Detection (PAD), is presented. However, it deals with Component-
Based Enterprise Systems, targeting only Enterprise Java Bean (EJB) applications. It is
based on the monitoring of the data from running systems, it extracts the run-time system
design and detects EJB antipatterns by applying rules to it. Hence, the scope of [108]
is restricted to such domain, and performance problems can neither be detected in other
technology contexts nor in the early development stages.

By taking a wider look out of the performance domain, the management of antipatterns
is a quite recent research topic, whereas there has already been a significant effort in the
area of software design patterns. It is out of scope to address such wide area, but it is
worth to mention some approaches dealing with patterns.

Elaasar et al. in [55] introduced a metamodeling approach to pattern specification. In the
context of the OMGs 4-layer metamodeling architecture, the authors propose a pattern
specification language (i.e. Epattern, at the M3 level) used to specify patterns in any
MOF-compliant modeling language at the M2 layer.

France et al. in [59] introduced a UML-based pattern specification technique. Design
patterns are defined as models in terms of UML metamodel concepts: a pattern model de-
scribes the participants of a pattern and the relations between them in a graphical notation
by means of roles, i.e. the properties that a UML model element must have to match the
corresponding pattern occurrence.
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2.2 RULE-BASED APPROACHES

Barber et al. in [21] introduced heuristic algorithms that in presence of detected system
bottlenecks provide alternative solutions to remove them. The heuristics are based on ar-
chitectural metrics that help to compare different solutions. In a Domain Reference Archi-
tecture (DRA) the modification of functions and data allocation can affect non-functional
properties (for example, performance-related properties such as component utilization).
The tool RARE guides the derivation process by suggesting allocations based on heuris-
tics driven by static architectural properties. The tool ARCADE extends the RARE scope
by providing dynamic property measures. ARCADE evaluation results subsequently fed
back to RARE can guide additional heuristics that further refine the architecture. How-
ever, it basically identifies and solve only software bottlenecks, more complex problems
are not recognized.

Dobrzanski et al. in [51] tackled the problem of refactoring UML models. In particu-
lar, bad smells are defined as structures that suggest possible problems in the system in
terms of functional and non-functional aspects. Refactoring operations are suggested in
the presence of bad smells. Rules for refactoring are formally defined, and they take into
account the following features: (i) cross integration of structure and behavior; (ii) sup-
port for component-based development via composite structures; and (iii) integration of
action semantics with behavioral constructs. However, no specific performance issue is
analyzed, and refactoring is not driven by unfulfilled requirements.

McGregor et al. in [101] proposed a framework (ArchE) to support the software design-
ers in creating architectures that meet quality requirements. It embodies knowledge of
quality attributes and the relation between the achievement of quality requirements and
architectural design. It helps to create architectural models by collecting requirements (in
form of scenarios) and the information needed to analyze the quality criteria for the re-
quirements. It additionally provides the evaluation tools for modifiability or performance
analysis. However, the suggestions (or tactics) are not well explained, and it is not clear
at which extent the approach can be applied.

Kavimandan et al. in [85] presented an approach to optimize deployment and configura-
tion decisions in the context of distributed, realtime, and embedded (DRE) component-
based systems. Bin packing algorithms have been enhanced, and schedulability analysis
have been used to make fine-grained assignments that indicate how components are allo-
cated to different middleware containers, since they are known to impact on the system
performance and resource consumption. However, the scope of this approach is limited
to deployment and configuration features.

Xu in [138] presented an approach to software performance diagnosis that identifies per-
formance flaws before the software system implementation. It defines a set of rules (spec-
ified with the Jess rule engine [2]) aimed at detecting patterns of interaction between re-
sources. The method is applied to UML [12] that employ standard profiles, i.e. the SPT
or Schedulability, Performance and Time profile [14] and its successor MARTE [13].
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The software architectural models are translated in a performance model, i.e. Layered
Queueing Networks (LQNs) [110, 68, 69], and then analyzed. The approach limits the
detection to bottlenecks and long execution paths identified and removed at the level of
the LQN performance model. The actions to solve the performance issues are: change
the configuration, i.e. increase the size of a buffer pool or the amount of existing proces-
sors; and change the design, i.e. increase parallelism and splitting the execution of task in
synchronous and asynchronous parts. The overall approach applies only to LQN models,
hence its portability to other notations is yet to be proven and it may be quite complex.

2.3 SEARCH-BASED APPROACHES

A wide range of different optimization and search techniques have been introduced in the
field of Search-Based Software Engineering (SBSE) [70, 73], i.e. a software engineering
discipline in which search-based optimization algorithms are used to address problems
where a suitable balance between competing and potentially conflicting goals has to be
found. Two key ingredients are required: (i) the representation of the problem; (ii) the
definition of a fitness function. In fact, SBSE usually applies to problems in which there
are numerous candidate solutions and where there is a fitness function that can guide the
search process to locate reasonably good solutions.

A suitable representation of the problem allows to automatically explore the search space
for the solutions that best fit the fitness function [72] that drives towards the sequence of
the refactoring steps to apply to this system (i.e. altering its architectural structure without
altering its semantics).

In the software performance domain both the suitable representation of the problem and
the formulation of the fitness function are not trivial tasks, since the performance analysis
results are derived from many uncertainties like the workload, the operational profile, etc.
that might completely modify the perception of considering candidate solutions as good
ones. Some assumptions can be introduced to simplify the problem and some design
options can be explicitly defined in advance to constitute the population [72] on which
search based optimization algorithms apply.

However, we believe that in the performance domain it is of crucial relevance to find a
synergy between the search techniques that involve the definition of a fitness function to
automatically capture what is required from the system, and the antipatterns that might
support such function with the knowledge of bad practices and suggest common solutions,
in order to quickly converge towards performance improvements.

In fact, as recently outlined in [71], there is a mutually beneficial relationship between
SBSE and predictive models. In particular eleven broad areas of open problems (e.g. bal-
ancing functional, nonfunctional properties of predictive models) in SBSE for predictive
modeling are discussed, explaining how techniques emerging from the SBSE community
may find potentially innovative applications in predictive modeling.
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2.3.1 DESIGN SPACE EXPLORATION APPROACHES

Zheng et al. in [140] described an approach to find optimal deployment and scheduling
priorities for tasks in a class of distributed real-time systems. In particular, it is intended
to evaluate the deployment of such tasks by applying a heuristic search strategy to LQN
models. However, its scope is restricted to adjust the priorities of tasks competing for a
processor, and the only refactoring action is to change the allocation of tasks to processors.

Bondarev et al. in [53] proposed a design space exploration methodology, i.e. DeSiX
(DEsign, SImulate, eXplore), for software component-based systems. It adopts multi-
dimensional quality attribute analysis and it is based on (i) various types of models for
software components, processing nodes, memories and bus links, (ii) scenarios of system
critical execution, allowing the designer to focus only on relevant static and dynamic sys-
tem configurations, (iii) simulation of tasks automatically reconstructed for each scenario,
and (iv) Pareto curves [54] for identification of optimal architecture alternatives.

An evolution of [53] can be found in [30], where a design space exploration framework for
component-based software systems is presented. It allows an architect to get insight into
a space of possible design alternatives with further evaluation and comparison of these
alternatives. However, it requires a manual definition of design alternatives of software
and hardware architectures, and it is meant to only identify bottlenecks.

Ipek et al. in [79, 80] described an approach to automatically explore the design space
for hardware architectures, such as multiprocessors or memory hierarchies. The multiple
design space points are simulated and the results are used to train a neural network. Such
network can be solved quickly for different architecture candidates and delivers accurate
results with a prediction error of less than 5%. However, the approach is limited to hard-
ware properties, whereas software architectures are more complex, because architectural
models spread on a wide rage of features.

2.3.2 METAHEURISTIC APPROACHES

Canfora et al. in [35] used genetic algorithms for Quality of Service (QoS)-aware service
composition, i.e. to determine a set of concrete services to be bound to the abstract ones
in the workflow of a composite service. However, each basic service is considered as
a black-box element, where performance metrics are fixed to a certain unit (e.g. cost=5,
resp.time=10), and the genetic algorithms search the best solutions by evaluating the com-
position options. Hence, no real feedback (in terms of refactoring actions in the software
architectural model such as split a component) is given to the designer, with the exception
of pre-defined basic services.

Aleti et al. in [16] presented a framework for the optimization of embedded system
architectures. In particular, it uses the AADL (Architecture Analysis and Description
Language) [57] as the underlying architecture description language and provides plug-in
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mechanisms to replace the optimization engine, the quality evaluation algorithms and the
constraints checking. Architectural models are optimized with evolutionary algorithms
considering multiple arbitrary quality criteria. However, the only refactoring action the
framework currently allows is the component re-deployment.

Martens et al. in [98] presented an approach for a performance-oriented design space
exploration of component-based software architectures. An evolution of this work can be
found in [99] where meta-heuristic search techniques are used for improving performance,
reliability, and costs of of component-based software systems. In particular, evolutionary
algorithms search the architectural design space for optimal trade-offs by means of Pareto
curves. However, this approach is quite time-consuming, because it uses random changes
(spanning on all feasible solutions) of the architecture, and the optimality is not guaran-
teed.

2.4 SUMMARY

Table 2.1 summarizes the main existing approaches in literature for the automated gener-
ation of architectural feedback. In particular, four categories of approaches are outlined:
(i) antipattern-based approaches; (ii) rule-based approaches; (iii) design space exploration
approaches; (iv) metaheuristic approaches.

The approach of this thesis somehow belongs to two categories, that are: antipattern-based
and rule-based approaches. This is because it makes use of antipatterns for specifying
rules that drive towards the identification of performance flaws.

Each approach is classified on the basis of the category it belongs to. Table 2.1 compares
the different approaches by reporting the (annotated) software architectural model and the
performance model they use to validate their applicability, if available. The last column
of Table 2.1 denotes as framework the set of methodologies the corresponding approach
entails. Note that in some cases the framework was implemented and it is available as a
tool (e.g. SPE • ED, ArchE, PerOpteryx).

The framework we propose in this thesis, i.e. PANDA (Performance Antipatterns aNd
FeeDback in Software Architectures), is meant to denote all the methodologies we pro-
pose in this research work and aimed at performing three main activities, i.e. specifying,
detecting and solving antipatterns. Such framework is still a work in progress and we aim
to implement it in the next future.
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Approach (Annotated) Software Performance Model Framework
Architectural Model

Antipatterns-based

Williams et al. [130], 2002 Software execution
model (Execution
graphs)

System execution
model (Queueing
Network)

SPE • ED

Cortellessa et al. [43], 2007 Unified Modeling
Language (UML)

Layered Queueing
Network (LQN)

GARFIELD (Gener-
ator of Architectural
Feedback through
Performance Antipat-
terns Revealed)

Parsons et al. [108], 2008 JEE systems from
which component
level end-to-end
run-time paths are
collected

Reconstructed run-
time design model

PAD (Performance
Antipattern Detec-
tion)

This thesis, 2011 Unified Modeling
Language (UML),
Palladio Component
Model (PCM)

Queueing Network,
Simulation Model

PANDA
(Performance
Antipatterns aNd
FeeDback in Soft-
ware Architectures)

Rule-based

Barber et al. [21], 2002 Domain Reference
Architecture (DRA)

Simulation Model RARE and ARCADE

Dobrzanski et al. [51], 2006 Unified Modeling
Language (UML)

- Telelogic TAU (i.e.
UML CASE tool)

McGregor et al. [101], 2007 Attribute-Driven De-
sign (ADD)

Simulation Model ArchE

Kavimandan et al. [85], 2009 Real-Time Compo-
nent Middleware

- extension of the
LwCCM middleware
[106]

Xu [138], 2010 Unified Modeling
Language (UML)

Layered Queueing
Network (LQN)

PB (Performance
Booster)

Design Exploration

Zheng et al. [140], 2003 Unified Modeling
Language (UML)

Simulation Model -

Bondarev et al. [30], 2007 Robocop Component
Model

Simulation model DeepCompass (De-
sign Exploration
and Evaluation of
Performance for
Component Assem-
blies)

Ipek et al. [80], 2008 Artificial Neural Net-
work (ANN)

Simulation Model -

Metaheuristic

Canfora et al. [35], 2005 Workflow Model Workflow QoS
Model

-

Aleti et al. [16], 2009 Architecture Analy-
sis and Description
Language (AADL)

Markov Model ArcheOpterix

Martens et al. [99], 2010 Palladio Component
Model (PCM)

Simulation Model PerOpteryx

Table 2.1: Summary of the approaches related to the generation of architectural feedback.





CHAPTER 3

PERFORMANCE ANTIPATTERNS

The goal of this Chapter is to describe performance antipatterns that, similarly to patterns,
define recurring solutions to common design problems inducing performance flaws. An
antipattern definition includes the problem (i.e. model properties that characterize the
antipattern) and the solution (i.e. actions to take for removing the problem).

Up to now, in literature performance antipatterns have been only textually represented
through informal language syntaxes [123]. The core question tackled in this Chapter is:
how can a performance antipattern be represented to be automatically processed? To this
aim, a notation-independent representation of performance antipatterns based on logical
predicates is introduced.

3.1 INTRODUCTION

Figure 3.1 shows a first approach to the results interpretation & feedback generation steps
of Figure 1.2. In order to make performance antipatterns machine-processable (that means
detectable and solvable), we execute a preliminary Modeling step, that is matter of this
Chapter and is represented in the rightmost rounded box of Figure 3.1, in which we spec-
ify antipatterns as logical predicates. Such predicates define conditions on architectural
model elements (e.g. number of interactions among components, resource utilization,
etc.), that allow to automate their detection. We have organized these architectural model
elements in an XML Schema (see Appendix A).

Starting from an annotated software architectural model (label 5.a) and its performance
indices (label 5.b), we execute an Extracting step during which the extractor engine gener-
ates an XML representation of the Software System conforming to our XML Schema and
containing all and only the architectural model information we need to detect antipatterns.

The modeling of antipatterns entails the introduction of a set of Boundaries that drive the
interpretation of performance analysis results, since they define thresholds that will be
compared with the predicted values in order to decide the performance critical elements
of the software architectural model (see more details in Section 3.4).

19
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The Detecting step is the operational counterpart of the antipatterns declarative definitions
as logical predicates. In fact, the detection engine takes as input the XML representation
of the software system and the antipatterns boundaries, and it returns as output a list of
performance antipatterns instances, i.e. the description of the detected problems as well
as their solutions instantiated on the (annotated) software architectural model. Such list
represents the feedback to the software designer, since it consists of a set of alternative
refactoring actions, i.e. the backward path (label 6 of Figure 3.1), aimed at removing the
detected antipatterns.

It is worth to notice that the formalization of performance antipatterns we propose is not
heavily coupled with the detection engine: different types of engines can be implemented
without modifying the formalization we define.

(Annotated) Software 
Architectural Model

XML representation
of the Software System

EXTRACTING
STEP

Performance
Indices

5.b5.a

<<conformTo>>

6

...

Performance Antipatterns 
Instances in the (Annotated) 

Software Architectural Model

DETECTING
STEP

<<implement>>
Detection Engine

Extractor Engine

Performance
Antipatterns

5.c

XML
Schema

Performance Antipatterns
as Logical Predicates

Antipatterns Modeling

MODELING
STEP

Antipatterns 
Boundaries

Figure 3.1: A first approach of the Results Interpretation & Feedback Generation steps.

This Chapter is organized as follows. Starting from the textual description of antipatterns
(see Section 3.2), a graphical representation is provided to start reasoning on how an-
tipattern specification may emerge from software architectural models (see Section 3.3).
The logic-based formalization is explained in Section 3.4; it deals with the modeling of
the antipattern problem specification, whereas some hints about the antipattern solution
specification are given in Section 3.5.
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3.2 BACKGROUND: TEXTUAL DESCRIPTION

The main source of performance antipatterns is the work done across years by Smith
and Williams [123] that have ultimately defined a number of 14 notation- and domain-
independent antipatterns.

Table 3.1 lists the performance antipatterns we examine. Each row represents a specific
antipattern that is characterized by three attributes: antipattern name, problem descrip-
tion, and solution description. From the original list [123], two antipatterns are not con-
sidered for the following reasons: the Falling Dominoes antipattern refers not only to
performance problems, it includes also reliability and fault tolerance issues, therefore it
is out of our interest; the Unnecessary Processing antipattern deals with the semantics of
the processing by judging the importance of the application code, therefore it works at an
abstraction level typically not observed in software architectural models.

The list of performance antipatterns defined by Smith and Williams has been here en-
riched with an additional attribute. As shown in the leftmost part of Table 3.1, we have
partitioned antipatterns in two different categories.

The first category collects antipatterns detectable by single values of performance indices
(such as mean, max or min values), and they are referred as Single-value Performance
Antipatterns. The second category collects those antipatterns requiring the trend (or evo-
lution) of the performance indices during the time (i.e. multiple values) to capture the
performance problems induced in the software system. For these antipatterns, the mean,
max or min values are not sufficient unless these values are referred to several observation
time frames. They are referred as Multiple-values Performance Antipatterns and, due to
these characteristics, the performance indices needed to detect such antipatterns must be
obtained via system simulation or monitoring.

Some approaches [141, 139] have been recently introduced to monitor runtime data and
update the performance model parameters. In [141] the track of runtime data is per-
formed by means of Kalman Filters [32]. A Kalman Filter estimates model parameters
in a recursive way, feeding back to the filter the difference between predictions and mea-
surements, like response times and utilizations. The performance model dynamics are
mathematically represented with a sensitivity matrix that configures the filter according
to the behavior of the underlying selected performance model, typically a Queueing Net-
work. As long as some easily verifiable conditions apply and enough measurements are
provided in each step of the methodology, the estimations converge and increases the
model parameter accuracy while reducing noise from systematic errors.

A similar reasoning is also followed in [56] where Bayesian Estimation techniques [23]
are applied on the runtime data to update the model parameters of Discrete Time Markov
Chains (DTMC) [95] or Queueing Networks [88]. However, particular focus is here put
to reliability prediction.

In [139] a methodology for predicting the performance trends of a system with hidden pa-
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Antipattern Problem Solution

Blob (or god class/component) Occurs when a single class or compo-
nent either 1) performs all of the work
of an application or 2) holds all of the
application’s data. Either manifesta-
tion results in excessive message traf-
fic that can degrade performance.

Refactor the design to distribute in-
telligence uniformly over the applica-
tion’s top-level classes, and to keep re-
lated data and behavior together.

Concurrent
Process-
ing
Systems

Occurs when processing cannot make
use of available processors.

Restructure software or change
scheduling algorithms to enable
concurrent execution.

Si
ng

le
-v

al
ue

Unbalanced
Process-
ing

“Pipe and
Filter”
Architec-
tures

Occurs when the slowest filter in a
“pipe and filter” architecture causes
the system to have unacceptable
throughput.

Break large filters into more stages
and combine very small ones to reduce
overhead.

Extensive
Process-
ing

Occurs when extensive processing
in general impedes overall response
time.

Move extensive processing so that it
does not impede high traffic or more
important work.

Circuitous Treasure Hunt Occurs when an object must look in
several places to find the information
that it needs. If a large amount of pro-
cessing is required for each look, per-
formance will suffer.

Refactor the design to provide alterna-
tive access paths that do not require a
Circuitous Treasure Hunt (or to reduce
the cost of each look).

Empty Semi Trucks Occurs when an excessive number of
requests is required to perform a task.
It may be due to inefficient use of
available bandwidth, an inefficient in-
terface, or both.

The Batching performance pattern
combines items into messages to make
better use of available bandwidth. The
Coupling performance pattern, Ses-
sion Facade design pattern, and Ag-
gregate Entity design pattern provide
more efficient interfaces.

Tower of Babel Occurs when processes excessively
convert, parse, and translate internal
data into a common exchange format
such as XML.

The Fast Path performance pattern
identifies paths that should be stream-
lined. Minimize the conversion, pars-
ing, and translation on those paths by
using the Coupling performance pat-
tern to match the data format to the us-
age patterns.

One-Lane Bridge Occurs at a point in execution where
only one, or a few, processes may
continue to execute concurrently (e.g.,
when accessing a database). Other
processes are delayed while they wait
for their turn.

To alleviate the congestion, use the
Shared Resources Principle to mini-
mize conflicts.

Excessive Dynamic Allocation Occurs when an application unneces-
sarily creates and destroys large num-
bers of objects during its execution.
The overhead required to create and
destroy these objects has a negative
impact on performance.

1) Recycle objects (via an object pool)
rather than creating new ones each
time they are needed. 2) Use the Fly-
weight pattern to eliminate the need to
create new objects.

Traffic Jam
Occurs when one problem causes a
backlog of jobs that produces wide
variability in response time which per-
sists long after the problem has disap-
peared.

Begin by eliminating the original
cause of the backlog. If this is not
possible, provide sufficient processing
power to handle the worst-case load.

M
ul

tip
le

-v
al

ue
s

The Ramp Occurs when processing time in-
creases as the system is used.

Select algorithms or data structures
based on maximum size or use algo-
rithms that adapt to the size.

More is Less Occurs when a system spends more
time thrashing than accomplishing
real work because there are too many
processes relative to available re-
sources.

Quantify the thresholds where thrash-
ing occurs (using models or measure-
ments) and determine if the architec-
ture can meet its performance goals
while staying below the thresholds.

Table 3.1: Performance Antipatterns: problem and solution [123].
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rameters is described. It combines a performance model with an autoregressive model to
predict hidden parameters ahead in time, with estimation and prediction via an Extended
Kalman Filter. Authors demonstrate that such combination greatly improves the predic-
tion of trends. The integration of Extended Kalman filters to estimate model parameters
appears as a promising approach to support the detection of Multiple-values performance
antipatterns.

3.3 A GRAPHICAL REPRESENTATION

The aim of this Section is to provide a graphical representation of performance antipat-
terns on the basis of their textual description (see Table 3.1) in order to quickly convey the
basic concepts of antipatterns. The graphical representation reflects our interpretation of
the textual description of performance antipatterns [123], here visualized in a UML-like
notation for a quick comprehension.

The graphical representation we propose is conceived to capture one reasonable illustra-
tion of both the antipattern problem and solution, but it does not claim to be exhaustive.
Either the problem or even more the solution description of antipatterns give rise to a set
of options that can be further considered to improve the current interpretation1.

Similarly to the Three-View Model that was introduced in [132] for the performance engi-
neering of software systems, the graphical representation is aimed at highlighting Static,
Dynamic, and Deployment features to depict the presence (i.e. antipattern problem) or
the absence (i.e. antipattern solution) of a certain set of architectural models properties.

3.3.1 SINGLE-VALUE PERFORMANCE ANTIPATTERNS

In this Section we report the graphical representation of the Performance Antipatterns
that can be detected by single values of performance indices (such as mean, max or min
values).

BLOB (OR GOD CLASS)

Problem - Occurs when a single class or component either 1) performs all of the
work of an application or 2) holds all of the application’s data. Either manifestation
results in excessive message traffic that can degrade performance.

The blob antipattern may occur in two different cases.

1Especially for the representation of the antipattern solution, many options can be devised for refactoring
actions (see more details in Section 3.5).
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In the first case a single class or component contains most part of the application logics
while all the other classes or components are used as data containers that offer only ac-
cessor functions, i.e. typically get() and set() methods. The typical behavior of such kind
of class or component, called Blob-controller in the following, is to get data from other
classes or components, perform a computation and then update data on the other classes
or components.

In the second case a single class or component is used to store most part of the data of the
application and it performs no application logic. A large set of other classes or compo-
nents perform all the computation by getting data from such kind of class or component,
called Blob-dataContainer in the following, through its get() methods and by updating
data through its set() methods.

Both forms of the blob result from a poorly distributed system intelligence, i.e. a poor de-
sign that splits data from the relative processing logic. It might occurs in legacy systems,
often composed by a centralized computing entity or by a unique data container, that are
upgraded to object oriented ones without a proper re-engineering design analysis. The
performance impacts of both cases are mainly due to the consequent excessive message
passing among the blob software entity and the other classes or components. The perfor-
mance loss is clearly heavier on distributed systems, where the time needed to pass data
between remote software entities is significant with respect to the computational time.

Solution - Refactor the design to distribute intelligence uniformly over the application’s
top-level classes, and to keep related data and behavior together.

The solution to the blob antipattern is to refactor the design, because it is important to
keep related data and behavior together. A software entity should keep most of the data
that it needs to make a decision. The performance gain for the refactored solution will
be Ts = Ms × O, where Ts is the processing time saved, Ms is the number of messages
saved and O is the overhead per message. The amount of overhead for a message will
depend on the type of call, for example a local call will have less overhead than a remote
procedure call.

Figures 3.2 and 3.3 provide a graphical representation of the Blob antipattern in its two
forms, i.e. Blob-controller and Blob-dataContainer respectively.

The upper side of Figures 3.2 and 3.3 describes the properties of a Software Model S
with a BLOB problem: (a) Static View, a complex software entity instance, i.e. Sx, is
connected to other software instances, e.g. Sy and Sz, through many dependencies; (b)
Dynamic View, the software instance Sx generates (see Figure 3.2) or receives (see Figure
3.3) excessive message traffic to elaborate data managed by other software instances such
as Sy; (c) Deployment View, it includes two sub-cases: (c1) the centralized case, i.e. if
the communicating software instances are deployed on the same processing node then
a shared resource will show high utilization value, i.e. $util; (c2) the distributed case,
i.e. if the communicating software instances are deployed on different nodes then the



3.3 A graphical representation 25

getData

sendData

setData

ackSetData

S

<<SoftwareEntity

x

op

"BLOB-controller" problem

Net

maxNetUtil = $utilNet

getData

getData

...
op1

n setData

executeOpz

op

Sx Sy

z

Software Model S

Instance>>

Sx

<<deploy>>

<<NetworkLink>>

(a) Static View

maxHwUtil = 
$util

<<ProcesNode>>

PN

Sx

<<deploy>>

(b) Dynamic View
(c) Deployment View

(c1) centralized (c2) distributed

manageData

S

<<SoftwareEntity

y
Instance>>

<<ProcesNode>>

<<ProcesNode>>

...

...

...

1

PN2

PN3

"BLOB-controller" solution

Net

maxNetUtil = $utilNet'

Software Model S'

Sx

<<deploy>>

maxHwUtil = 
$util'

<<ProcesNode>>

PN

(b) Dynamic View
(c) Deployment View

(c1) centralized (c2) distributed

<<ProcesNode>>

<<ProcesNode>>

1

PN2

PN3

Sx Sy

op

executeOpz

z

manageData

<<NetworkLink>>

setData
S

<<SoftwareEntity

z
Instance>>

getData

op1

...

nop

setData

Sy

Sz

<<deploy>>

<<deploy>>

Sy

Sz

Sy

Sz

<<deploy>>

Sx

<<deploy>>

<<deploy>>

Sy

Sz

S

<<SoftwareEntity

x

...
op1

nop

Instance>>

(a) Static View

S

<<SoftwareEntity

y
Instance>>

S

<<SoftwareEntity

z
Instance>>

op1

...

nop

Figure 3.2: A graphical representation of the Blob-controller Antipattern.
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network link will be a critical resource with a high utilization value, i.e. $utilNet 2. The
occurrence of such properties leads to assess that the software resource Sx originates an
instance of the Blob antipattern.

The lower side of Figures 3.2 and 3.3 contains the design changes that can be applied
according to the BLOB solution. The following refactoring actions are represented: (a)
the number of dependencies between the software instance Sx and the surrounding ones,
like Sy and Sz, must be decreased by delegating some functionalities to other instances;
(b) the number of messages sent (see Figure 3.2) or received (see Figure 3.3) by Sx must
be decreased by removing the management of data belonging to other software instances.
As consequences of previous actions: (c1) if the communicating software instances were
deployed on the same hardware resource then the latter will not be a critical resource
anymore, i.e. $util′ � $util; (c2) if the communicating software instances are deployed
on different hardware resources then the network will not be a critical resource anymore,
i.e. $utilNet′ � $utilNet.

CONCURRENT PROCESSING SYSTEMS

Problem - Occurs when processing cannot make use of available processors.

The concurrent processing systems antipattern represents a manifestation of the unbal-
anced processing antipattern [121]. It occurs when processes cannot make effective use
of available processors either because of 1) a non-balanced assignment of tasks to pro-
cessors or because of 2) single-threaded code. In the following we only consider the case
1), since the application code is an abstraction level typically not included in architectural
models.

Solution - Restructure software or change scheduling algorithms to enable concurrent
execution.

If a routing algorithm is based on static properties that result in more work going to one
queue than others, than the solution is to use a dynamic algorithm that routes work to
queues based on the work requirements and the system congestion.

Figure 3.4 provides a graphical representation of the Concurrent Processing Systems an-
tipattern.

The upper side of Figure 3.4 describes the system properties of a Software Model S with
a Concurrent Processing Systems problem: (a) Deployment View, there are two process-
ing nodes, e.g. PN1 and PN2, with un unbalanced processing, i.e. many tasks (e.g.
computation from the software entity instances Sa, Sb, Sc) are assigned to PN1 whereas
PN2 is not so heavily used (e.g. computation of the software entity instance Sd). The

2The characterization of antipattern parameters related to system characteristics (e.g. many usage de-
pendencies, excessive message traffic) or to performance results (e.g. high, low utilization) is based on
thresholds values (see more details in Section 3.4).
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over used processing node will show high queue length value, i.e. $ql 1 (estimated as the
maximum value overall its hardware devices, i.e. $cpu(i) ql and $disk(j) ql), and a high
utilization value among its hardware entities either for cpus, i.e. $cpu 1 (estimated as the
maximum value overall its cpu devices, i.e. $cpu(i) util), and disks, i.e. $disk 1, devices
(estimated as the maximum value overall its disk devices, i.e. $disk(j) util). The less
used processing node will show low utilization value among its hardware entities either
for cpus, i.e. $cpu 2, and disks, i.e. $disk 2, devices. The occurrence of such proper-
ties leads to assess that the processing nodes PN1 and PN2 originate an instance of the
Concurrent Processing Systems antipattern.

The lower side of Figure 3.4 contains the design changes that can be applied according
to the Concurrent Processing Systems solution. The following refactoring actions are
represented: (a) the software entity instances must be deployed in a better way, according
to the available processing nodes. As consequences of the previous action, if the software
instances are deployed in a balanced way then the processing node PN1 will not be a
critical resource anymore, hence $ql 1′, $cpu 1′, $disk 1′ values improves despite the
$cpu 2′, $disk 2′ values.

PIPE AND FILTER ARCHITECTURES

Problem - Occurs when the slowest filter in a “pipe and filter” architecture causes
the system to have unacceptable throughput.

The pipe and filter architectures antipattern represents a manifestation of the unbalanced
processing antipattern [121]. It occurs when the throughput of the overall system is de-
termined by the slowest filter. It means that there is a stage in a pipeline which is signifi-
cantly slower than all the others, therefore constituting a bottleneck in the whole process
in which most stages have to wait the slowest one to terminate.

Solution - Break large filters into more stages and combine very small ones to reduce
overhead.

The solution to the pipe and filter architectures antipattern is to 1) divide long processing
steps into multiple, smaller stages that can execute in parallel; 2) combine short processing
steps to minimize context switching overhead and other delays for shared resources.

Figure 3.5 provides a graphical representation of the Pipe and Filter Architectures an-
tipattern.

The upper side of Figure 3.5 describes the system properties of a Software Model S with a
Pipe and Filter Architectures problem: (a) Static View, there is a software entity instance,
e.g. Sx, offering an operation (opx) whose resource demand (computation = $compOpx,
storage = $storOpx, bandwidth = $bandOpx) is quite high; (b) Dynamic View, the opera-
tion opx is invoked in a service S and the throughput of the service ($Th(S)) is lower than
the required one; (c) Deployment View, the processing node on which Sx is deployed, i.e.
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PN1, might have a high utilization value ($util). The occurrence of such properties leads
to assess that the operation opx originates an instance of the Pipe and Filter Architectures
antipattern.

The lower side of Figure 3.5 contains the design changes that can be applied according
to the Pipe and Filter Architectures solution. The following refactoring actions are rep-
resented: (a) the operation opx must be divided in at least two operations, i.e. opx1 and
opx2, offered by two different software instances; (b) software instances deployed on dif-
ferent processing nodes enable the parallel execution of requests. As consequences of the
previous actions, if the operations are executed in parallel then the operation opx will not
be the slowest filter anymore. The throughput of the service S is expected to improve, i.e.
$Th(S)′ > $Th(S).

EXTENSIVE PROCESSING

Problem - Occurs when extensive processing in general impedes overall response
time.

The extensive processing antipattern represents a manifestation of the unbalanced pro-
cessing antipattern [121]. It occurs when a long running process monopolizes a processor
and prevents a set of other jobs to be executed until it finishes its computation. The pro-
cessor is removed from the pool, but unlike the pipe and filter, other work does not have to
pass through this stage before proceeding. This is particularly problematic if the extensive
processing is on the processing path that is executed for the most frequent workload.

Solution - Move extensive processing so that it does not impede high traffic or more
important work.

The solution to the extensive processing antipattern is to identify processing steps that
may cause slow downs and delegate those steps to processes that will not impede the
fast path. A performance improvement could be achieved by delegating processing steps
which do not need a synchronous execution to other processes.

Figure 3.6 provides a graphical representation of the Extensive Processing antipattern.

The upper side of Figure 3.6 describes the system properties of a Software Model S
with a Extensive Processing problem: (a) Static View, there is a software entity instance,
e.g. Sx, offering two operations (opx, opy) whose resource demand is quite unbalanced,
since opx has a high demand (computation = $compOpx, storage = $storOpx, band-
width = $bandOpx), whereas opy has a low demand (computation = $compOpy, storage
= $storOpy, bandwidth = $bandOpy); (b) Dynamic View, the operations opx and opy

are alternatively invoked in a service S, and the response time of the service ($RT (S))
is larger than the required one; (c) Deployment View, the processing node on which Sx

is deployed, i.e. PN1, might reveal a high utilization value ($util). The occurrence of
such properties leads to assess that the operations opx and opy originate an instance of the
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Figure 3.6: A graphical representation of the Extensive Processing Antipattern.
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Extensive Processing antipattern.

The lower side of Figure 3.6 contains the design changes that can be applied according
to the Extensive Processing solution. The following refactoring actions are represented:
(a) the operations opx and opy must be offered by two different software instances; (b)
software instances deployed on different processing nodes provide a fast path for requests.
As consequences of the previous actions, the response time of the service S is expected
to improve, i.e. $RT (S)′ < $RT (S).

CIRCUITOUS TREASURE HUNT

Problem - Occurs when an object must look in several places to find the informa-
tion that it needs. If a large amount of processing is required for each look, performance
will suffer.

The circuitous treasure hunt antipattern typically occurs in database applications when
the computation necessitates a high amount of database requests to retrieve the data. It
happens that a software instance performs a sequence of queries to obtain some data
by exploiting the information retrieved in a query to construct the next one, instead of
properly constructing a single, even more complex, query that in a faster way achieve the
needed information. The performance loss is due to the overhead introduced by the cost
of database access, query processing and the transmission of all intermediate results. The
problem is particularly heavy in distributed systems. Object oriented systems are prone
to this antipattern because it might happen that a chain of method calls among objects is
performed to execute an operation or retrieve some data: an object invokes a method of
another object which calls a third one in a chain which ends when the final operation is
performed or when the data is found. The performance loss is due to the extra processing
required to identify the operation to be performed on each object of the chain, to the
number of request messages and to the overhead needed to send requested data among all
the objects of the chain.

Solution - Refactor the design to provide alternative access paths that do not require a
Circuitous Treasure Hunt (or to reduce the cost of each look).

The solution to the circuitous treasure hunt antipattern is to better design the queries
performed to a database or, in some cases, to redesign data organization in the database.
Another solution is to reduce the performance loss by introducing an adapter entity, which
consists in the creation of a single software instance handling part of the logics needed to
perform a query and providing an interface to other objects in order to reduce the traffic
between the objects and the database query handler.

Figure 3.7 provides a graphical representation of the Circuitous Treasure Hunt antipattern.

The upper side of Figure 3.7 describes the system properties of a Software Model S with
a Circuitous Treasure Hunt problem: (a) Static View, there is a software entity instance,
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e.g. Sx, retrieving some information from the database; (b) Dynamic View, the software
instance Sx generates a large number of database calls by performing several queries up
to the final operation; (c) Deployment View, the processing node on which the database
is deployed, i.e. PN1, might have a high utilization value among its devices ($cpu 1,
$disk 1). Furthermore, a database transaction usually requires an higher utilization of
disk devices instead of cpu ones, hence $disk 1 is expected to be larger than $cpu 1.
The occurrence of such properties leads to assess that the software instance Database
originates an instance of the Circuitous Treasure Hunt antipattern.

The lower side of Figure 3.7 contains the design changes that can be applied according
to the Circuitous Treasure Hunt solution. The following refactoring action is represented:
(a) the database must be restructured to reduce the number of database calls and to retrieve
the needed information with a fewer number of database transactions. As consequences
of the previous action, if the information is retrieved with a smarter organization of the
database than the utilization of hardware devices is expected to improve in the Software
Model S’, i.e. $cpu 1′ and particularly $disk 1′.

EMPTY SEMI TRUCKS

Problem - Occurs when an excessive number of requests is required to perform a
task. It may be due to inefficient use of available bandwidth, an inefficient interface, or
both.

The problem of inefficient use of available bandwidth typically affects message-based
systems when a huge load of messages, each containing a small amount of information, is
exchanged over the network. The amount of processing overhead is the same regardless
of the size of the message. With smaller messages, this processing is required many more
times than necessary hence it significantly implies a performance loss. The problem of
an inefficient interface (i.e. it provides a too fragmented access to data) generates an
excessive overhead caused by the computation needed to handle each call request.

Solution - The Batching performance pattern combines items into messages to make bet-
ter use of available bandwidth. The Coupling performance pattern, Session Facade de-
sign pattern, and Aggregate Entity design pattern provide more efficient interfaces.

In the case of inefficient use of available bandwidth the solution is given by the adop-
tion of Batching performance pattern [122] that basically groups information in larger
chunks in order to minimize the overhead due to information spread and processing. In
this way several messages are merged into a single bigger message. The time savings,
T , is T = (tp + tr) ×M where tp is the time for preparation, i.e. the processing time
for acquiring message buffers as well as transmission overhead, sending message head-
ers, etc., tr is the time for the receipt, i.e. the similar processing time and transmission
overhead for acknowledgements, etc., M is the number of messages eliminated. In the
case of inefficient interface a solution could be achieved through the implementation of
the Coupling performance pattern [122] that basically uses more coarse-grained objects
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in order to reduce the amount of communication overhead required to obtain data.

Figure 3.8 provides a graphical representation of the Empty Semi Trucks antipattern.

The upper side of Figure 3.8 describes the system properties of a Software Model S with
a Empty Semi Trucks problem: (a) Static View, there is a software entity instance, e.g. Sx,
retrieving some information from several instances (Srem1, . . . , Sremn); (b) Dynamic
View, the software instance Sx generates an excessive message traffic by sending a big
amount of messages by low sizes ($msgS), much lower than the network bandwidth,
hence the network link might have a low utilization value ($utilNet); (c) Deployment
View, the processing node on which Sx is deployed, i.e. PN1, might reveal a high uti-
lization value ($util). The occurrence of such properties leads to assess that the software
instance Sx originates an instance of the Empty Semi Trucks antipattern.

The lower side of Figure 3.8 contains the design changes that can be applied according to
the Empty Semi Trucks solution. The following refactoring action is represented: (a) the
communication between Sx and the remote instances must be restructured, messages are
merged in bigger ones ($msgS ′) to reduce the number of messages sent over the network.
As consequences of the previous action, if the information is exchanged with a smarter
organization of the communication than the utilization of the processing node hosting Sx

is expected to improve, i.e. $util′ � $util.

TOWER OF BABEL

Problem - Occurs when processes excessively convert, parse, and translate inter-
nal data into a common exchange format such as XML.

The antipattern occurs in complex, distributed data-oriented systems in which the same
information is often translated into an exchange format (by a sending process) and then
parsed and translated into an internal format (by the receiving process). The problem is
that when the translation and parsing is excessive the system spends most of its time doing
this and relatively little doing real work. The performance loss in this case is clearly due
to the excessive overhead caused by the translation and parsing operations which may be
executed several times in the whole execution process.

Solution - The Fast Path performance pattern identifies paths that should be streamlined.
Minimize the conversion, parsing, and translation on those paths by using the Coupling
performance pattern to match the data format to the usage patterns.

A performance improvement can be achieved by deciding a common format which min-
imizes the operations of translation along the core, fastest path identified through the
Fast Path performance pattern [122]. In simpler cases, a good solution could be easily
found by avoiding unnecessary translations among software entities, typically introduced
to adopt standard exchange languages, even when not necessary. The time savings, T ,
is T = (sc + sp + st) × 2N where sc is the service time to convert the internal format
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to the intermediate format to send the request or response, sp is the service time to parse
the intermediate format, st is the service time to translate the intermediate format into
the internal format, N is the number of processes in the end-to-end scenario that require
the translation to/from the intermediate format. The multiplier of 2N in the formula is
because the entire process of converting, parsing and translating apply to both the input
and the reply messages.

Figure 3.9 provides a graphical representation of the Tower of Babel antipattern.

The upper side of Figure 3.9 describes the system properties of a Software Model S with
a Tower of Babel problem: (a) Static View, there are some software entity instances, e.g.
Sx, S1, . . . , Sn; (b) Dynamic View, the software instance Sx performs many times the
translation of format for communicating with other instances; (c) Deployment View, the
processing node on which Sx is deployed, i.e. PN1, might reveal a high utilization value
($util). The occurrence of such properties leads to assess that the software instance Sx

originates an instance of the Tower of Babel antipattern.

The lower side of Figure 3.9 contains the design changes that can be applied according
to the Tower of Babel solution. The following refactoring action is represented: (a) the
communication between Sx and the other instances can be restructured by setting the
format. As consequence of the previous action the utilization of the processing node
hosting Sx is expected to improve, i.e. $util′ � $util.

ONE-LANE BRIDGE

Problem - Occurs at a point in execution where only one, or a few, processes may
continue to execute concurrently (e.g., when accessing a database). Other processes are
delayed while they wait for their turn.

The one-lane bridge antipattern often occurs in concurrent systems when the mechanisms
of mutual access to a shared resource are badly designed. The problem appears in all cases
of mutual access to resources, or in the case of multiple processes making synchronous
calls in a non multi-threaded environment. In that case a single process is able to handle
a single method invocation at a time, thus forcing all the other processes calling it to wait
for the end of the execution of the previous call. It frequently occurs also in database
applications. A lock ensures that only one process can update the associated portion of
the database at a time, hence when a process is updating data it keeps the lock over a
portion of the data set, and other processes must stop and wait for the release of the lock
in order to access the needed information.

Solution - To alleviate the congestion, use the Shared Resources Principle to minimize
conflicts.

In case of mutual exclusion and of synchronous computation in single-threaded architec-
tures the solution can be re-engineer the shared data and the access to them by respect-
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ing the principles of mutual access, or by the adoption of a multi-threaded architecture.
In case of database applications the solution could be found by splitting data sets into
smaller ones, i.e. by distributing information contained in a single, big table, into a set
of smaller tables. Other solutions can be re-engineer the information structure in the
database accordingly to the most performed operation of update. The general principle is
to share resources when possible, and if exclusive access is required, the holding and the
scheduling times should be minimized.

Figure 3.10 provides a graphical representation of the One-Lane Bridge antipattern.

The upper side of Figure 3.10 describes the system properties of a Software Model S
with a One-Lane Bridge problem: (a) Static View, there is a software entity instance
with a capacity of managing $poolSize threads; (b) Dynamic View, the software instance
Sx receives an excessive number of synchronous calls in a service S and the predicted
response time, i.e. $RT (S), is higher than the required one; (c) Deployment View, the
processing node on which Sx is deployed, i.e. PN1, might reveal high service and waiting
times, i.e. $servT and $waitT . The occurrence of such properties leads to assess that the
software instance Sx originates an instance of the One-Lane Bridge antipattern.

The lower side of Figure 3.10 contains the design changes that can be applied according
to the One-Lane Bridge solution. The following refactoring action is represented: (a) the
pool size of the software instance Sx must be increased. As consequences of the previous
action, if the software entity is able to cope with synchronous calls than the response time
of the service S is expected to improve, i.e. $RT (S)′ < $RT (S), as well as the service
and waiting times of the processing node hosting Sx, i.e. $servT ′ and $waitT ′.

EXCESSIVE DYNAMIC ALLOCATION

Problem - Occurs when an application unnecessarily creates and destroys large
numbers of objects during its execution. The overhead required to create and destroy
these objects has a negative impact on performance.

Dynamic allocation is an useful technique used in dynamic systems in order to avoid ex-
cessive memory storage when objects are rarely used: an object is created when needed
and immediately destroyed afterwards. Sometimes however this approach is over-adopted
even with objects that are often used by other objects. In that case the memory storage
benefit is minimized, while a significant computation overhead is introduced due to the
cost of instantiation of an object, which needs the memory allocation on the heap, the ini-
tialization computation logic, and the deletion and clean-up operations when the object is
destroyed. In distributed systems, the performance loss is even larger due to the overhead
for the creation and the deletion of exchange messages. The cost of dynamic allocation
is C = N ×

∑
depth(sc + sd) where N is the number of calls, depth is the number of

contained objects that must be created when the class is created, and sc and sd are the
times to create and to destroy the object, respectively.
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Solution - 1) Recycle objects (via an object pool) rather than creating new ones each time
they are needed. 2) Use the Flyweight pattern to eliminate the need to create new objects.

Two solutions are devised for the excessive dynamic allocation antipattern. The first solu-
tion consists in recycling objects rather than creating new ones each time they are needed.
This approach pre-allocates a pool of objects and stores them in a collection. New in-
stances of the object are requested from the pool, and unneeded instances are returned
to it. This approach is useful for systems that continually need many short-lived objects.
There is a pre-allocation of objects at the system initialization but the run-time overhead
is reduced to simply passing a pointer to the pre-allocated object. The second solution
consists in sharing the same object among all the objects that need to access it.

Figure 3.11 provides a graphical representation of the Excessive Dynamic Allocation an-
tipattern.

The upper side of Figure 3.11 describes the system properties of a Software Model S
with an Excessive Dynamic Allocation problem: (a) Static View, there is a software entity
instance Sx offering an operation opx; (b) Dynamic View, the software instance Sx creates
and destroys a high number of objects for performing the operation opx in a service S and
the predicted response time, i.e. $RT (S), is higher than the required one. The occurrence
of such properties leads to assess that the software instance Sx originates an instance of
the Excessive Dynamic Allocation antipattern.

The lower side of Figure 3.11 contains the design changes that can be applied according
to the Excessive Dynamic Allocation solution. The following refactoring action is repre-
sented: (a) the object used for performing the operation opx is created and destroyed once.
As consequences of the previous action, the response time of the service S is expected to
improve, i.e. $RT (S)′ < $RT (S).

3.3.2 MULTIPLE-VALUES PERFORMANCE ANTIPATTERNS

In this Section we report the graphical representation of the Performance Antipatterns that
can be detected only observing the trend (or evolution) of the performance indices along
the time (i.e., multiple-values).

TRAFFIC JAM

Problem - Occurs when one problem causes a backlog of jobs that produces wide
variability in response time which persists long after the problem has disappeared.

The traffic jam antipattern occurs if a significative variability in response time is observed,
and it is due to different causes, usually difficult to identify. The problem also occurs
when a large amount of work is scheduled within a relatively small interval. It occurs,
for example, when a huge number of processes are originated at approximately the same
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time. The challenge is that often the performance loss and the slowing down of the com-
putation arises and persists for a long time after the originating cause has disappeared. A
failure or any other cause of performance bottleneck generate a backlog of jobs waiting
for computation, which take a long time to be executed and to return in a normal operating
condition.

Solution - Begin by eliminating the original cause of the backlog. If this is not possible,
provide sufficient processing power to handle the worst-case load.

If the problem is caused by periodic high demand, it might be beneficial to seek alterna-
tives that spread the load, or handle the demand in a different manner. For example, if
users select the time for performing a request to the system, it may be helpful to change
the selection options so that they select a time interval rather than selecting a specific
time. It gives the software more flexibility in scheduling the requests in order to reduce
contention. If the problem is caused by external factors, such as domain specific behav-
iors, than it is important to determine the size of the platforms and networks that will be
required to support the worst-case workload intensity. The ideal solution is clearly given
by the elimination of the originating bottleneck. However, localizing the source of the
backlog is not simple and the increase of the computing power, even costly, could benefit.

Figure 3.12 provides a graphical representation of the Traffic Jam antipattern.

The upper side of Figure 3.12 describes the system properties of a Software Model S with
a Traffic Jam problem: (a) Static View, there is a software entity instance Sx offering an
operation opx; the monitored response time of the operation opx shows “a wide variability
in response time which persists long ” [120]. The occurrence of such properties leads to
assess that the software instance Sx originates an instance of the Traffic Jam antipattern.

The lower side of Figure 3.12 contains the design changes that can be applied accord-
ing to the Traffic Jam solution. The following refactoring action is represented: (a) the
service time of the processing node on which Sx is deployed must be decreased, i.e.
$serviceT ime′. As consequences of the previous action, the response time of the opera-
tion opx is expected to increase in a slower way.

THE RAMP

Problem - Occurs when processing time increases as the system is used.

The Ramp is an antipattern that addresses the situation where the amount of processing
required by a system to satisfy a request increases over time. It is due to the growing
amount of data the system stores and, as the time goes on, the data grow and the processing
time required to perform an operation on such data becomes unacceptable. It is presented
as a scalability problem, it is often not detected during testing since test data often does
not contain enough items to reveal the phenomenon.

Solution - Select algorithms or data structures based on maximum size or use algorithms
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that adapt to the size.

The solution is basically to keep the processing time from increasing dramatically as the
data set grows. Possible solutions include: (i) select a search algorithm that is appropriate
for a larger amount of data, it may be suboptimal for small sizes, but it should not hurt
to do extra work then; (ii) automatically invoke self-adapting algorithms based on size;
(iii) when the size increases more gradually, use instrumentation to monitor the size and
upgrade the algorithm at predetermined points. The ideal solution is given by increasing
the computing power because, even costly, it could benefit.

Figure 3.13 provides a graphical representation of The Ramp antipattern.

The upper side of Figure 3.13 describes the system properties of a Software Model S with
The Ramp problem: (a) Static View, there is a software entity instance Sx offering an op-
eration opx; (b) Dynamic View: (i) the monitored response time of the operation opx at
time t1, i.e. $RT (opx, t1), is much lower than the monitored response time of the opera-
tion opx at time t2, i.e. $RT (opx, t2), with t1 < t2; (ii) the monitored throughput of the
operation opx at time t1, i.e. $Th(opx, t1), is much larger than the monitored throughput
of the operation opx at time t2, i.e. $Th(opx, t2), with t1 < t2. The occurrence of such
properties leads to assess that the software instance Sx originates an instance of The Ramp
antipattern.

The lower side of Figure 3.13 contains the design changes that can be applied accord-
ing to the The Ramp solution. The following refactoring action is represented: (a) the
service time of the processing node on which Sx is deployed must be decreased, i.e.
$serviceT ime′. As consequences of the previous action, the response time of the opera-
tion opx is expected to increase in a slower way and the throughput of the operation opx

is expected to decrease in a slower way.

MORE IS LESS

Problem - Occurs when a system spends more time thrashing than accomplishing
real work because there are too many processes relative to available resources.

The antipattern occurs when running too many processes over time causes too much pag-
ing and too much overhead for servicing page faults. The same problem takes place in
database systems when too many database connections are created by causing a signifi-
cant performance loss. Also in distributed systems the same behavior could happen when
too many internet connections or too many pooled resources are allowed, therefore there
are too many concurrent streams relative to the number of available processors.

Solution - Quantify the thresholds where thrashing occurs (using models or measure-
ments) and determine if the architecture can meet its performance goals while staying
below the thresholds.

Computer systems have diminishing returns due to contention for resources. Therefore,
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Figure 3.13: A graphical representation of The Ramp Antipattern.



48 Chapter 3. Performance Antipatterns

the solution is to quantify the point when resource contention exceeds an acceptable
threshold. Models or measurement experiments can identify these points. The ideal solu-
tion is given by increasing the computing power because, even costly, it could benefit.

Figure 3.14 provides a graphical representation of the More Is Less antipattern.
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Figure 3.14: A graphical representation of the More Is Less Antipattern.

The upper side of Figure 3.14 describes the system properties of a Software Model S with
a More Is Less problem: (a) Deployment View, there is a processing node PN1 and the
monitored runtime parameters (e.g. database connections, pooled resources, internet con-
nections, etc.) at time t1, i.e. $Par(PN1[p], t1), are much larger than the same parameters
at time t2, i.e. $Par(PN1[p], t2), with t1 < t2. The occurrence of such properties leads
to assess that PN1 originates an instance of the antipattern.

The lower side of Figure 3.14 contains the design changes that can be applied according
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to the More Is Less solution. The following refactoring action is represented: (a) the
service time of the processing node PN1 must be decreased, i.e. $serviceT ime′. As
consequences of the previous action, the monitored runtime parameters of the processing
node PN1 are expected to increase in a slower way.

3.4 A LOGIC-BASED SPECIFICATION OF THE

ANTIPATTERN PROBLEM

In this Section performance antipatterns problems are formally defined as logical pred-
icates. Such predicates define conditions on specific architectural model elements (e.g.
number of interactions among software resources, hardware resources throughput) that
we have organized in an XML Schema (see Appendix A).

The specification of model elements to describe antipatterns is a quite complex task, be-
cause such elements can be of different types: (i) elements of a software architectural
model (e.g. software resource, message, hardware resource); (ii) performance results
(e.g. utilization of a network resource); (iii) structured information that can be obtained
by processing the previous ones (e.g. the number of messages sent by a software resource
towards another one); (iv) bounds that give guidelines for the interpretation of the system
features (e.g. the upper bound for the network utilization).

These two latter model elements, i.e. structured information and bounds, have been de-
fined respectively by introducing supporting functions that elaborate a certain set of sys-
tem elements (represented in the predicates as FfuncName), and thresholds that need to be
compared with the observed properties of the software system (represented in the predi-
cates as ThthresholdName).

Thresholds must be bound to concrete numerical values, e.g. hardware resources whose
utilization is higher than 0.8 can be considered critical ones. The binding of thresholds
is a critical point of the whole approach, since they introduce uncertainty and must be
suitably tuned. Some sources can be used to perform this task such as: (i) the system
requirements; (ii) the domain expert’s knowledge; (iii) the estimation of the system un-
der analysis3. Both functions and thresholds introduced for representing antipatterns as
logical predicates are summarized in Section 3.4.3.

One sub-section is dedicated to each antipattern and is organized as follows. From the
informal representation of the problem (as reported in Table 3.1), a set of basic predicates
(BPi) is built, where each BPi addresses part of the antipattern problem specification.
The basic predicates are first described in a semi-formal natural language and then for-
malized by means of first-order logics. Note that the operands of basic predicates are
elements of our XML Schema, here denoted with the typewriter font.

3For more details about the estimation of thresholds please refer to Tables 3.3 and 3.4.
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Figure 3.15 provides a bird’s eye look of our XML Schema (it is fully described in Ap-
pendix A) that sketches the three views and their intersection in the central and shaded
square (i.e. views overlapping). A Service is defined at an higher level, because it can be
described by means of elements belonging to all the three views.

STATIC 
VIEW

DYNAMIC
VIEW

DEPLOYMENT
VIEW

views
overlapping

Service

Figure 3.15: Bird’s-eye look of the XML Schema and its views.

The benefit of introducing (static, dynamic, deployment) views is that the performance
antipattern specification can be partitioned on their basis: the predicate expressing a per-
formance antipattern is in fact the conjunction of sub-predicates, each referring to a dif-
ferent view. However, to specify an antipattern it might not be necessary information
coming from all views, because certain antipatterns involve only elements of some views.

Note that in this process we provide our formal interpretation of the informal definitions
of Table 3.1. Hence, the formalization we propose obviously reflects our interpretation.
Different formalizations of antipatterns can be originated by laying on different interpre-
tations of their informal definitions.

3.4.1 SINGLE-VALUE PERFORMANCE ANTIPATTERNS

In this Section we report the Performance Antipatterns that can be detected by single
values of performance indices (such as mean, max or min values).

BLOB (OR GOD CLASS/COMPONENT)

Problem Blob (or “god” class/component) [119] has the following problem infor-
mal definition: “occurs when a single class either 1) performs all of the work of an
application or 2) holds all of the application’s data. Excessive message traffic that can
degrade performance” (see Table 3.1).

We formalize this sentence with four basic predicates: the BP1 predicate whose elements
belong to the Static View; the BP2 predicate whose elements belong to the Dynamic
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View; and finally the BP3 and BP4 predicates whose elements belong to Deployment
View.

-STATIC VIEW-

BP1- Two cases can be identified for the occurrence of the blob antipattern.

In the first case there is at least one SoftwareEntityInstance, e.g. swEx, such
that it “performs all of the work of an application” [119], while relegating other instances
to minor and supporting roles. Let us define the function FnumClientConnects that counts
how many times the software entity instance swEx is in a Relationship with other
software entity instances by assuming a clientRole for swEx. The property of per-
forming all the work of an application can be checked by comparing the output value of
the FnumClientConnects function with a threshold ThmaxConnects:

FnumClientConnects(swEx) ≥ ThmaxConnects (3.1)

In the second case there is at least one SoftwareEntityInstance, e.g. swEx,
such that it “holds all of the application’s data” [119]. Let us define the function
FnumSupplierConnects that counts how many times the software entity instance swEx is in a
Relationship with other software entity instances by assuming the supplierRole
for swEx. The property of holding all of the application’s data can be checked by compar-
ing the output value of the FnumSupplierConnects function with a threshold ThmaxConnects:

FnumSupplierConnects(swEx) ≥ ThmaxConnects (3.2)

-DYNAMIC VIEW-

BP2 - swEx performs most of the business logics in the system or holds all the appli-
cation’s data, thus it generates or receives excessive message traffic. Let us define by
FnumMsgs the function that takes in input a software entity instance with a senderRole,
a software entity instance with a receiverRole, and a Service S, and returns the
multiplicity of the exchanged Messages. The property of excessive message traffic can
be checked by comparing the output value of the FnumMsgs function with a threshold
ThmaxMsgs in both directions:

FnumMsgs(swEx, swEy, S) ≥ ThmaxMsgs (3.3a)
FnumMsgs(swEy, swEx, S) ≥ ThmaxMsgs (3.3b)

-DEPLOYMENT VIEW-

The performance impact of the excessive message traffic can be captured by considering
two cases. The first case is the centralized one (modeled by the BP3 predicate), i.e.
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the blob software entity instance and the surrounding ones are deployed on the same
processing node, hence the performance issues due to the excessive load may come out by
evaluating the utilization of such processing node. The second case is the distributed one
(modeled by theBP4 predicate), i.e. the Blob software entity instance and the surrounding
ones are deployed on different processing nodes, hence the performance issues due to the
excessive message traffic may come out by evaluating the utilization of the network links.

BP3- The ProcesNode Pxy on which the software entity instances swEx and swEy are
deployed shows heavy computation. That is, the utilization of a hardware entity of
the ProcesNode Pxy exceeds a certain threshold ThmaxHwUtil. For the formalization
of this characteristic, we use the FmaxHwUtil function that has two input parameters: the
processing node, and the type of HardwareEntity, i.e. ’cpu’, ’disk’, or ’all’ to denote
no distinction between them. In this case the FmaxHwUtil function is used to determine the
maximum Utilization among ’all’ the hardware entities of the processing node. We
compare such value with a threshold ThmaxHwUtil:

FmaxHwUtil(Pxy, all) ≥ ThmaxHwUtil (3.4)

BP4- The ProcesNode PswEx on which the software entity instance swEx is deployed,
shows a high utilization of the network connection towards the ProcesNode PswEy on
which the software entity instance swEy is deployed. Let us define by FmaxNetUtil the
function that provides the maximum value of the usedBandwidth overall the network
links joining the processing nodes PswEx and PswEy . We must check if such value is
higher than a threshold ThmaxNetUtil:

FmaxNetUtil(PswEx , PswEy) ≥ ThmaxNetUtil (3.5)

Summarizing, the Blob (or “god” class/component) antipattern occurs when the follow-
ing composed predicate is true:

∃swEx, swEy ∈ swE, S ∈ S |

((3.1) ∨ (3.2)) ∧ ((3.3a) ∨ (3.3b)) ∧ ((3.4) ∨ (3.5))

where swE represents the SoftwareEntityInstances, and S represents the Ser-
vices in the software system. Each (swEx, swEy, S) instance satisfying the predicate
must be pointed out to the designer for a deeper analysis, because it represents a Blob
antipattern.
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CONCURRENT PROCESSING SYSTEMS

Problem Concurrent Processing Systems [121] has the following problem infor-
mal definition: “occurs when processing cannot make use of available processors” (see
Table 3.1).

We formalize this sentence with three basic predicates: the BP1, BP2, BP3 predicates
whose elements belong to the Deployment View. In the following, we denote with P the
set of the ProcesNode instances in the system.

-DEPLOYMENT VIEW-

BP1 - There is at least one ProcesNode in P, e.g. Px, having a large QueueLength.
Let us define by FmaxQL the function providing the maximum QueueLength among
all the hardware entities of the processing node. The first condition for the antipattern
occurrence is that the value obtained from FmaxQL is greater than a threshold ThmaxQL:

FmaxQL(Px) ≥ ThmaxQL (3.6)

BP2 - Px has a heavy computation. This means that the utilizations of some hardware enti-
ties in Px (i.e. cpu, disk) exceed predefined limits. We use the already defined FmaxHwUtil

to identify the highest utilization of cpu(s) and disk(s) in Px, and then we compare
such utilizations to the ThmaxCpuUtil and ThmaxDiskUtil thresholds:

FmaxHwUtil(Px, cpu) ≥ ThmaxCpuUtil (3.7a)
FmaxHwUtil(Px, disk) ≥ ThmaxDiskUtil (3.7b)

BP3- The processing nodes are not used in a well-balanced way, as there is at least another
instance of ProcesNode in P, e.g. Py, whose Utilization of the hardware entities,
differentiated according to their type (i.e. cpu, disk), is smaller than the one in Px. In
particular two new thresholds, i.e. ThminCpuUtil and ThminDiskUtil, are introduced:

FmaxHwUtil(Py, cpu) < ThminCpuUtil (3.8a)
FmaxHwUtil(Py, disk) < ThminDiskUtil (3.8b)

Summarizing, the Concurrent Processing Systems antipattern occurs when the following
composed predicate is true:

∃Px, Py ∈ P | (3.6) ∧ [((3.7a) ∧ (3.8a)) ∨ ((3.7b) ∧ ((3.8b)))]
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where P represents the set of all the ProcesNodes in the software system. Each (Px, Py)
instance satisfying the predicate must be pointed out to the designer for a deeper analysis,
because it represents a Concurrent Processing Systems antipattern.

Pipe and Filter Architectures and Extensive Processing antipatterns are both manifesta-
tions of the unbalanced processing: “Imagine waiting in an airline check-in line. Multiple
agents can speed-up the process but, if a customer needs to change an entire itinerary, the
agent serving him or her is tied-up for a long time making those changes. With this agent
(processor) effectively removed from the pool for the time required to service this request,
the entire line moves more slowly and, as more customers arrive, the line becomes longer”
quoted by [121].

PIPE AND FILTER ARCHITECTURES

Problem “Pipe and Filter” Architectures [121] has the following problem informal
definition: “occurs when the slowest filter in a pipe and filter architecture causes the
system to have unacceptable throughput” (see Table 3.1).

“For example, in the travel analogy, passengers must go through several stages (or filters):
first check in at the ticket counter, then pass through security, then go through the boarding
process. Recent events have caused each stage to go more slowly. The security stage tends
to be the slowest filter these days” quoted by [121].

We formalize this sentence with four basic predicates: the BP1, BP2, BP3 predicates
whose elements belong to the Static View; the BP4 predicate whose elements belong to
the Deployment View.

-STATIC VIEW-

BP1 - There is at least one Operation Op that represents the slowest filter, i.e. it re-
quires a set of resource demands higher than a given thresholds set. Let us define by
FresDemand the function providing the StructuredResourceDemand of the oper-
ation Op that returns an array of values corresponding to the resource demand(s) the
operation Op requires:

∀i : FresDemand(Op)[i] ≥ ThresDemand[i] (3.9)

BP2 - There is at least one Service S that invokes the OperationInstance OpI ,
that is instance ofOp. Let us define by FprobExec the function that provides the probability
of execution of the operation instance OpI when the service S is invoked. If it is equal to
1 it means that the Task referring to such operation is mandatory:

FprobExec(S,OpI) = 1 (3.10)
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BP3- The throughput of the service S is unacceptable, i.e. lower than the value de-
fined by an user requirement ThSthReq. Let us define by FT the function that returns the
Throughput of the service S:

FT (S) < ThSthReq (3.11)

-DEPLOYMENT VIEW-

BP4- The ProcesNode PswEx on which the software instance swEx (i.e. the software
entity instance that offers OpI) is deployed has a heavy computation. For the formal-
ization of this characteristic, we recall the FmaxHwUtil function with the ’all’ option, that
returns the maximum Utilization among all the hardware entities of the processing
node. We compare such value with a threshold ThmaxHwUtil:

FmaxHwUtil(PswEx , all) ≥ ThmaxHwUtil (3.12)

Summarizing, the “Pipe and Filter” Architectures antipattern occurs when the following
composed predicate is true:

∃OpI ∈ O, S ∈ S | (3.9) ∧ (3.10) ∧ ((3.11) ∨ (3.12))

where O represents the set of all the OperationInstances, and S represents the
Services in the software system. Each (OpI , S) instance satisfying the predicate must
be pointed out to the designer for a deeper analysis, because it represents a “Pipe and
Filter” Architectures antipattern.

EXTENSIVE PROCESSING

Problem Extensive processing [121] has the following problem informal defini-
tion: “occurs when extensive processing in general impedes overall response time” (see
Table 3.1).

“This situation is analogous to the itinerary-change example. It occurs when a long run-
ning process monopolizes a processor. The processor is removed from the pool, but unlike
the pipe and filter example, other work does not have to pass through this stage before
proceeding. This is particularly problematic if the extensive processing is on the process-
ing path that is executed for the most frequent workload” quoted by [121].

We formalize this sentence with four basic predicates: the BP1, BP2, BP3 predicates
whose elements belong to the Static View; the BP4 predicate whose elements belong to
the Deployment View.
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-STATIC VIEW-

BP1 - There are at least two Operations Op1 and Op2 such that: (i) Op1 has a re-
source demand vector higher than an upper bound threshold vector (3.13a); (ii) Op2 has a
resource demand vector lower than a lower bound threshold vector (3.13b). The Struc-
turedResourceDemand of the operations is provided by the function FresDemand that
returns an array of values corresponding to the resource demand(s) the operations Op1

and Op2 require. In practice:

∀i : FresDemand(Op1)[i] ≥ ThmaxOpResDemand[i] (3.13a)
∀i : FresDemand(Op2)[i] < ThminOpResDemand[i] (3.13b)

BP2 - There is at least one Service S that invokes the OperationInstances OpI1
(instance of Op1), and OpI2 (instance of Op2). Unlike to the “Pipe and Filter” Archi-
tectures, OpI1 and OpI2 are alternately executed in the service S. This condition can be
formalized by using the FprobExec function that returns the probability of execution of the
operation instances OpI1 and OpI2 when the service S has been invoked, such that:

FprobExec(S,OpI1) + FprobExec(S,OpI2) = 1 (3.14)

BP3- The response time of the service S is unacceptable, i.e. larger than the value
ThSrtReq defined by a user requirement. Let us define by FRT the function that returns
the ResponseTime of the service S:

FRT (S) > ThSrtReq (3.15)

-DEPLOYMENT VIEW-

BP4- The ProcesNode PswEx on which the software instance swEx (i.e. the software
entity instance that offers the operation instance OpI1) is deployed has a heavy com-
putation. For the formalization of this characteristic, we recall the FmaxHwUtil function
with the ’all’ option, that returns the maximum Utilization among all the hardware
entities of the processing node. We compare such value with a threshold ThmaxHwUtil:

FmaxHwUtil(PswEx , all) ≥ ThmaxHwUtil (3.16)

Summarizing, the Extensive Processing antipattern occurs when the following composed
predicate is true:

∃OpI1, OpI2 ∈ O, S ∈ S | (3.13a) ∧ (3.13b) ∧ (3.14) ∧ ((3.15) ∨ (3.16))
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where O represents the set of all the OperationInstances, and S represents the
Services in the software system. Each (OpI1, OpI2, S) instance satisfying the pred-
icate must be pointed out to the designer for a deeper analysis, because it represents an
Extensive Processing antipattern.

CIRCUITOUS TREASURE HUNT

Problem Circuitous Treasure Hunt [123] has the following problem informal defi-
nition: “occurs when an object must look in several places to find the information that it
needs. If a large amount of processing is required for each look, performance will suffer”
(see Table 3.1).

We formalize this sentence with three basic predicates: theBP1 predicate whose elements
belong to the Static and the Dynamic Views; theBP2 andBP3 predicates whose elements
belong to the Deployment View.

-STATIC and DYNAMIC VIEWS-

BP1- There are two SoftwareEntityInstances, e.g. swEx and swEy, such that:
i) they are both involved in a Service S; ii) the instance playing the senderRole
(e.g. swEx), sends an excessive number of Messages to the one,playing the
receiverRole (e.g. swEy); iii) the receiver is a database (as captured by the isDB
attribute). To formalize such interpretation we use the FnumDBmsgs function that provides
the number of messages sent by swEx to swEy in the Service S. The property of
sending an excessive number of messages can be checked by comparing the output value
of the FnumDBmsgs function with a threshold ThmaxDBmsgs:

swEy.isDB = true (3.17)

FnumDBmsgs(swEx, swEy, S) ≥ ThmaxDBmsgs (3.18)

-DEPLOYMENT VIEW-

BP2- The ProcesNode PswEy on which the software instance swEy is deployed has a
heavy computation. That is, the Utilization of hardware entities belonging to the
ProcesNode PswEy exceed a certain threshold ThmaxHwUtil. For the formalization of
this characteristic, we recall that the FmaxHwUtil function with the ’all’ option returns the
maximum Utilization among all the hardware entities of the processing node. We
compare such value with a threshold ThmaxHwUtil:

FmaxHwUtil(PswEy , all) ≥ ThmaxHwUtil (3.19)
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BP3- Since, in general, a database access utilizes more disk than cpu, we require that the
maximum disk(s) Utilization is larger than the maximum cpu(s) utilization of
the ProcesNode PswEy :

FmaxHwUtil(PswEy , disk) > FmaxHwUtil(PswEy , cpu) (3.20)

Summarizing, the Circuitous Treasure Hunt antipattern occurs when the following
composed predicate is true:

∃swEx, swEy ∈ swE, S ∈ S | (3.17) ∧ (3.18) ∧ (3.19) ∧ (3.20)

where swE represents the set of SoftwareEntityInstances, and S represents the
set of Services in the software system. Each (swEx, swEy, S) instance satisfying the
predicate must be pointed out to the designer for a deeper analysis, because it represents
a Circuitous Treasure Hunt antipattern.

EMPTY SEMI TRUCKS

Problem Empty Semi Trucks [123] has the following problem informal definition:
“occurs when an excessive number of requests is required to perform a task. It may be
due to inefficient use of available bandwidth, an inefficient interface, or both” (see Table
3.1).

We formalize this sentence with three basic predicates: theBP1 predicate whose elements
belong to the Dynamic View; the BP2 and BP3 predicates whose elements belong to the
Deployment View.

-DYNAMIC VIEW-

BP1 - There is at least one SoftwareEntityInstance swEx that exchanges
an excessive number of Messages with remote software entities. Let us define by
FnumRemMsgs the function that calculates the number of remote messages sent by swEx

in a Service S:

FnumRemMsgs(swEx, S) ≥ ThmaxRemMsgs (3.21)

-DEPLOYMENT VIEW-

BP2- The inefficient use of available bandwidth means that the
SoftwareEntityInstance swEx sends a high number of messages without
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optimizing the network capacity. Hence, the ProcesNode PswEx , on which the
software entity instance swEx is deployed, reveals an utilization of the network lower
than the threshold ThminNetUtil. We focus on the NetworkLink(s) that connect PswEx

to the whole system, i.e. the ones having PswEx as their EndNode. Since we are
interested to the network links on which the software instance swEx generates traffic,
we restrict the whole set of network links to the ones on which the interactions of the
software instance swEx with other communicating entities take place:

FmaxNetUtil(PswEx , swEx) < ThminNetUtil (3.22)

BP3- The inefficient use of interface means that the software instance swEx communi-
cates with a certain number of remote instances, all deployed on the same remote process-
ing node. Let us define by FnumRemInst the function that provides the maximum number
of remote instances with which swEx communicates in the service S. The antipattern can
occur when this function returns a value higher or equal than a threshold ThmaxRemInst:

FnumRemInst(swEx, S) ≥ ThmaxRemInst (3.23)

Summarizing, the Empty Semi Trucks antipattern occurs when the following composed
predicate is true:

∃swEx ∈ swE, S ∈ S | (3.21) ∧ ((3.22) ∨ (3.23))

where swE represents the SoftwareEntityInstances, and S represents the Ser-
vices in the software system. Each (swEx, S) instance satisfying the predicate must be
pointed out to the designer for a deeper analysis, because it represents an Empty Semi
Trucks antipattern.

TOWER OF BABEL

Problem Tower of Babel [123] has the following problem informal definition:
“occurs when processes excessively convert, parse, and translate internal data into a
common exchange format such as XML” (see Table 3.1).

We formalize this sentence with two basic predicates: the BP1 predicate whose elements
belong to the Dynamic View; the BP2 predicate whose elements belong to the Deploy-
ment View.

-DYNAMIC VIEW-
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BP1 - There is at least one Service S in which the information is often translated from
an internal format to an exchange format, and back. Let us define by FnumExF the function
that counts how many times the format is changed in the service S by a Software-
EntityInstance swEx. The antipattern can occur when this function returns a value
higher or equal than a threshold ThmaxExF :

FnumExF (swEx, S) ≥ ThmaxExF (3.24)

-DEPLOYMENT VIEW-

BP2- The ProcesNode PswEx on which the software entity instance swEx is deployed
has a heavy computation. That is, the Utilization of hardware entities belonging
to the ProcesNode PswEx exceeds a threshold value. For the formalization of this
characteristic, we recall the FmaxHwUtil function, with the ’all’ option, that returns the
maximum Utilization among the ones of the hardware entities of the processing
node:

FmaxHwUtil(PswEx , all) ≥ ThmaxHwUtil (3.25)

Summarizing, the Tower of Babel antipattern occurs when the following composed
predicate is true:

∃swEx ∈ swE, S ∈ S | (3.24) ∨ (3.25)

where swE represents the set of all SoftwareEntityInstances, and S represents
the Services in the software system. Each (swEx, S) instance satisfying the predicate
must be pointed out to the designer for a deeper analysis, because it represents a Tower of
Babel antipattern.

ONE-LANE BRIDGE

Problem One-Lane Bridge [119] has the following problem informal definition:
“occurs at a point in execution where only one, or a few, processes may continue to
execute concurrently (e.g. when accessing a database). Other processes are delayed
while they wait for their turn” (see Table 3.1).

We formalize this sentence with four basic predicates: theBP1 andBP2 predicates whose
elements belong to the Dynamic View; the BP3 predicate whose elements belong to the
Static View.
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-DYNAMIC VIEW-

BP1 - There is at least one SoftwareEntityInstance swEx that receives a large
number of synchronous calls, i.e. its capacity (i.e. the parallelism degree) is lower than
the incoming requests rate in a service S. Let us define by FnumSynchCalls the function
providing the number of synchronous calls that swEx receives for a service S, and by
FpoolSize the function providing the pool size capacity of swEx:

FnumSynchCalls(swEx, S)� FpoolSize(swEx) (3.26)

BP2- The requests incoming to the processing node on which swEx is deployed are de-
layed, the ServiceTime is much lower than the WaitingTime. Let us define by
FserviceT ime and FwaitingT ime the functions providing the service time and the waiting
time, respectively, for the processing node PswEx:

FserviceT ime(PswEx)� FwaitingT ime(PswEx) (3.27)

-STATIC VIEW-

BP3- The response time of the service S is unacceptable, i.e. larger than the value
ThSrtReq defined by a user requirement. Let us define by FRT the function that returns
the ResponseTime of the service S:

FRT (S) > ThSrtReq (3.28)

Summarizing, the One-Lane Bridge antipattern occurs when the following composed
predicate is true:

∃swEx ∈ swE, S ∈ S | (3.26) ∧ (3.27) ∧ (3.28)

where swE represents the SoftwareEntityInstances, and S represents the Ser-
vices in the software system. Each (swEx, S) instance satisfying the predicate must be
pointed out to the designer for a deeper analysis, because it represents a One-Lane Bridge
antipattern.

EXCESSIVE DYNAMIC ALLOCATION

Problem Excessive Dynamic Allocation [119] has the following problem informal
definition: “occurs when an application unnecessarily creates and destroys large
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numbers of objects during its execution. The overhead required to create and destroy
these objects has a negative impact on performance” (see Table 3.1).

We formalize this sentence with two basic predicate: the BP1 predicate whose elements
belong to the Dynamic View, and the BP2 predicate whose elements belong to the Static
View.

-DYNAMIC VIEW-

BP1 - There is at least one Service S in which objects are created in a sort of “just-in-
time” approach, when their capabilities are needed, and then destroyed when they are no
longer required. Let us define by FnumCreatedObj the function that calculates the number of
created objects (i.e. IsCreateObjectAction), and by FnumDestroyedObj the function
that returns the number of destroyed ones (i.e. IsDestroyObjectAction):

FnumCreatedObj(S) ≥ ThmaxCrObj (3.29)

FnumDestroyedObj(S) ≥ ThmaxDeObj (3.30)

-STATIC VIEW-

BP2 - The overhead for creating and destroying a single object may be small, but
when a large number of objects are frequently created and then destroyed, the response
time may be significantly increased. Let us recall the function FRT that returns the
ResponseTime of the service S. If such value is larger than the user requirement,
then the antipattern can occur:

FRT (S) > ThSrtReq (3.31)

Summarizing, the Excessive Dynamic Allocation antipattern occurs when the following
composed predicate is true:

∃S ∈ S | ((3.29) ∨ (3.30)) ∧ (3.31)

where S represents the set of all the Services in the software system. Each S instance
satisfying the predicate must be pointed out to the designer for a deeper analysis, because
it represents an Excessive Dynamic Allocation antipattern.
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3.4.2 MULTIPLE-VALUES PERFORMANCE ANTIPATTERNS

In this Section we report the Performance Antipatterns that to be detected require the
trend (or evolution) of the performance indices along the time (i.e. multiple-values). The
numerical values of the performance indices (e.g. the operation response time) come from
the simulation of the performance model.

TRAFFIC JAM

Problem Traffic Jam [120] has the following problem informal definition: “occurs
when one problem causes a backlog of jobs that produces wide variability in response
time which persists long after the problem has disappeared” (see Table 3.1).

We formalize this sentence with three basic predicates: theBP1,BP2, andBP3 predicates
whose elements belong to the Static View.

-STATIC VIEW-

BP1- There is at least one OperationInstanceOpI that has a quite stable value of its
response time along different observation time interval up to the k-th one. Let us define by
FRT the function that returns the mean ResponseTime of the OperationInstan-
ce OpI observed in the interval t. We consider the average response time increase of the
operation in k − 1 consecutive time slots in which no peaks are shown, that means it is
lower than a threshold ThOpRtV ar:

∑
1≤t≤k |(FRT (OpI, t)− FRT (OpI, t− 1))|

k − 1
< ThOpRtV ar (3.32)

BP2- The OperationInstance OpI has an increasing value of its response time
along the k-th observation interval. We consider the average response time increase of the
operation in the k-th time slot in which a peak is shown, that means it is higher than a
threshold ThOpRtV ar:

|FRT (OpI, k)− FRT (OpI, k − 1)| > ThOpRtV ar (3.33)

BP3- The OperationInstanceOpI has a quite stable value of its response time after
the k-th observation interval, since the wide variability persists long. Different observation
time slots are considered up to the n-th observation interval. We consider the average
response time increase of the operation in n− k consecutive time slots in which no peaks
are shown:

∑
k≤t≤n |(FRT (OpI, t)− FRT (OpI, t− 1))|

n− k
< ThOpRtV ar (3.34)
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Summarizing, the Traffic Jam antipattern occurs when the following composed predicate
is true:

∃OpI ∈ O | (3.32) ∧ (3.33) ∧ (3.34)

where O represents the set of all the OperationInstances in the software system.
EachOpI instance satisfying the predicate must be pointed out to the designer for a deeper
analysis, because it represents a Traffic Jam antipattern.

THE RAMP

Problem The Ramp [123] has the following problem informal definition: “occurs
when processing time increases as the system is used” (see Table 3.1).

We formalize this sentence with two basic predicates: the BP1 and BP2 predicates whose
elements belong to the Static View.

-STATIC VIEW-

BP1- There is at least one OperationInstance OpI that has an increasing value
for the response time along different observation time slots. Let us define by FRT the
function that returns the mean ResponseTime of the operation instance OpI observed
in the time slot t. The Ramp can occur when the average response time of the operation
instance increases in n consecutive time slots, that means it is higher than a threshold
ThOpRtV ar:

∑
1≤t≤n |FRT (OpI, t)− FRT (OpI, t− 1)|

n
> ThOpRtV ar (3.35)

BP2- The OperationInstance OpI shows a decreasing value for the throughput
along different observation time slots. Let us define by FT the function that returns the
mean Throughput of the operation instance OpI observed in the time slot t. The
Ramp occurs when the absolute value of the average throughput of the operation instance
increases in n consecutive time slots, that means it is higher than a threshold ThOpThV ar:

∑
1≤t≤n |FT (OpI, t)− FT (OpI, t− 1)|

n
> ThOpThV ar (3.36)

Summarizing, The Ramp antipattern occurs when the following composed predicate is
true:



3.4 A logic-based specification of the antipattern problem 65

∃OpI ∈ O | (3.35) ∧ (3.36)

where O represents the set of all the OperationInstances in the software system.
EachOpI instance satisfying the predicate must be pointed out to the designer for a deeper
analysis, because it represents The Ramp antipattern.

MORE IS LESS

Problem More Is Less [121] has the following problem informal definition: “oc-
curs when a system spends more time “thrashing” than accomplishing real work because
there are too many processes relative to available resources” (see Table 3.1).

We formalize this sentence with one basic predicate: the BP1 predicate whose elements
belong to the Deployment View.

-DEPLOYMENT VIEW-

BP1 - There is at least one ProcesNode Px whose configuration parameters are not
able to support the workload required to the software system. The parameters we refer
are: the number of concurrent dbConnections, the webConnections, the pooledResources,
or the concurrentStreams.

Let us define by Fpar[i] the function that returns the i-th configuration parameter defined
for the system; and by FRTpar[i] the function returning the i-th run time parameter ob-
served in the time slot t. The More Is Less antipattern can occur when the configuration
parameters are much lower than the average values of the run time parameters in n con-
secutive time slots:

∀i : Fpar(Px)[i]�
∑

1≤t≤n(FRTpar(Px, t)[i]− FRTpar(Px, t− 1)[i])

n
(3.37)

Summarizing, the More Is Less antipattern occurs when the following predicate is true:

∃Px ∈ P | (3.37)

where P represents the set of all the ProcesNodes in the software system. Each Px

instance satisfying the predicate must be pointed out to the designer for a deeper analysis,
because it represents a More Is Less antipattern.
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3.4.3 SUMMARY

This Section summarizes the functions and the thresholds introduced for representing
antipatterns as logical predicates.

Table 3.2 reports the supporting functions we need to evaluate software model elements.
In particular, the first column of the Table shows the signature of the function and the
second column provides its description. For example, in the first row we can find the
FnumClientConnects function: it takes as input one software entity instance and it returns an
integer that represents the multiplicity of the relationships where swEx assumes the client
role.

Table 3.3 reports the thresholds we need to evaluate software boundaries. In particular, the
first column of the Table shows the name of the threshold, the second column provides
its description, and finally it is proposed an estimation for binding its numerical value.
For example, in the first row we can find the ThmaxConnects threshold: it represents the
maximum bound for the number of usage relationships a software entity is involved in;
it can be estimated as the average number of usage relationships, with reference to the
entire set of software instances in the software system, plus the corresponding variance.

Similarly to Table 3.3, Table 3.4 reports the thresholds we need to evaluate hardware
boundaries. For example, in the first row we can find the ThmaxHwUtil threshold: it
represents the maximum bound for the hardware device utilization and it can be estimated
as the average number of all the hardware utilization values, with reference to the entire
set of hardware devices in the software system, plus the corresponding variance.

Table 3.5 reports the thresholds we need to evaluate service boundaries. In particular,
the first column of the Table shows the name of the threshold and the second column
provides its description. For example, in the first row we can find the ThSthReq threshold
that represents the required value for the throughput of the service S. These types of
thresholds do not require an estimation process since we expect that they are defined by
software designers in the requirements specification phase.

Similarly to Table 3.5, Table 3.6 reports the thresholds we need to evaluate operation
slopes along the time. For example, in the first row we can find the ThOpRtV ar threshold
that represents the maximum feasible slope of the response time observed in n consecutive
time slots for the operation Op. These type of thresholds do not require an estimation
process since we expect that they are defined by software designers.

Finally, Table 3.7 lists the logic-based representation of the performance antipatterns we
propose. Each row represents a specific antipattern that is characterized by two attributes:
antipattern name, and its formula, i.e. the first order logics predicate modeling the corre-
sponding antipattern problem.

The formalization of antipatterns is the result of multiple formulations and checks. This
is a first attempt to formally define antipatterns and it may be subject to some refine-



3.4 A logic-based specification of the antipattern problem 67

Signature Description

int FnumClientConnects (SoftwareEntityInstance
swEx)

It counts the multiplicity of the relationships where swEx assumes
the client role

int FnumSupplierConnects (SoftwareEntityInstance
swEx)

It counts the multiplicity of the relationships where swEx assumes
the supplier role

int FnumMsgs (SoftwareEntityInstance swEx, Softwa-
reEntityInstance swEy , Service S)

It counts the number of messages sent from swEx to swEy in a
service S

float FmaxHwUtil (ProcesNode pnx, type T ) It provides the maximum hardware utilization among the hardware
devices of a certain type T ={cpu, disk, all} composing the process-
ing node pnx

float FmaxNetUtil (ProcesNode pnx, ProcesNode pny) It provides the maximum utilization among the network links joining
the processing nodes pnx and pny

float FmaxNetUtil (ProcesNode pnx, SoftwareEntityIn-
stance swEx)

It provides the maximum utilization among the network links con-
necting pnx overall the processing nodes with which swEx gener-
ates traffic

float FmaxQL (ProcesNode pnx) It provides the maximum queue length among the hardware devices
composing the processing node pnx

int[ ] FresDemand (Operation Op) It provides the resource demand of the operation Op

float FprobExec (Service S, Operation Op) It provides the probability the operation Op is executed in the service
S

float FT (Service S) It provides the estimated throughput of the service S at the steady-
state

float FRT (Service S) It provides the estimated response time of the service S at the steady-
state

float FT (Service S, timeInterval t) It provides the estimated throughput of the service S at the time in-
terval t

float FRT (Service S, timeInterval t) It provides the estimated response time of the service S at the time
interval t

int FnumDBmsgs (SoftwareEntityInstance swEx, Soft-
wareEntityInstance swEy , Service S)

It counts the number of requests by swEx towards swEy (i.e. a
database instance) in a service S

int FnumRemMsgs (SoftwareEntityInstance swEx, Ser-
vice S)

It counts the number of remote messages sent by swEx in a service
S

int FnumRemInst (SoftwareEntityInstance swEx, Ser-
vice S)

It provides the number of remote instances with which swEx com-
municates in a service S

int FnumExF (SoftwareEntityInstance swEx, Service
S)

It provides the number of exchange formats performed by swEx in
a service S

int FnumSynchCalls (SoftwareEntityInstance swEx,
Service S)

It provides the number of synchronous calls swEx receives in a ser-
vice S

int FpoolSize (SoftwareEntityInstance swEx) It provides the pool size capacity of swEx

float FserviceTime (ProcesNode pnx) It provides the service time of pnx

float FwaitingTime (ProcesNode pnx) It provides the waiting time of pnx

int FnumCreatedObj (Service S) It provides the number of created objects in a service S

int FnumDestroyedObj (Service S) It provides the number of destroyed objects in a service S

int[ ] Fpar (ProcesNode pnx) It provides the array of configuration parameters related to the pnx

processing node

int[ ] FRTpar (ProcesNode pnx, timeInterval t) It provides the array of configuration parameters related to the pnx

processing node at the time interval t

Table 3.2: Functions specification.
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Threshold Description Estimation

ThmaxConnects It represents the maximum bound
for the number of usage relation-
ships a software entity is involved

It can be estimated as the average number of usage relation-
ships, with reference to the entire set of software instances in
the software system, plus the corresponding variance

ThmaxMsgs It represents the maximum bound
for the number of messages sent by
a software entity in a service

It can be estimated as the average number of sent messages,
with reference to the entire set of software instances in the soft-
ware system, plus the corresponding variance

ThmaxDBmsgs It represents the maximum bound
for the number of database requests
in a service

It can be estimated as the average number of database requests,
with reference to the entire set of software instances in the soft-
ware system, plus the corresponding variance

ThmaxRemMsgs It represents the maximum bound
for the number of remote messages
in a service

It can be estimated as the average number of remote messages,
with reference to the entire set of software instances in the soft-
ware system, plus the corresponding variance

ThmaxRemInst It represents the maximum bound
for the number of remote commu-
nicating instances in a service

It can be estimated as the average number of remote commu-
nicating instances, with reference to the entire set of software
instances in the software system, plus the corresponding vari-
ance

ThmaxExF It represents the maximum bound
for the number of exchange formats

It can be estimated as the average number of exchanging for-
mats, with reference to the entire set of software instances in
the software system, plus the corresponding variance

ThmaxResDemand[i] It represents the maximum bound
for the resource demand of opera-
tions

It can be estimated as the average number of resource demands,
with reference to the entire set of software operations in the
software system, plus the corresponding variance

ThminResDemand[i] It represents the minimum bound
for the resource demand of opera-
tions

It can be estimated as the ThmaxOpResDemand minus the
gap decided by software architects for resource demand of op-
erations

ThmaxCrObj It represents the maximum bound
for the number of created objects

It can be estimated as the average number of created objects,
with reference to the entire set of software instances in the soft-
ware system, plus the corresponding variance

ThmaxDeObj It represents the maximum bound
for the number of destroyed objects

It can be estimated as the average number of destroyed ob-
jects, with reference to the entire set of software instances in
the software system, plus the corresponding variance

Table 3.3: Thresholds specification: software characteristics.

Threshold Description Estimation

ThmaxHwUtil It represents the maximum bound
for the hardware device utilization

It can be estimated as the average number of all the hardware uti-
lization values, with reference to the entire set of hardware devices
in the software system, plus the corresponding variance

ThmaxNetUtil It represents the maximum bound
for the network link utilization

It can be estimated as the average number of all the used band-
width values, with reference to the entire set of network links in the
software system, plus the corresponding variance

ThminNetUtil It represents the minimum bound
for the network link utilization

It can be estimated as the ThmaxNetUtil minus the gap decided
by software architects for network links

ThmaxQL It represents the maximum bound
for the queue length utilization

It can be estimated as the average number of all the queue length
values, with reference to the entire set of hardware devices in the
software system, plus the corresponding variance

ThmaxCpuUtil It represents the maximum bound
for the cpu utilization

It can be estimated as the mean value of all the hardware utiliza-
tion values, with reference to the entire set of cpu resources in the
software system, plus the corresponding variance

ThmaxDiskUtil It represents the maximum bound
for the disk utilization

It can be estimated as the mean value of all the hardware utiliza-
tion values, with reference to the entire set of disk resources in the
software system, plus the corresponding variance

ThminCpuUtil It represents the minimum bound
for the cpu utilization

It can be estimated as the ThmaxCpuUtil minus the gap decided
by software architects for cpu devices

ThminDiskUtil It represents the minimum bound
for the disk utilization

It can be estimated as the ThmaxDiskUtil minus the gap decided
by software architects for disk devices

Table 3.4: Thresholds specification: hardware characteristics.
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Threshold Description

ThSthReq It represents the required value for the throughput of the service S

ThSrtReq It represents the required value for the response time of the service S

Table 3.5: Thresholds specification: requirements.

Threshold Description

ThOpRtV ar It represents the maximum feasible slope of the response time observed
in n consecutive time slots for the operation Op

ThOpThV ar It represents the maximum feasible slope of the throughput observed in
n consecutive time slots for the operation Op

Table 3.6: Thresholds specification: slopes.

ments. However, the logic-based formalization is meant to demonstrate the potential for
a machine-processable management of performance antipatterns.

In fact, as proof of concept, a first implementation of the Detection Engine (see Figure 3.1)
has been made with a Java application automating the check of the architectural model
properties, as stated in the logical predicates. Such application parses any XML document
compliant with our XML Schema and returns the instances of the detected antipatterns4.

3.5 TOWARDS THE SPECIFICATION OF THE ANTIPATTERN

SOLUTION

With the logic-based formalization we have worked towards the detection of antipatterns.
Since an antipattern is made of a problem description as well as a solution description, in
this Section we work on the solution representation.

The basic idea is to exploit the formalization provided in Section 3.4 to automatically
deduce antipattern solution. Just to give a hint, being an antipattern expressed as a logical
formula, the negation of such formula should provide some suggestions on the refactoring
actions to solve the antipattern. This could represent a general approach to automatically
solve any new type of antipattern that can be defined in future, or at least to provide
guidelines that better support the antipattern solution.

In the following we report the formalization of the solution for the Blob antipattern by
negating its logical formula.

4The detection engine uses the Java API for XML processing, that is Document Object Model (DOM)
[9], i.e. a cross-platform and language-independent convention for representing and interacting with objects
in XML documents.
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Antipattern Formula

Blob (or god class/component) ∃swEx, swEy ∈ swE, S ∈ S | (FnumClientConnects(swEx) ≥
ThmaxConnects ∨ FnumSupplierConnects(swEx) ≥
ThmaxConnects) ∧ (FnumMsgs(swEx, swEy , S) ≥ ThmaxMsgs ∨
FnumMsgs(swEy , swEx, S) ≥ ThmaxMsgs) ∧ (FmaxHwUtil(Pxy , all) ≥
ThmaxHwUtil ∨ FmaxNetUtil(PswEx , PswEy ) ≥ ThmaxNetUtil)

Concurrent
Processing
Systems

∃Px, Py ∈ P | FmaxQL(Px) ≥ ThmaxQL ∧ [(FmaxHwUtil(Px, cpu) ≥
ThmaxCpuUtil ∧ FmaxHwUtil(Py , cpu) < ThminCpuUtil) ∨
(FmaxHwUtil(Px, disk) ≥ ThmaxDiskUtil ∧ (FmaxHwUtil(Py , disk) <
ThminDiskUtil))]

Si
ng

le
-v

al
ue

Unbalanced
Processing

“Pipe and
Filter” Ar-
chitectures

∃OpI ∈ O, S ∈ S | ∀i : FresDemand(Op)[i] ≥ ThresDemand[i] ∧
FprobExec(S, OpI) = 1 ∧ (FmaxHwUtil(PswEx , all) ≥ ThmaxHwUtil ∨
FT (S) < ThSthReq)

Extensive
Processing

∃OpI1, OpI2 ∈ O, S ∈ S | ∀i : FresDemand(Op1)[i] ≥
ThmaxOpResDemand[i] ∧ ∀i : FresDemand(Op2)[i] <
ThminOpResDemand[i] ∧ FprobExec(S, OpI1) + FprobExec(S, OpI2) =
1 ∧ (FmaxHwUtil(PswEx , all) ≥ ThmaxHwUtil ∨ FRT (S) > ThSrtReq)

Circuitous Treasure Hunt ∃swEx, swEy ∈ swE, S ∈ S | swEy .isDB =
true ∧ FnumDBmsgs(swEx, swEy , S) ≥ ThmaxDBmsgs ∧
FmaxHwUtil(PswEy , all) ≥ ThmaxHwUtil ∧ FmaxHwUtil(PswEy , disk) >
FmaxHwUtil(PswEy , cpu)

Empty Semi Trucks ∃swEx ∈ swE, S ∈ S | FnumRemMsgs(swEx, S) ≥ ThmaxRemMsgs ∧
FmaxNetUtil(PswEx , swEx) < ThminNetUtil ∨ FnumRemInst(swEx, S) ≥
ThmaxRemInst)

Tower of Babel ∃swEx ∈ swE, S ∈ S | FnumExF (swEx, S) ≥ ThmaxExF ∨
FmaxHwUtil(PswEx , all) ≥ ThmaxHwUtil

One-Lane Bridge ∃swEx ∈ swE, S ∈ S | FnumSynchCalls(swEx, S) � FpoolSize(swEx) ∧
FserviceTime(PswEx )� FwaitingTime(PswEx ) ∧ FRT (S) > ThSrtReq

Excessive Dynamic Allocation ∃S ∈ S | (FnumCreatedObj(S) ≥ ThmaxCrObj ∨ FnumDestroyedObj(S) ≥
ThmaxDeObj) ∧ FRT (S) > ThSrtReq

Traffic Jam ∃OpI ∈ O |
∑

1≤t≤k|(FRT (OpI,t)−FRT (OpI,t−1))|
k−1

<

ThOpRtV ar ∧ FRT (OpI, k) − FRT (OpI, k − 1) > ThOpRtV ar ∧∑
k≤t≤n|(FRT (OpI,t)−FRT (OpI,t−1))|

n−k
< ThOpRtV ar

The Ramp
∃Op ∈ O |

∑
1≤t≤n|(FRT (OpI,t)−FRT (OpI,t−1))|

n
> ThOpRtV ar ∧∑

1≤t≤n|(FT (OpI,t)−FT (OpI,t−1))|
n

> ThOpThV ar

M
ul

tip
le

-v
al

ue
s

More is Less ∃Px ∈ P | ∀i : Fpar(Px)[i]�
∑

1≤t≤N (FRT par(Px,t)[i]−FRT par(Px,t−1)[i])

N

Table 3.7: A logic-based representation of Performance Antipatterns.
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BLOB (OR GOD CLASS/COMPONENT)

Solution Blob (or “god” class/component) [119] has the following solution infor-
mal definition: “Refactor the design to distribute intelligence uniformly over the
applications top-level classes, and to keep related data and behavior together” (see
Table 3.1).

Let us try to model the solution of the antipattern by negating the predicates for-
malizing the antipattern problem definition. Hence, the Blob (or “god” class/-
component) antipattern should be solved when: ∀swEx, swEy ∈ swE, S ∈ S |
¬(((3.1) ∨ (3.2)) ∧ ((3.3a) ∨ (3.3b)) ∧ ((3.4) ∨ (3.5))) .

By applying De Morgan’s law (i.e. the negation of a conjunction is the disjunction of the
negations) the previous formula can be written as follows: ∀swEx, swEy ∈ swE, S ∈ S |
¬((3.1) ∨ (3.2)) ∨ ¬((3.3a) ∨ (3.3b)) ∨ ¬((3.4) ∨ (3.5)) .

By applying De Morgan’s law (i.e. the negation of a disjunction is the conjunction of the
negations) the previous formula can be written as follows: ∀swEx, swEy ∈ swE, S ∈ S |
¬(3.1) ∧ ¬(3.2) ∨ ¬(3.3a) ∧ ¬(3.3b) ∨ ¬(3.4) ∧ ¬(3.5) .

Figure 3.16 focuses on the static view of the Blob-controller antipattern, and some recon-
figuration actions that can be applied to solve such antipattern are depicted. The upper
side of Figure 3.16 refers to the first approximation we gave in Section 3.3 (see Figure
3.2), whereas the lower side shows that other options discussed in the following.

¬(3.1)∧¬(3.2) - There is no SoftwareEntityInstance such that it performs most
of the work of the system and holds all the application’s data, relegating other classes or
components to minor and supporting roles.

Starting from the assumption that swEx has been detected as a Blob instance and it has
a high number of connections, a solution might be to delegate some work from swEx

to its surrounding software entities, thus to avoid an excessive communication. Let us
recall the threshold ThmaxConnects as the upper bound for the number of the connections.
It means that the software instance swEx has a number of n connections, and obviously
n > ThmaxConnects. The problem becomes how to move dn − (ThmaxConnects − 1)e
connections from swEx to its surrounding instances so that each software instance has a
maximum number of (ThmaxConnects − 1) connections.

A first strategy (see Reconfiguration (a) of Figure 3.16) could be to split the soft-
ware instance in about dn/(ThmaxConnects − 1)e software instances, i.e. swEx1,
. . . , swExdn/(ThmaxConnects−1)e, and for each new software instance maintaining
(ThmaxConnects − 1) connections.

A second strategy (see Reconfiguration (b) of Figure 3.16) could be to better separate
the concerns by reasoning on the number of the software instances with which swEx

is connected. Let us define SUBs (swEx) = {swEy1, . . . , swEyk}. The number of
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Figure 3.16: A graphical representation of the reconfiguration actions for solving the
Blob-controller Antipattern.



3.5 Towards the specification of the antipattern solution 73

connections between swEx and swEyi, with i = {1, . . . , k} is c1, . . . , ck. For each swEyi,
if ck < ThmaxConnects the software instance swEx is split in swExi and connected with the
swEyi, otherwise it is necessary to split the software instance in dck/(ThmaxConnects−1)e
software instances, i.e. swEx1, . . . , swExdck/(ThmaxConnects−1)e, and for each new software
instance maintaining (ThmaxConnects − 1) connections. The final goal is that the software
instance swEx has not anymore a number of connections larger than the threshold value.

¬(3.3a) ∧ ¬(3.3b) - There is no SoftwareEntityInstance such that it generates
and receives excessive message traffic.

Starting from the assumption that swEx has been detected as a Blob instance and it sends
or receives a high number of messages, a solution might be to reduce the number of
messages, thus to avoid an excessive traffic. Let us recall the threshold ThmaxMsgs as the
upper bound for the number of the messages. It means that the software instance swEx

sends or receives a number of n messages, and obviously n > ThmaxMsgs. It is necessary
to delete dn − (Thmsgs − 1)e messages by looking at the behavior and checking how to
move the business logics among the software instances.

¬(3.4) ∧ ¬(3.5) - There is no a ProcesNode and a NetworkLink such that they have
a high utilization.

Decreasing the number of connections and messages might help to improve the utilization
of both processing nodes and network links. However, if the software instance swEx has
been split in n instances, swEx1, . . . , swExn, an additional solution might be to re-deploy
such instances on the available hardware resources, thus to balance the workload. Let
us recall the threshold ThmaxHwUtil as the upper bound for the utilization of processing
nodes, and ThmaxNetUtil as the upper bound for the utilization of network links. A strat-
egy could be to define as Available PNs = {P1, . . . , Pm} | ∀i : FmaxHwUtil(Pi, all) <
ThmaxHwUtil, and Available NLs = {N1, . . . , Nk} | ∀i, j ∈ Available PNs :
FmaxNetUtil(Pi, Pj) < ThmaxNetUtil ∧ ∀x ∈| Available NLs : Nx.endNode = {Pi, Pj}.
The resource demand vector of each software entity instance and their interactions give
the information about how to re-deploy the instances. High values of resource demands
can be assigned to processing nodes with low utilization, and instances with many interac-
tions can be assigned to the same processing node thus to avoid remote communications.

The negation of logical predicates represents a first attempt towards the automation of the
antipatterns solution, in fact it only provides guidelines for refactoring sofware architec-
tural models. As described above, thresholds are fundamental to define the refactoring
actions, and several strategies can be devised by reasoning on such values.

However, we believe that a wider investigation is necessary to formally define the refactor-
ing actions for solving the antipatterns. In fact the approach of negating logical predicates
will not be used in Chapter 5 where the solution of antipatterns in concrete modeling
languages has been discussed by reasoning on their textual informal specification.





CHAPTER 4

SPECIFYING ANTIPATTERNS: A MODEL-DRIVEN

APPROACH

This Chapter mainly advocates the idea of modeling antipatterns as first-class entities, i.e.
as models that can be manipulated to conveniently generate further artifacts with model-
driven techniques. A Performance Antipattern Modeling Language (PAML) is provided
for specifying antipatterns, we show how to model antipatterns with it, and the benefits
of the approach are finally discussed. In other words, the PAML models of antipatterns
characterize the elements and the semantic properties we must search in the software
architectural models to detect antipattern occurrences.

The advantage of introducing a modeling language for specifying antipatterns is to let
the designer precisely convey the intended interpretation on the basis of their informal
definitions and possibly its subsequent emendations. The core question tackled in this
Chapter is: how can performance antipatterns be unambiguously specified by a designer?
To this aim, a model-driven approach is introduced to allow a machine-processable and
user-friendly specification of performance antipatterns.

4.1 PERFORMANCE ANTIPATTERNS MODELING

LANGUAGE (PAML)

Model Driven Engineering [115] (MDE) leverages intellectual property and business
logic from source code into high-level specifications enabling more accurate analyses.
In general, an application domain is consistently analyzed and engineered by means of a
metamodel, i.e. a coherent set of interrelated concepts.

This Section presents a metamodel, named Performance Antipattern Modeling Language
(PAML), collecting all the architectural model elements identified by analyzing the an-
tipatterns definition in literature [123], and fully described in Appendix A.

The PAML metamodel structure is shown in Figure 4.1. It is constituted by two main parts
as delimited by the horizontal dashed line: (i) the Antipattern Specification part is aimed
at collecting the high-level features, such as the views of the system (i.e. static, dynamic,
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deployment), characterizing the antipattern specification; (ii) the Model Elements Specifi-
cation part is aimed at collecting the concepts used to represent the software architectural
models and the performance results, that are the ones on which the antipatterns are based.

modelElements

Antipattern
Specification

Model Elements
Specification

SML+

AntipatternSpecification

name: EString

AntipatternView

name: EString

AntipatternSubView

name: EString

ModelElement

name: EString
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DeploymentView

0..1 staticView
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type: BooleanOperator

BooleanOperator
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<<enumeration>>
< >

1..* subviews

1..*

0..1 boolRestrict

2..*
0..*

restrictedSubviews

restriction

Figure 4.1: The Performance Antipattern Modeling Language (PAML) structure.

Note that PAML currently only deals with the definition of performance problems cap-
tured by antipatterns. As future work we plan to complete PAML with a Refactoring
Modeling Language (RML) for formalizing the solutions in terms of refactorings, i.e.
changes of the original software architectural model.

All the architectural model elements and the performance indices occurring in the antipat-
tern specifications are grouped in a sub-metamodel called SML+ (see Figure 4.2). SML+
obviously shares many concepts with existing Software Modeling Languages, however,
it is not meant to be another modeling language, rather it is oriented to specify the basic
elements of performance antipatterns.

We do not detail all model elements of SML+ since they reflect the concepts of the XML
Schema presented in Appendix A. Dashed boxes of Figure 4.2 identify the three pack-
ages representing software architectural model features, i.e. the Static View, Dynamic
View, Deployment View. The Static View Model Elements package contains the software
elements (e.g. SoftwareEntity, Operation, etc.) involved in the system and the
static Relationships among them (e.g. client, supplier) that are aimed at defining
the system software resources. The Dynamic View Model Elements package contains the
interaction elements (e.g. Behavior, Message, etc.) involved in the system and the
dynamic relationships among them (e.g. behaviors, msgs, etc.) that are aimed at pro-
viding the system functionalities. Finally, the Deployment View Model Elements package
contains the platform elements (e.g. ProcesNode, NetworkLink, etc.) involved in
the system and the deployment relationships (e.g. endNode, hwResTypes, etc.) that are
aimed at defining the system platform resources and the deployment policies.
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Static View 
Model Elements

Deployment View 
Model Elements

Dynamic View
Model Elements

Figure 4.2: The Enriched Software Modeling Language (SML+).

Several relationships are also defined among different views, e.g. the SoftwareEn-
tityInstance meta-class is involved in a deploy relationship with the ProcesNode
meta-class to denote the deployment of software instances into hardware platforms.

Out of the three packages, in Figure 4.2 the ThresholdSpecification meta-class is defined.
It has an identifier name, one or more float values representing the numerical bindings,
and finally an operator drives the designer towards the interpretation of the threshold
through the OperatorType that may be: GreaterOrEqual (≥), LowerOrEqual (≤), Greater
(>), Lower (<), Equal (=).

PAML within the Eclipse toolkit

PAML is implemented within the Eclipse Modeling Framework (EMF) [3], i.e. a model-
ing framework and code generation facility for building tools and other applications based
on a structured data model. Figure 4.3 shows PAML as expressed in Ecore1 (paml.ecore),
i.e. the meta-metamodel included in the core of the EMF framework. EMF is also sup-
ported by a validation framework that provides capabilities used to ensure model integrity
and, as shown in Figure 4.3, the validation of the PAML metamodel has been successfully
completed.

Antipatterns modeling is supported by an Eclipse editor. By default, it is split between
two plug-ins: (i) an edit plug-in (projPAML.edit, see Figure 4.3) that includes adapters

1For more details please refer to the Package org.eclipse.emf.ecore [8].
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Figure 4.3: PAML implementation in the Eclipse platform.

Figure 4.4: PAML Model wizard for creating new instances.
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providing a structured view and perform command-based editing of the model objects;
(ii) an editor plug-in (projPAML.editor, see Figure 4.3) that provides the user interface
for the editor and the wizard. In order to test the new plug-ins, a second instance of
Eclipse must be launched. The plug-ins (i.e. the PAML Model, the PAML Edit, and the
PAML Editor) will run in this workbench. The PAML Model wizard can now be used to
create a new instance of the model, as shown in Figure 4.4.

Figure 4.5: PAML Editor properties.

PAML models will be named with the antipattern names, and they will end with a .paml
extension. Figure 4.5 shows the set of all the antipatterns we modeled, e.g. the Blob
(Blob.paml), the Circuitous Treasure Hunt (CircuitousTreasureHunt.paml), etc.

For example, following the graphical representation of the Blob antipattern (see Fig-
ures 3.2 and 3.3), the corresponding Blob model (see Figure 4.5) will be con-
stituted by an AntipatternSpecification with three AntipatternViews:
the StaticView; the DynamicView and the DeploymentView. In partic-
ular, in Figure 4.5, an excerpt of the antipattern specification Blob is depicted.
The Static View (blob.static) includes two AntipatternSubViews specifying: (i)
the BLOB-controller case (blob.static.controller); (ii) the BLOB-dataContainer case
(blob.static.dataContainer). Each subview will contain a set of ModelElements, e.g.
SoftwareEntityInstance, ThresholdSpecification, Relationship.
A BooleanRestriction (blob.static.restriction) is defined between these sub-views,
and the type is set by the BooleanOperator equal to the OR value (see Figure 4.5).
We can conclude that the PAML editor represents an instrument to formally specify an-
tipatterns and it is given to the designer to precisely convey his/her interpretation.
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4.2 A MODEL-BASED SPECIFICATION OF THE

ANTIPATTERN PROBLEM

In this Section we provide the PAML-based models that reflect the interpretation we gave
in Chapter 3. PAML-based models are structured (in the Figures of this Section) in two
parts: in the upper part we report a fragment of the software architectural model with
the occurrence of the antipattern problem (as shown in Section 3.3); in the lower part the
PAML-based antipattern model is depicted, and the binding towards the software archi-
tectural model elements is highlighted. For sake of readability, in the Figures we only
report some bindings (i.e. dashed arrows labeled BINDS TO), and antipattern models are
fully explained in their textual description.

4.2.1 SINGLE-VALUE PERFORMANCE ANTIPATTERNS

In this Section we report the Performance Antipatterns that can be detected by single
values of performance indices (such as mean, max or min values).

BLOB (OR GOD CLASS)

Figure 4.6 shows the PAML-based model for the Blob (or god class) antipattern.
It contains three views: StaticView, DynamicView and DeploymentView.

The static view is named blob.static and it contains two SubViews. The first sub-
view is named blob.static.controller, it captures the BLOB-controller case in which a
SoftwareEntityInstance Sx is involved in a Relationship as client, and the
multiplicity is calculated with the function FnumClientConnects (see Table 3.2). The num-
Connect attribute refers to the ThresholdSpecification named ThmaxConnects

(see Table 3.3), and it means that Sx might be a blob antipattern instance if the
multiplicity value is GreaterOrEqual to the threshold value. The second sub-view
is blob.static.dataContainer, it captures the BLOB-dataContainer case in which a
SoftwareEntityInstance Sx is involved in a Relationship as supplier,
and the multiplicity is calculated with the function FnumSupplierConnects (see Table
3.2). The numConnect attribute refers to the ThresholdSpecification named
ThmaxConnects, (see Table 3.3), and it means that Sx might be a blob antipattern instance
if the multiplicity value is GreaterOrEqual to the threshold value. These two sub-views
are related each other by a BooleanRestriction with the OR type that indicates that
at least one of the two static sub-views must take place in the software architectural model
to state a Blob antipattern occurrence.

The dynamic view is named blob.dynamic and it contains two SubViews. The first
sub-view is named blob.dynamic.controller, it captures the BLOB-controller case in
which a SoftwareEntityInstance Sx is involved in a Service as sender of
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Messages, and the multiplicity is calculated with the function FnumMsgs (see Ta-
ble 3.2). The numMsg attribute refers to the ThresholdSpecification named
ThmaxMsgs (see Table 3.3), and it means that Sx might be a blob antipattern instance
if the multiplicity value is GreaterOrEqual to the threshold value. The second sub-
view is blob.dynamic.dataContainer, it captures the BLOB-dataContainer case in which a
SoftwareEntityInstance Sx is involved in a Service as receiver of Messages,
and the multiplicity is calculated with the function FnumMsgs (see Table 3.2). The numMsg
attribute refers to the ThresholdSpecification named ThmaxMsgs, (see Table 3.3),
and it means that Sx might be a blob antipattern instance if the multiplicity value is
GreaterOrEqual to the threshold value. These two sub-views are related each other by
a BooleanRestriction with the OR type by indicating that at least one of the two
dynamic sub-views must take place in the software architectural model to state a Blob
antipattern occurrence.

The deployment view is named blob.deployment and it contains two SubViews. The
first sub-view is named blob.deployment.centralized, it captures the centralized case
in which the SoftwareEntityInstance Sx and the surrounding ones (e.g. sy,
sz) are deployed on the ProcesNode named PN1, and the maxDevicesUtil is calcu-
lated with the function FmaxHwUtil (see Table 3.2). The nodeUtil attribute refers to the
ThresholdSpecification named ThmaxHwUtil (see Table 3.4), and it means that
Sx might be a blob antipattern instance if the maxDevicesUtil value is GreaterOrEqual
to the threshold value. The second sub-view is blob.deployment.distributed, it captures
the distributed case in which a SoftwareEntityInstance Sx and the surrounding
ones (e.g. Sy, Sz) are deployed on different ProcesNodes named PN2 and PN3, and
the maxNetworkLinksUtil is calculated with the function FmaxNetUtil (see Table 3.2). The
nodeNetUtil attribute refers to the ThresholdSpecification named ThmaxNetUtil,
(see Table 3.4), and it means that Sx might be a blob antipattern instance if the maxNet-
workLinksUtil value is GreaterOrEqual to the threshold value. These two sub-views are
related each other by a BooleanRestriction with the OR type by indicating that at
least one of the two deployment sub-views must take place in the software architectural
model to state a Blob antipattern occurrence.

CONCURRENT PROCESSING SYSTEMS

Figure 4.7 shows the PAML-based model for the Concurrent Processing Systems
antipattern. It contains one view: DeploymentView.

The deployment view is named cps.deployment and it contains three SubViews.

The first sub-view is named cps.deployment.queue, there are two ProcesNodes,
i.e. PN1 and PN2, and PN1 has the maxQueueLength calculated with the
function FmaxQL (see Table 3.2). The nodeQueueLength attribute refers to the
ThresholdSpecification named ThmaxQueue (see Table 3.4), and it means that
PN1 might be a Concurrent Processing Systems antipattern instance if the maxQueue-
Length value is GreaterOrEqual to the threshold value. Additionally, PN1 contains a
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set of hwResTypes (i.e. cpus − PN1, disks − PN1), whereas PN2 contains a set of
hwResTypes (i.e. cpus− PN2, disks− PN2).

The second sub-view is cps.deployment.unbalancedCpus. The HardwareEntity
named cpus−PN1 collects all cpu devices of the processing node PN1, and the maxDe-
vicesUtil is calculated with the function FmaxHwUtil (see Table 3.2). The deviceUtil
attribute refers to the ThresholdSpecification named ThcpuMaxUtil (see Table
3.4). The HardwareEntity named cpus − PN2 collects all cpu devices of the pro-
cessing node PN2, and the maxDevicesUtil is calculated with the function FmaxHwUtil

(see Table 3.2). The deviceUtil attribute refers to the ThresholdSpecification
named ThcpuMinUtil (see Table 3.4). It means that PN1 and PN2 might be a Concurrent
Processing Systems antipattern instance if the maxDevicesUtil value of cpus − PN1 is
GreaterOrEqual to the ThcpuMaxUtil threshold value, and the maxDevicesUtil value of
cpus− PN2 is Lower to the ThcpuMinUtil threshold value.

The third sub-view is cps.deployment.unbalancedDisks, and similarly to the the
cps.deployment.unbalancedCpus checks the disks devices utilization: PN1 and PN2

might be a Concurrent Processing Systems antipattern instance if the maxDevicesUtil
value of disks − PN1 is GreaterOrEqual to the ThdiskMaxUtil threshold value, and the
maxDevicesUtil value of disks − PN2 is Lower to the ThdiskMinUtil threshold value.
These sub-views cps.deployment.unbalancedCpus and cps.deployment.unbalancedDisks
are related each other by a BooleanRestriction with the OR type by indicating that
at least one of the two deployment sub-views must take place in the software architectural
model to state a Concurrent Processing Systems antipattern occurrence.

PIPE AND FILTER ARCHITECTURES

Figure 4.8 shows the PAML-based model for the Pipe and Filter Architectures antipattern.
It contains three views: StaticView, DynamicView and DeploymentView.

The static view is named paf.static and it contains one SubView, i.e.
paf.static.resDemands. There is a SoftwareEntityInstance Sx that pro-
vides an OperationInstance opx that has a probability to be executed Equal
to 1. Such operation has a StructuredResDemand named struct-RD-opx

with three BasicResDemands: (i) brd-comp-opx specifies the computation re-
source demand whose value is $comp − opx, the resDemand attribute refers to the
ThresholdSpecification named ThresDemand[comp] (see Table 3.3) and it means
that opx might be a pipe and filter architectures antipattern instance if the value is
GreaterOrEqual to the threshold value; (ii) brd-stor-opx specifies the storage re-
source demand whose value is $stor − opx, the resDemand attribute refers to the
ThresholdSpecification named ThresDemand[stor] (see Table 3.3) and it means
that opx might be a pipe and filter architectures antipattern instance if the value is
GreaterOrEqual to the threshold value; (iii) brd-band-opx specifies the bandwidth
resource demand whose value is $band − opx, the resDemand attribute refers to the
ThresholdSpecification named ThresDemand[band] (see Table 3.3) and it means
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that opx might be a pipe and filter architectures antipattern instance if the value is
GreaterOrEqual to the threshold value.

The dynamic view is named paf.dynamic and it contains one SubView, i.e.
paf.dynamic.serviceThroughput. There is a Service S providedBy the operation in-
stance opx that has the serviceMetrics referring to the PerformanceMetrics named
s throughput. The numerical value of the service throughput is $service throughput,
and the minThroughput attribute refers to the ThresholdSpecification named
ThSthReq (see Table 3.5) and it means that opx might be a pipe and filter architectures
antipattern instance if the throughput is Lower than the threshold value.

The deployment view is named paf.deployment and it contains one SubView, i.e.
paf.deployment.utilization. There is a ProcesNode PN1 on which Sx is deployed,
and the maxDevicesUtil is calculated with the function FmaxHwUtil (see Table 3.2). The
nodeUtil attribute refers to the ThresholdSpecification named ThmaxHwUtil (see
Table 3.4), and it means that Sx might be a pipe and filter architectures antipattern instance
if the maxDevicesUtil value is GreaterOrEqual to the threshold value. The sub-views
paf.dynamic.serviceThroughput and paf.deployment.utilization are related each other by
a BooleanRestriction with the OR type by indicating that at least one of the two
sub-views must take place in the software architectural model to state a Pipe and Filter
Architectures antipattern occurrence.

EXTENSIVE PROCESSING

Figure 4.9 shows the PAML-based model for the Extensive Processing antipattern.
It contains three views: StaticView, DynamicView and DeploymentView.

The static view is named ep.static and it contains one SubView, i.e.
ep.static.resDemands. There is a SoftwareEntityInstance Sx that provides
two OperationInstances, i.e. opx and opy. Both have a probability to be ex-
ecuted Lower than 1. The opx operation has a StructuredResDemand named
struct-RD-opx with three BasicResDemands: (i) brd-comp-opx specifies the com-
putation resource demand whose value is $comp − opx, the resDemand attribute
refers to the ThresholdSpecification named ThmaxResDemand[comp] (see Ta-
ble 3.3) and it means that opx might be an extensive processing antipattern instance
if the value is GreaterOrEqual to the threshold value; (ii) brd-stor-opx specifies
the storage resource demand whose value is $stor − opx, the resDemand attribute
refers to the ThresholdSpecification named ThmaxResDemand[stor] (see Table
3.3) and it means that opx might be an extensive processing antipattern instance if
the value is GreaterOrEqual to the threshold value; (iii) brd-band-opx specifies the
bandwidth resource demand whose value is $band − opx, the resDemand attribute
refers to the ThresholdSpecification named ThmaxResDemand[band] (see Ta-
ble 3.3) and it means that opx might be an extensive processing antipattern instance
if the value is GreaterOrEqual to the threshold value. The opy operation has a
StructuredResDemand named struct-RD-opy with three BasicResDemands: (i)
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brd-comp-opy specifies the computation resource demand whose value is $comp − opy,
the resDemand attribute refers to the ThresholdSpecification named
ThminResDemand[comp] (see Table 3.3) and it means that opy might be an extensive
processing antipattern instance if the value is Lower than the threshold value; (ii) brd-
stor-opy specifies the storage resource demand whose value is $stor−opy, the resDemand
attribute refers to the ThresholdSpecification named ThminResDemand[stor] (see
Table 3.3) and it means that opy might be an extensive processing antipattern instance if
the value is Lower than the threshold value; (iii) brd-band-opy specifies the bandwidth
resource demand whose value is $band − opy, the resDemand attribute refers to the
ThresholdSpecification named ThminResDemand[band] (see Table 3.3) and it
means that opy might be an extensive processing antipattern instance if the value is Lower
than the threshold value.

The dynamic view is named ep.dynamic and it contains one SubView, i.e.
ep.dynamic.serviceResponseTime. There is a Service S providedBy the operation
instance opx that has the serviceMetrics referring to the PerformanceMetrics
named s responseTime. The numerical value of the service response time
is $service responseT ime, and the maxRespTime attribute refers to the
ThresholdSpecification named ThSrtReq (see Table 3.5) and it means that
opx might be an extensive processing antipattern instance if the responseTime is Greater
than the threshold value.

The deployment view is named ep.deployment and it contains one SubView, i.e.
ep.deployment.utilization. There is a ProcesNode PN1 on which Sx is deployed,
and the maxDevicesUtil is calculated with the function FmaxHwUtil (see Table 3.2). The
nodeUtil attribute refers to the ThresholdSpecification named ThmaxHwUtil (see
Table 3.4), and it means that Sx might be an extensive processing antipattern instance
if the maxDevicesUtil value is GreaterOrEqual to the threshold value. The sub-views
paf.dynamic.serviceThroughput and paf.deployment.utilization are related each other by
a BooleanRestriction with the OR type by indicating that at least one of the two
sub-views must take place in the software architectural model to state a Pipe and Filter
Architectures antipattern occurrence.

CIRCUITOUS TREASURE HUNT

Figure 4.10 shows the PAML-based model for the Circuitous Treasure Hunt antipattern.
It contains three views: StaticView, DynamicView and DeploymentView.

The static view is named cth.static and it contains the SubView named cth.static.swRes
with two SoftwareEntityInstances, i.e. Sx and Database that is a database, as
stated by the boolean attribute isDB.

The dynamic view is named cth.dynamic and it contains the SubView
cth.dynamic.msgTraffic in which the SoftwareEntityInstances Sx and Database
are involved in a Service respectively as sender and receiver of Messages, and the
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multiplicity is calculated with the function FnumDBMsgs (see Table 3.2). The numMsg
attribute refers to the ThresholdSpecification named ThmaxDBmsgs (see Table
3.3), and it means that Database might be a circuitous treasure hunt antipattern instance
if the multiplicity value is GreaterOrEqual to the threshold value.

The deployment view is named cth.deployment and it contains the SubView named
cth.deployment.utilization in which the SoftwareEntityInstance Database is
deployed on the ProcesNode named PN1, and the maxDevicesUtil is calculated
with the function FmaxHwUtil (see Table 3.2). The nodeUtil attribute refers to the
ThresholdSpecification named ThmaxHwUtil (see Table 3.4), and it means that
Database might be a circuitous treasure hunt antipattern instance if the maxDevicesU-
til value is GreaterOrEqual to the threshold value. Additionally, PN1 contains a set
of hwResTypes (i.e. cpus − PN1, disks − PN1). The HardwareEntity named
cpus− PN1 collects all cpu devices of the processing node PN1, and the maxDevicesU-
til is calculated with the function FmaxHwUtil (see Table 3.2). The HardwareEntity
named disks − PN1 collects all disk devices of the processing node PN1, and the
maxDevicesUtil is calculated with the function FmaxHwUtil (see Table 3.2). It means that
Database might be a Circuitous Treasure Hunt antipattern instance if the disks − PN1

is more used than cpus− PN1, i.e. the maxDevicesUtil value of disks− PN1 is greater
than the maxDevicesUtil value of cpus− PN1.

EMPTY SEMI TRUCKS

Figure 4.11 shows the PAML-based model for the Empty Semi Trucks antipattern.
It contains three views: StaticView, DynamicView and DeploymentView.

The static view is named est.static and it contains the SubView named est.static.swRes
with one SoftwareEntityInstance Sx.

The dynamic view is named est.dynamic and it contains the SubView
est.dynamic.remMsgs in which the SoftwareEntityInstance Sx is involved
in a Service as sender of Messages, and the numRemMsgs is calculated with
the function FnumRemMsgs (see Table 3.2). The remMsgs attribute refers to the
ThresholdSpecification named ThmaxRemMsgs (see Table 3.3), and it means
that Sx might be an empty semi trucks antipattern instance if the numRemMsgs value
is GreaterOrEqual to the threshold value. The numRemInstances is calculated with
the function FnumRemInst (see Table 3.2), and the remInstances attribute refers to the
ThresholdSpecification named ThmaxRemInst (see Table 3.3), and it means that
Sx might be an empty semi trucks antipattern instance if the numRemInstances value is
GreaterOrEqual to the threshold value.

The deployment view is named est.deployment and it contains one SubView named
est.deployment.utilization. The sub-view contains the ProcesNode named PN1

in which the SoftwareEntityInstance Sx is deployed; the maxDevicesU-
til and maxNetworkLinksUtil attributes are calculated with the functions FmaxHwUtil
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and FmaxNetUtil respectively (see Table 3.2). The nodeUtil attribute refers to the
ThresholdSpecification named ThmaxHwUtil (see Table 3.4), and it means that
Sx might be an empty semi trucks antipattern instance if the maxDevicesUtil value
is GreaterOrEqual to the threshold value. The nodeNetUtil attribute refers to the
ThresholdSpecification named ThminNetUtil (see Table 3.4), and it means that
Sx might be an empty semi trucks antipattern instance if the maxNetworkLinksUtil value
is Lower to the threshold value.

TOWER OF BABEL

Figure 4.12 shows the PAML-based model for the Tower of Babel antipattern. It
contains three views: StaticView, DynamicView and DeploymentView.

The static view is named tob.static and it contains the SubView named tob.static.swRes
with one SoftwareEntityInstance Sx, and one OperationInstance opx.

The dynamic view is named tob.dynamic and it contains the SubView
tob.dynamic.translateMsgs in which the SoftwareEntityInstance Sx is in-
volved in a Service since it is providedBy opx. The exchangeFormats is calculated
with the function FnumExF (see Table 3.2), and the numFormats attribute refers to
the ThresholdSpecification named ThmaxExF (see Table 3.3), and it means
that Sx might be a tower of babel antipattern instance if the exchangeFormats value is
GreaterOrEqual to the threshold value.

The deployment view is named tob.deployment and it contains the SubView named
tob.deployment.utilization. There is the ProcesNode named PN1 in which the
SoftwareEntityInstance Sx is deployed, and the maxDevicesUtil is calculated
with the function FmaxHwUtil (see Table 3.2). The nodeUtil attribute refers to the
ThresholdSpecification named ThmaxHwUtil (see Table 3.4), and it means
that Sx might be a tower of babel antipattern instance if the maxDevicesUtil value is
GreaterOrEqual to the threshold value.

ONE-LANE BRIDGE

Figure 4.13 shows the PAML-based model for the One-Lane Bridge antipattern. It
contains three views: StaticView, DynamicView and DeploymentView.

The static view is named olb.static with the SubView named olb.static.swResCapacity
containing one SoftwareEntityInstance Sx whose capacity is calculated with the
function FpoolSize (see Table 3.2), and one OperationInstance opx.

The dynamic view is named olb.dynamic and it contains two SubViews, i.e.
olb.dynamic.synchCalls and olb.dynamic.serviceResponseTime. The first sub-view con-
tains the SoftwareEntityInstance Sx that is involved in a Service since it is
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providedBy opx. The software entity instance Sx is involved as receiver of Messages,
and the multiplicity is calculated with the function FnumSynchCalls (see Table 3.2), and it
will be compared with the capacity of Sx.

The second sub-view states that the Service S has the serviceMetrics referring to the
PerformanceMetrics named s responseTime. The numerical value of the service
response time is $service responseT ime, and the maxRespTime attribute refers to the
ThresholdSpecification named ThSrtReq (see Table 3.5) and it means that Sx

might be a one-lane bridge antipattern instance if the responseTime is Greater than the
threshold value.

The deployment view is named olb.deployment and it contains the SubView
named olb.deployment.times. There is the ProcesNode named PN1 in which the
SoftwareEntityInstance Sx is deployed. Two performance indices are calculated
and compared: (i) the serviceTime is calculated with the function FserviceT ime (see Table
3.2); (ii) the waitingTime is calculated with the function FwaitingT ime (see Table 3.2). It
means that Sx might be a one-lane bridge antipattern instance if the serviceTime value is
Lower than the waitingTime.

EXCESSIVE DYNAMIC ALLOCATION

Figure 4.14 shows the PAML-based model for the Excessive Dynamic Allocation
antipattern. It contains two views: StaticView and DynamicView.

The static view is named eda.static, it contains the SubView named eda.static.swRes
with one SoftwareEntityInstance Sx and one OperationInstance opx.

The dynamic view is named eda.dynamic and it contains three SubViews.

The first sub-view is named eda.dynamic.serviceResponseTime, and the
SoftwareEntityInstance Sx is involved in a Service since it is providedBy
opx. The service S has the serviceMetrics referring to the PerformanceMetrics
named s responseTime. The numerical value of the service response time
is $service responseT ime, and the maxRespTime attribute refers to the
ThresholdSpecification named ThSrtReq (see Table 3.5) and it means that
Sx might be an excessive dynamic allocation antipattern instance if the responseTime is
Greater than the threshold value.

The second sub-view is named eda.dynamic.createObj, and the software entity in-
stance Sx is involved as sender of Messages whose semantic is explicitly stated
by the boolean attribute isCreateObjectAction. The multiplicity is calculated with
the function FnumCreatedObj (see Table 3.2), and the numMsg attribute refers to the
ThresholdSpecification named ThmaxCrObj (see Table 3.3), and it means that
Sx might be an excessive dynamic allocation antipattern instance if the multiplicity value
is GreaterOrEqual to the threshold value.
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Figure 4.14: PAML-based model of the Excessive Dynamic Allocation Antipattern.
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The third sub-view is named eda.dynamic.destroyObj, and the software entity in-
stance Sx is involved as sender of Messages whose semantic is explicitly stated
by the boolean attribute isDestroyObjectAction. The multiplicity is calculated with
the function FnumDestroyedObj (see Table 3.2), and the numMsg attribute refers to the
ThresholdSpecification named ThmaxDeObj (see Table 3.3), and it means that
Sx might be an excessive dynamic allocation antipattern instance if the multiplicity value
is GreaterOrEqual to the threshold value. The sub-views eda.dynamic.createObj and
eda.dynamic.destroyObj are related each other by a BooleanRestriction with the
OR type by indicating that at least one of the two sub-views must take place in the software
architectural model to state an Excessive Dynamic Allocation antipattern occurrence.

4.2.2 MULTIPLE-VALUES PERFORMANCE ANTIPATTERNS

In this Section we report the Performance Antipatterns that to be detected require the
trend (or evolution) of the performance indices along the time (i.e. multiple-values). The
numerical values of the performance indices (e.g. the operation response time) come from
the simulation of the performance model.

TRAFFIC JAM

Figure 4.15 shows the PAML-based model for the Traffic Jam antipattern. It con-
tains one view: StaticView.

The static view is named tj.static, it contains the SubView named tj.static.respTime with
one SoftwareEntityInstance Sx and one OperationInstance opx. The op-
eration instance opx has the opMetrics referring to the PerformanceMetrics named
opx-responseTime. The numerical values of the operation response time are calcu-
lated with the function FRT (opx, ti) (see Table 3.2), where ti specifies the interval of
time after which the performance index is evaluated. The slope attribute refers to the
ThresholdSpecification named ThrtV ar (see Table 3.6) and it means that opx

might be a traffic jam antipattern instance if the responseTime is Greater than the thresh-
old value.

THE RAMP

Figure 4.16 shows the PAML-based model for The Ramp antipattern. It contains
one view: StaticView.

The static view is named tr.static, it contains two SubViews named tr.static.respTime
and tr.static.throughput. Similarly to the Traffic Jam antipattern, the first sub-view con-
tains one SoftwareEntityInstance Sx and one OperationInstance opx.
The operation instance opx has the opMetrics referring to the PerformanceMetrics
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named opx-responseTime and opx-throughput. The numerical values of the operation re-
sponse time and throughput are calculated respectively with the function FRT (opx, ti)
and FT (opx, ti) (see Table 3.2), where ti specifies the interval of time after which the
performance indices are evaluated. In case of the response time, the slope attribute
refers to the ThresholdSpecification named ThrtV ar (see Table 3.6) and it
means that opx might be the ramp antipattern instance if the responseTime is Greater
than the threshold value. In case of the throughput, the slope attribute refers to the
ThresholdSpecification named ThthV ar (see Table 3.6) and it means that opx

might be the ramp antipattern instance if the throughput is Lower than the threshold value.

MORE IS LESS

Figure 4.17 shows the PAML-based model for the More Is Less antipattern. It
contains one view: DeploymentView.

The deployment view is named mil.deployment, it contains one SubView named
mil.deployment.params in which one ProcesNode PN1 has the runTimeParams refer-
ring to the Params named PN1-RTparams. The numerical values of the run time param-
eters are calculated respectively with the function Fpar(PN1, pType, ti) (see Table 3.2),
where ti specifies the interval of time after which the performance indices are evaluated.
The slope attribute refers to the ThresholdSpecification named ThmaxParams

(see Table 3.3) and it means that PN1 might be a more is less antipattern instance if the
runTimeParams are Greater than the threshold values.

4.2.3 SUMMARY

This Section summarizes the metamodel elements introduced for representing antipat-
terns as PAML-based models. Table 4.1 lists the metamodel-based representation of the
performance antipatterns we propose. Each row represents a specific antipattern that is
characterized by four attributes: antipattern name, the Static View, Dynamic View, De-
ployment View metamodel elements the corresponding antipattern requires.

Note that the ThresholdSpecification element introduces a degree of uncertainty. We are
working on defining a metric that quantifies such uncertainty as a function of the number
of the thresholds an antipattern formalization requires. Just to give a hint, from Table 4.1
we can notice that the Blob antipattern is built on the metamodel elements belonging to all
the three views we consider, and each view contains a ThresholdSpecification element; on
the contrary, the One-Lane Bridge antipattern is also built on the metamodel elements be-
longing to all the three views we consider, but only the Dynamic View contains a Thresh-
oldSpecification element. This observation leads us to guess that the detection of the Blob
antipattern might have more elements of fuzziness in comparison to the detection of the
One-Lane Bridge antipattern.
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Antipattern Static View Dynamic View Deployment View

Blob (or god class/component) SoftwareEntityInstance,
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ThresholdSpecification

Service,
Message,
ThresholdSpecification

ProcesNode,
NetworkLink,
ThresholdSpecification

Concurrent
Processing
Systems

- - ProcesNode,
HardwareEntity,
ThresholdSpecification

Si
ng

le
-v

al
ue

Unbalanced
Processing

“Pipe and
Filter” Ar-
chitectures

SoftwareEntityInstance,
OperationInstance,
StructuredResDemand,
BasicResDemand,
PerformanceMetrics,
ThresholdSpecification

Service,
ThresholdSpecification

ProcesNode,
ThresholdSpecification

Extensive
Processing

SoftwareEntityInstance,
OperationInstance,
StructuredResDemand,
BasicResDemand,
PerformanceMetrics,
ThresholdSpecification

Service,
ThresholdSpecification

ProcesNode,
ThresholdSpecification

Circuitous Treasure Hunt SoftwareEntityInstance Service,
Message,
ThresholdSpecification

ProcesNode,
HardwareEntity,
ThresholdSpecification

Empty Semi Trucks SoftwareEntityInstance Service,
Message,
ThresholdSpecification

ProcesNode,
NetworkLink,
ThresholdSpecification

Tower of Babel SoftwareEntityInstance Service,
ThresholdSpecification

ProcesNode,
ThresholdSpecification

One-Lane Bridge SoftwareEntityInstance,
OperationInstance,
PerformanceMetrics

Service,
Message,
ThresholdSpecification

ProcesNode

Excessive Dynamic Allocation SoftwareEntityInstance,
OperationInstance,
PerformanceMetrics

Service,
Message,
ThresholdSpecification

-

Traffic Jam SoftwareEntityInstance,
OperationInstance,
PerformanceMetrics,
ThresholdSpecification

- -

The Ramp
SoftwareEntityInstance,
OperationInstance,
PerformanceMetrics,
ThresholdSpecification

- -

M
ul

tip
le

-v
al

ue
s

More is Less - - ProcesNode,
Params,
ThresholdSpecification

Table 4.1: A metamodel-based representation of Performance Antipatterns.
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4.3 TOWARDS THE SPECIFICATION OF A MODEL-BASED

FRAMEWORK

The benefit of introducing a metamodel approach for specifying antipatterns is manifold:
(i) expressiveness, as it currently contains all the concepts needed to specify performance
antipatterns introduced in [123]; (ii) usability, as it allows a user-friendly representation
of (existing and upcoming) performance antipatterns; (iii) extensibility, i.e. if new an-
tipatterns are based on additional concepts the metamodel can be extended to introduce
such concepts.

Note that the subset of the antipattern types can be enlarged as far as the concepts for rep-
resenting such types are available. Technology-specific antipatterns such as EJB and J2EE
antipatterns [52] [127] can be also suited to check if the current metamodel is reusable
in domain-specific fields. For example, we retain that the EJB Bloated Session Bean
Antipattern [52] can be currently specified as a PAML-based model, since it describes
a situation in EJB systems where a session bean has become too bulky, thus it is very
similar to the Blob antipattern in the Smith-Williams’ classification.

Performance antipatterns are built on a set of model elements belonging to SML+, i.e.
a neutral notation agnostic of any concrete modeling language. For example, the Blob
antipattern specification (see Figure 4.18) contains the SoftwareEntity and ProcesNode
model elements, whereas it is not related to the StructuredResDemand element.

Figure 4.18 additionally shows how the neutral specification of performance antipatterns
can be translated into concrete modeling languages. In fact SML+ is meant to provide the
infrastructure upon which constructing the semantic relations among different notations.

This thesis considers two notations: UML [12] and Marte profile2 [13]; the Palladio Com-
ponent Model (PCM) [22]. Note that the subset of target modeling languages can be
enlarged as far as the concepts for representing antipatterns are available; for example,
architectural languages such as Æmilia [26] (see more details in Appendix B.2) can be
also suited to validate the approach.

The semantic relations with SML+ depend on the expressiveness of the target model-
ing language. For example, in Figure 4.18 we can notice that a SoftwareEntity is re-
spectively translated in a UML Component, a PCM Basic Component, and an Æmilia
ARCHI ELEM TYPE. On the contrary, a full mapping is not possible for a ProcesNode
whose translation is only possible to a UML Node and a PCM Resource Container,
whereas in Æmilia this concept remains uncovered.

We can therefore assert that in a concrete modeling language there are antipatterns that
can be automatically detected (i.e. when the entire set of SML+ model elements can be
translated in the concrete modeling language) and some others that are no detectable (i.e.

2MARTE profile provides facilities to annotate UML models with information required to perform per-
formance analysis.
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...
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Figure 4.18: Translating antipatterns into concrete modeling languages.

when a restricted set of model elements is translated). The mappings between SML+
and the concrete modeling languages we consider in this thesis (i.e. UML and MARTE
profile, PCM) are fully described in Chapter 5.

In the following we briefly present the model-driven advanced techniques that support the
antipatterns-based process.

Weaving models [29] can be defined by mapping the concepts of SML+ into the corre-
sponding concepts of a concrete modeling language (as done in [94] for different pur-
poses, though). Weaving models represent a useful instrument in software modeling, as
they can be used for setting fine-grained relationships between models or metamodels and
for executing operations on them based on the link semantics.

WM(SML+,UML+Marte)SML+ UML + MARTE

WeavingModel

Figure 4.19: Metamodel instantiation via weaving models.

Figure 4.19 depicts how weaving models define the correspondences among two meta-
models, hence the concepts in SML+ will be mapped on those in the concrete notation
(e.g. UML and MARTE profile).
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The benefit of using weaving models is that they can be used in automated transforma-
tions to generate other artifacts. In fact it is possible to define high-order transformations
(HOT) that, starting from the weaving models, are able to generate metamodel-specific
transformations embedding the antipattern in the actual concrete modeling language.

Figure 4.20 shows how to automatically generate antipatterns models in concrete mod-
eling languages with the usage of weaving models. The metamodel we propose for an-
tipatterns is PAML containing SML+ as (neutral) enriched software modeling language
(see box PAMLSML+ of Figure 4.20). We recall that PAML is constituted by two main
parts, i.e. the antipattern specification and the model elements specification grouped in
SML+ (see Section 4.1). Performance antipatterns are defined as models (see Section
4.2) conform to (i.e. the arrow c2) the PAML metamodel (see box APSML+ of Figure
4.20). Antipatterns models in concrete modeling languages (see box APUML+MARTE of
Figure 4.20) can be automatically generated by using the high-order transformation T that
takes as input the weaving model WM specifying correspondences between SML+ and
the concrete notation under analysis (e.g. UML+Marte) metamodels.

APUML+MARTE

PAMLUML+MARTEPAMLSML+

APSML+

T[WM(SML+,UML+MARTE)]

c2 c2

Figure 4.20: Weaving model over different software modeling languages.

A further experimentation has been conducted in UML and Marte profile where antipat-
terns can be naturally expressed by means of OCL [107] expressions, i.e. model queries
with diagrammatic notations that correspond to first-order predicates. In particular each
antipattern model conforming to PAML can be given as OCL-based semantics, in a sim-
ilar way of [126], which interrogates the elements of a software architectural model to
detect antipatterns. The approach we propose is aimed at automatically generating the
OCL detection code from the antipattern specification (see Figure 4.21).

The leftmost part of the Figure 4.21 reports again the PAML metamodel (see box
PAMLMM ) and performance antipatterns models (see box PAMLM ). First, antipatterns
models are translated into intermediate models conforming to the OCL metamodel (see
box OCLMM ) with a model-to-model transformation, i.e. PAML2OCL in Figure 4.21.
The OCL code is generated by using a model-to-text transformation, i.e. OCLextractor
in Figure 4.21. OCL code is finally used to interrogate software architectural model ele-
ments, thus to actually perform the antipattern detection. Note that the PAML metamodel
provides semantics in terms of OCL: a semantic anchoring [37] is realized by means of
automated transformations that map each antipattern model to an OCL expression.
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Figure 4.21: Tranforming PAML-based models in OCL queries.
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Figure 4.22: Feedback Generation approach by means of model-driven techniques.
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A vision of the overall model-based framework is depicted in Figure 4.22.

A performance antipattern model AP is firstly translated into its concrete modeling lan-
guage (e.g. UML and MARTE profile) counterpart AP ′ by means of a high order trans-
formation, as shown in Figure 4.20. This latter representation is able to filter a software
architectural model M and detect occurrences of the antipatterns.

As already said, an antipattern consists of a pattern (whose occurrence in a software ar-
chitectural model is considered a bad practice) and a refactoring that possibly solves the
performance problem. Therefore, if an antipattern AP has been detected in an architec-
tural model M , then a the refactoring RAP must be applied. Similarly to the antipattern
model, high order transformations can be used to translate the refactoring in the concrete
modeling languages to obtain RAP ′ . The application of the refactoring to the model M
generates a new software architectural model M ′ where possibly the performance prob-
lems has been removed or neutralized.

The problem of refactoring architectural models is intrinsically complex and requires spe-
cialized algorithms and notations to match the abstraction level of models [93]. Recently,
in [39, 113] two similar techniques have been introduced to represent refactorings as
difference models. Interestingly these proposals combine the advantages of declarative
difference representations and enable the reconstruction of the final model by means of
automated transformations which are inherently defined in the approaches.

The specification of the antipatterns solutions can be defined as a set of refactoring actions
that can be applied on the architectural model. To this end, difference models [39, 113]
can be used to represent modifications, thus to support the activity of solving antipatterns.





CHAPTER 5

DETECTING AND SOLVING ANTIPATTERNS IN CONCRETE

MODELING LANGUAGES

The goal of this Chapter is to examine performance antipatterns within concrete modeling
languages, i.e. the Unified Modelling Language (UML) [12] and Marte profile [13], and
the Palladio Component Model (PCM) [22]. Starting from the Performance Antipatterns
Modeling Language (PAML) we define a set of mappings with UML and PCM metamodel
elements in order to automate the definition of rules detecting antipatterns in UML and
PCM models respectively. Since PAML currently deals only with the antipattern prob-
lem specification, the solution of antipatterns in concrete modeling languages has been
performed by defining a set of refactoring actions expressed in terms of UML and PCM
metamodel elements.

5.1 UML AND MARTE PROFILE

The goal of this Section is to examine performance antipatterns within the Unified Mod-
elling Language (UML) [12], which is a language with a very broad scope that covers a
large and diverse set of application domains. The UML profile for MARTE [13] (Model-
ing and Analysis of Real-Time and Embedded systems) provides support for specification,
design, and verification/validation stages.

5.1.1 FOUNDATIONS

UML [12] groups metamodel elements into language units. A language unit consists of a
collection of tightly coupled modeling concepts that provide users with the power to rep-
resent aspects of the system under study according to a particular paradigm or formalism.
The stratification of language units is used as the foundation for defining compliance in
UML. Namely, the set of modeling concepts of UML is partitioned into horizontal lay-
ers of increasing capability called compliance levels. Compliance levels cut across the
various language units, although some language units are only present in the upper levels.

109
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For ease of model interchange, there are just four compliance levels defined for the whole
of UML: (i) Level 0 (L0). This compliance level is formally defined in the UML Infras-
tructure. It contains a single language unit that provides for modeling the kinds of class-
based structures encountered in most popular object-oriented programming languages; (ii)
Level 1 (L1). This level adds new language units and extends the capabilities provided
by Level 0. Specifically, it adds language units for use cases, interactions, structures,
actions, and activities; (iii) Level 2 (L2). This level extends the language units already
provided in Level 1 and adds language units for deployment, state machine modeling, and
profiles; (iv) Level 3 (L3). This level represents the complete UML (see Figure 5.1). It
extends the language units provided by Level 2 and adds new language units for modeling
information flows, templates, and model packaging.

Figure 5.1: UML Compliance Level 3 top-level package merges.

MARTE [13] provides foundations for model-based description of real time and embed-
ded systems. These core concepts are then refined for both modeling and analyzing con-
cerns. Modeling parts provides support required from specification to detailed design of
real-time and embedded characteristics of systems. MARTE supports model-based anal-
ysis. In fact, it provides facilities to annotate models with information required to perform
specific analysis. Especially, MARTE focuses on performance, hence it is of our interest
for capturing properties of performance antipatterns. However, it also defines a general
analysis framework intended to refine/specialize other kinds of non-functional analysis.

The MARTE profile, which replaces the current profile for Schedulability, Performance,
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Figure 5.2: Informal description of the MARTE dependencies with other OMG standards.

and Time [14], is one of related OMG [7] specifications (see Figure 5.2). The most
obvious of these is the UML 2 Superstructure specification [12], which is the basis for any
UML profile. MARTE uses the OCL 2.0 specification [107] for specifying constraints.

5.1.2 DETECTING ANTIPATTERNS WITH THE MAPPING OF PAML
ONTO UML

This Section is aimed at defining an explicit semantic link between the Software Mod-
elling Language (SML+) we proposed (see Section 4.1) and UML metamodel elements.
The mapping is finally used to deduce the antipattern-based rules used to perform the
detection of antipatterns in UML models.

Tables 5.1, 5.2, 5.3 respectively report the mappings of SML+ Static, Dynamic, Deploy-
ment Views into UML metamodel elements: each entry specifies the meta-class, and its
meta-attributes are reported in brackets. More details on the attributes are explained in
the following.

SoftwareEntity.isDB- it corresponds to a UML DataStoreNode, since it models a cen-
tral buffer node for non-transient information. It is introduced to support earlier forms of
data flow modeling in which data is persistent, and we use it to model databases.

SoftwareEntity.capacity- the MARTE paRunTInstance stereotype provides an ex-
plicit connection between a locality or role in a behavior definition and a run time in-
stantiation of a process. It defines properties of such process like the poolSize that is
meant to store the number of threads for the process.

Relationship.multiplicity- it refers to the number of Usage or Realization depen-
dencies with which a UML Component is connected.

Operation.probability- an operation is a behavioral feature of a classifier that specifies the
name, type, parameters, and constraints for invoking an associated behavior. The MARTE
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SML+ Static View Model Element UML metamodel element

SoftwareEntity (isDB, capacity) UML Component (DataStoreNode, MARTE
�paRunTInstance� {poolsize})

SoftwareEntityInstance UML InstanceSpecification

Relationship (multiplicity) UML Dependency (clientDependency, suppli-
erDependency)

Operation (probability) UML Operation (MARTE�paStep� {prob})
OperationInstance UML Operation with MARTE

�PaRunTInstance�
StructuredResourceDemand MARTE�GaAcqStep�
BasicResourceDemand (type, value) MARTE�GaAcqStep� {acqRes, resUnits}
PerformanceMetrics (throughput, responseTime) MARTE �BehaviorScenario� {throughput, re-

spTime}

Table 5.1: SML+ Static View Model Elements and their mapping to UML metamodel
elements.

paStep stereotype allows to introduce performance annotations such as the probability
of a branch that is stored in the prob attribute.

BasicResourceDemand.type, BasicResourceDemand.value- the MARTE GaAcqStep
stereotype maps the AcquireStep domain element that is used to acquire a resource.
In particular, two attributes are defined: (i) acqRes refers to the resource to be acquired
within the step execution; (ii) resUnits refers to the number of units the resource is ac-
quired within the step execution.

PerformanceMetrics.throughput, PerformanceMetrics.responseTime- these performance
indices are evaluated for two levels of granularity: (i) Operation level; (ii) Service
level. The MARTE BehaviorScenario stereotype defines the behavior in response
to a request event, including the sequence of steps and their use of resources. The per-
formance indices we use are: throughput, i.e. frequency of the operation completion,
and respTime, i.e. end-to-end delay of part of an operation. The MARTE GaScenario
stereotype maps the BehaviorScenario by capturing system-level behavior, and at-
taches allocations and resource usages to it. The performance indices we use are: through-
put, i.e. the mean rate of completion of the scenario, and respT, i.e. the time duration from
start to completion, for one scenario execution.

Service.exchangeFormats- the MARTE GaEventTrace stereotype maps the
EventTrace domain element that represents the trace of events that can be the
source for the request event stream, and the format attribute indicates the format of the
event trace, i.e. how the string content can be interpreted.

Behavior.probability- similarly to the operation probability, we use the MARTE paStep
stereotype that allows to introduce performance annotations such as the probability of a
branch that is stored in the prob attribute.
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SML+ Dynamic View Model Element UML metamodel element

Service (exchangeFormats) UML Interaction with MARTE �GaScenario�
(MARTE�GaEventTrace� {format})

Behavior (probability) UML Interaction (MARTE�paStep� {prob})
Message (multiplicity, type, maxMsgsSize,
sizeMsgUnit, numRemMsgs, numRemInstances,
isCreateObjectAction, isDestroyObjectAction)

UML Message (MessageOccurrenceSpecifica-
tion, synchCall, MARTE �GaCommStep�
{msgSize}, Deployment Diagram, Deployment
Diagram, CreateObjectAction, DestroyObjectAc-
tion)

Table 5.2: SML+ Dynamic View Model Elements and their mapping to UML metamodel
elements.

Message.multiplicity- it refers to the number of Messages between Lifelines in
the context of an Interaction. A Message is a NamedElement that de-
fines one specific kind of communication in an Interaction, it associates two
MessageOccurrenceSpecifications, i.e. one sending and one receiving. Note
that it refers to the function FnumMsgs (see Table 3.2).

Message.type- the UML Message contains an attribute (messageSort) capturing the sort
of communication reflected by the Message. MessageSort is an enumerated type that
identifies the type of communication action used to generate the message. The enumera-
tion values are: synchCall (the message was generated by a synchronous call to an oper-
ation); asynchCall (the message was generated by an asynchronous call to an operation);
asynchSignal (the message was generated by an asynchronous send designating the cre-
ation of another lifeline object); deleteMessage (the message designating the termination
of another lifeline); reply (it is a reply message to an operation call).

Message.maxMsgsSize- the MARTE GaCommStep stereotype maps the
CommunicationStep domain element, and it is an operation that conveys ex-
change of messages. The msgSize attribute is meant to store the size of the message.
Note that it refers to the function FmaxMsgSize (see Table 3.2).

Message.numRemMsgs, Message.numRemInstances- both these data can be obtained
by looking at the UML Deployment Diagram, since it maps the UML Components
that manifest as Artifacts and deployed on UML Nodes, thus to give information
about which components are remotely deployed. Note that they refers to the functions
FnumRemMsgs and FnumRemInst (see Table 3.2).

Message.isCreateObjectAction, Message.isDestroyObjectAction- a communication can
be, for example, raising a signal, invoking an operation, creating or destroying an instance.
These two latter communications can be performed by using CreateObjectAction,
i.e. an action that creates an object, and DestroyObjectAction, i.e. an action that
destroys an object.

HardwareEntity.type- the UML Node is a computational resource upon which artifacts
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SML+ Deployment View Model Element UML metamodel element

HardwareEntity (type, maxDevicesUtil) UML Node (MARTE �Hw Processor�
/ MARTE �Hw Memory�, MARTE
�GaExecHost� {utilization})

ProcesNode (serviceTime, waitingTime,
maxDevicesUtil, maxQueueLength, maxNet-
workLinksUtil, minNetworkLinksCapacity)

UML Node (MARTE �ResourceUsage�
{execTime}, MARTE �RtUnit�
{poolWaitingTime}, MARTE �GaExecHost�
{utilization}, MARTE �RtBehavior�
{queueSize}, MARTE �GaCommHost�
{utilization}, MARTE �GaCommHost�
{throughput})

HardwareDevice (utilization, queueLength) UML Node (MARTE �GaExecHost�
{utilization}, MARTE �RtBehavior�
{queueSize})

NetworkLink (usedBandwidth, capacity, bitRate) UML Node (MARTE �GaCommHost�
{utilization}, MARTE �GaCommHost�
{throughput}, -)

Params (dbConnections, webConnections, poole-
dResources, concurrentStreams)

MARTE �paRunTInstance� {poolsize =
(param=value)})

Table 5.3: SML+ Deployment View Model Elements and their mapping to UML meta-
model elements.

can be deployed for execution. In the UML metamodel, a Node is a subclass of Class; it
is associated with a Deployment of an Artifact and with a set of Elements that are
deployed on it. These PackageableElements are involved in a Manifestation
of an Artifact that is deployed on the Node. There may be Nodes that are nested
within the Node. The MARTE HW Processor stereotype is meant to indicate a com-
puting resource, it belongs to the HW Computing package that typically implements some
instruction sets and adopts branch prediction policies. The MARTE HW Memory stereo-
type is meant to indicate any form of data storage during some interval of time, it belongs
to the HW Storage package that typically implements owns caches and corresponding
memory management units.

HardwareEntity.maxDevicesUtil- the utilization of hardware devices is represented by
means of the MARTE stereotype GaExecHost addressed to UML Nodes, i.e. its uti-
lization attribute. Note that it refers to the function FmaxHwUtil (see Table 3.2).

ProcesNode.serviceTime- the MARTE ResourceUsage stereotype maps both
ResourceUsage and UsageTypedAmount domain elements, it links resources with
concrete demands of usage over them; the execTime attribute stores the time that the re-
source is in use due to its usage.

ProcesNode.waitingTime- the MARTE RtUnit stereotype owns at least one schedulable
resource. The real-time unit may either wait indefinitely for a resource to be released, or
wait only a given amount of time (specified by its poolWaitingTime attribute).
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ProcesNode.maxQueueLength- the queue length of a UML Node is represented by means
of the MARTE stereotype RtBehavior, i.e. its queueSize attribute. Note that it refers
to the function FmaxQL (see Table 3.2).

NetworkLink.usedBandwidth, NetworkLink.bitRate- the UML Nodes can be intercon-
nected through communication paths to define network structures. The MARTE
GaCommHost stereotype maps the CommunicationHost domain element, it is used
for denoting a physical communication link. Two attributes are defined to represent its
properties: the throughput and the utilization denoting, respectively, the actual throughput
and utilization of the host they refer to.

Params- they are not directly available in UML, but they can be defined by associating the
MARTE paRunTInstance stereotype to a process, and as a special type of poolSize
elements that influence the run time instantiation of such process.

In the following we present an example that demonstrates how to use the mapping of
PAML onto UML and Marte profile to deduce the antipattern-based rules.

Concurrent Processing Systems Starting from the PAML-based antipattern model (see
Figure 4.7) the following rules are deduced.

CPS.deployment.queue Rule- there is at least one UML Node, e.g. PN1, that has a high
average queue length. This rule is evaluated by extracting the queueSize tagged value
of the MARTE stereotype RtBehavior, and checking if it is greater or equal to the
threshold ThmaxQueue.

CPS.deployment.unbalancedCpus Rule- there is at least one UML Node cpuPN1 nested
in the UML Node PN1 that has a high average utilization. This rule is evaluated by
extracting the utilization tagged value of the MARTE stereotype Hw Processor,
and checking if it is greater or equal to the threshold ThcpuMaxUtil. There is at least another
UML Node cpuPN2 nested in a UML Node, e.g. PN2, that has a low average utilization.
This rule is evaluated by extracting the utilization tagged value of the MARTE
stereotype Hw Processor, and checking if it is lower than the threshold ThcpuMinUtil.

CPS.deployment.unbalancedDisks Rule- there is at least one UML Node diskPN1 nested
in the UML Node PN1 that has a high average utilization. This rule is evaluated by ex-
tracting the utilization tagged value of the MARTE stereotype Hw Memory, and
checking if it is greater or equal to the threshold ThdiskMaxUtil. There is at least another
UML Node diskPN2 nested in a UML Node, e.g. PN2, that has a low average utiliza-
tion. This rule is evaluated by extracting the utilization tagged value of the MARTE
stereotype Hw Memory, and checking if it is lower than the threshold ThdiskMinUtil.

Each (PN1, PN2) ∈ the set of all the UML Nodes represents a Concurrent Processing
Systems antipattern in a UML model if it matches the CPS.deployment.queue Rule AND
the CPS.deployment.unbalancedCpus Rule OR the CPS.deployment.unbalancedDisks
Rule, as stated in the PAML-based antipattern model (see Figure 4.7).
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5.1.3 SOLVING ANTIPATTERNS IN UML

From the informal representation of the solution (see Table 3.1) a set of actions is built,
where each action addresses part of the antipattern solution specification.

Blob - the solution of this antipattern can be performed with the following actions.

DelegateWork Action- delegate the business logics from the Blob UML Component
to the other ones by decreasing the number of Usage or Realization dependen-
cies. In the UML Component Diagram it is possible to move one or more Operations
from the Blob component to the surrounding ones by deleting some dependencies. Such
changes must be reflected in UML Sequence Diagram(s) by moving operations in the new
Lifelines’ owners.

Redeploy Action- if the Blob Component (cx) and the surrounding ones (cx1, cx2, . . . ,
cxn) are distributed on different UML Nodes, the re-deployment of components can avoid
remote communications and should automatically improve the utilization of the involved
nodes. Such action can be performed in the UML Deployment Diagram by changing the
relation of deployment between UML artifacts and UML Nodes.

IncreaseSpeed Action- if the Blob Component (cx) and the surrounding ones (cx1, cx2,
. . . , cxn) are deployed on the same UML Node, the increasing speed of such node should
automatically improve its utilization. Such action can be performed in the UML Deploy-
ment Diagram by modifying the value of the tagged value speedFactor of the Marte
stereotype ProcessingResource. Another option is to analyze all the UML Node
instances in order to decide if it is better to re-deploy all the involved components on
another node, and then increase the speed of the latter one by a smaller percentage.

Mirror Action- the Blob Component (cx) and the surrounding ones (cx1, cx2, . . . , cxn)
can be mirrored as new components and deployed into another UML Node (an existing
one, if possible), thus to balance the workload of requests incoming to the system.

Concurrent Processing Systems - the solution of this antipattern can be performed with
the following actions.

BalanceLoad Action- if the UML Nodes nx and ny offer the same Interfaces, change
the scheduling algorithms and distribute in a balanced way (from nx to ny) the requests
for such services by modifying the probability to be called.

Mirror Action- mirror the UML Components of the Node nx into ny and balance the
workload, so that the requests incoming to the system are distributed to both Nodes.

MostCritical Action- identify the Component of the Node nx that has the highest re-
source demand of the critical type t, and re-deploy it in the Node ny.

Redeploy Action- re-deploy some Components from the Node nx to ny. Such action
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can be performed by taking into account a set of system properties or their combination,
as argued in the following.

The first option is aimed at re-deploying the components on the basis of their resource
demand types. The re-deployment of components can be performed by evaluating the
node ny and deciding whenever it is better to re-deploy CPU-critical (high computation
demand, i.e. the MARTE hostDemand attribute). components and/or disk-critical (high
storage demand, i.e. the MARTE allocatedMemory attribute) ones.

The second option is aimed at re-deploying components on the basis of the utilization
of nodes under analysis. The nodes can be considered more or less critical if: a) there
is at least one nested Node of type t∗, i.e. CPU (with the MARTE Hw Processor
stereotype), disk (with the MARTE Hw Memory stereotype), that exceeds a threshold
value; b) all the nested Nodes of type t∗ exceed a threshold value.

The third option is aimed at re-deploying components on the basis of their communica-
tion. Network links can considered more or less critical if: a) two components commu-
nicate through a node whose Communication Path exceeds a threshold value, but
such components also use other nodes that do not provide any violation; b) all the nodes
provide a violation.

Pipe and Filter Architectures - the solution of this antipattern can be performed with
the following actions.

IncreaseCapacity Action- increase the pool size of the Component providing the slowest
filter, thus requests with a lower resource demand are not delayed.

SplitAndRedeploy Action- split the slowest filter into two operations and re-deploy one of
them thus to facilitate the processing of incoming requests to the system, especially the
ones with a lower resource demand.

Extensive Processing - the solution of this antipattern can be performed with the follow-
ing actions.

IncreaseCapacity Action- increase the capacity of Components locking incoming re-
quests, thus to increase system concurrency.

UnblockExecution Action- change the scheduling algorithm of the resource and/or re-
deploy one of the Components containing opa or opb thus they do not queue for the
same Node anymore.

Circuitous Treasure Hunt - the solution of this antipattern can be performed by refac-
toring the database component (i.e. UML DataStoreNode) in its internal structure.
We leave this task to the designer that better knows how to organize the structure of the
database in such a way that incoming requests avoid to access too many tables.
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Empty Semi Trucks - the solution can be performed with the following action.

Batching Action- optimize the usage of the bandwidth by reducing the number of sent
messages through the batching, i.e. joining all small messages in few messages of a
bigger size, thus to reduce the MARTE commTxOvh and commRcvOvh attributes value,
i.e. the host demand for sending and receiving messages respectively.

Tower of Babel - the solution of this antipattern can be performed by reducing the number
of exchanging formats, thus to optimize the overhead they require.We leave the task of
restructuring such situations to the designer.

One-Lane Bridge - the solution can be performed with the following action.

IncreaseCapacity Action- increase the capacity of the Nodes. Such action can be per-
formed in the UML Deployment Diagram by modifying the value of the tagged value
speedFactor of the Marte stereotype ProcessingResource. A smarter method-
ology can be devised in order to optimize the capacity by evaluating the minimal multi-
plicity able to solve performance issues.

Excessive Dynamic Allocation - the solution of this antipattern can be performed by
avoiding an unnecessary creation and destruction objects. We leave the task of restructur-
ing such situations to the designer.

Traffic Jam - the solution of this antipattern can be performed with the following action.

IncreaseCapacity Action- increase the capacity of the Node on which the
Interaction causing traffic jam is executed. Such action can be performed in the
UML Deployment Diagram by modifying the value of the tagged value speedFactor
of the Marte stereotype ProcessingResource.

The Ramp - the solution of this antipattern can be performed by notifying the designer
that a Interaction is increasingly getting worse (from a performance perspective),
i.e. increasing response time and decreasing throughput over time. We leave the task of
restructuring such situations to the designer.

Note that the More is Less antipattern cannot be detected in UML models, hence we
exclude it from the definition of refactoring actions.

5.2 PALLADIO COMPONENT MODEL

The goal of this Section is to examine performance antipatterns within the Palladio Com-
ponent Model (PCM) [22], which is a domain specific modeling language to describe
component-based software architectures.
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5.2.1 FOUNDATIONS

The Palladio Component Model (PCM) [22] is a domain-specific modeling language for
component-based software architectures. The PCM enables the explicit definition of the
i) components , ii) architecture, iii) allocation, and iv) usage of a system in respective
artifacts, which together have a PCM instance.

Figure 5.3: Artifacts of a PCM instance.

Figure 5.3 shows the main artifacts of a PCM instance: (i) Component Specifications
contain an abstract, parametric description of components; furthermore, the behavior of
the components is specified using a UML activity diagram similar syntax; (ii) Assembly
Model is meant to define the software architecture; (iii) Allocation Model groups the
resource environment and the allocation of components to hardware resources; (iv) Usage
Model specifies usage scenarios: to each user, at least one scenario applies by defining the
frequency and the sequence of interactions with the system, i.e. the system functionalities
used with an entry level system call.

In order to quickly convey the concepts of the PCM, a simple example in Figure 5.4
contains some of the PCM model elements that are important for antipattern detection and
solution. In what follows, the model elements are marked with typewriter font.
Note that only features relevant to the antipatterns are shown here, other PCM features
can be found in [22].

A software system in the PCM is modeled as a set of components (Basic Components
C1, C2 in Figure 5.4). Components offer Interfaces. In the example, Basic
Component C1 offers Interface I1, while Basic Component C2 offers
Interface I2. Additionally, components can require interfaces. In the example, C1
requires the Interface I2. Components are assembled as a System by connecting
provided and required Interfaces. For example, the Interface I2 provided by
component C2 satisfies C1’s requirement of that Interface.

A PCM model also contains the mapping of software components to hardware, called
Allocation. Hardware platforms are modeled as Resource Containers, which
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<<ResourceContainer>> RC1

 

<<Basic-

Component>> C2

<<ResourceContainer>> RC2

<<Basic-

Component>> C1

Users= 20

Think time = 5.0 s 

I2

I1

<<ActiveResource>> 

HDD

<<ActiveResource>> 

CPU

<<PassiveResource>> 

mySemaphore: 1

<<LinkingResource>> 

LAN

<<ActiveResource>> 

CPU

<<Usage Scenario>>

<<InternalAction>>

calculate

CPU demand = 0.001 

<<ExternalCallAction>>

callY

I2.serviceY

(params.BYTESIZE = 3KB)

<<SEFF>> I1.serviceX 

<<AcquireAction>>

getLock

mySemaphore 

<<ReleaseAction>>

freeLock

mySemaphore 

<<implements>>

Figure 5.4: Example of a PCM model.

can contain Active Resources, such as CPU and hard disk (HDD), or Passive
Resources, such as semaphores or thread pools. In Figure 5.4, a semaphore Passive
Resource with capacity 1 is modeled in Resource Container RC1. Active
Resources have additional properties not shown here, such as a processing rate (how
many demand units per second they process) and scheduling policies (such as FCFS or
processor sharing). The mapping of components to Resource Containers is visu-
alised by placing the components inside the container. Resource Containers are
connected by Linking Resources, whose timing behavior is determined by the size
of sent data.

Service Effect Specifications (SEFFs) describe the behavior of the ser-
vices offered by the Basic Components. A SEFF contains a sequence of actions.
External Call Actions model calls to required interfaces. For example, serviceX
of component C1 calls the serviceY of interface I2. As C1 is connected to C2 with this
interface, the call is directed to C2’s serviceY. Optionally, the size of the passed data can
be specified with a BYTESIZE Characterisation, which is used to determine the
linking resource load. Internal Actions specify a resource demand to an Active
Resource, such as a CPU or a hard disk (HDD). In the example, serviceX of component
C1 has a CPU demand of 0.01 each time it is called. Acquire Actions and Release
Actions model the use of Passive Resources in the PCM. Control flow structures
are modeled with LoopActions, BranchActions, and ForkActions (not shown
in Figure 5.4).
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5.2.2 DETECTING ANTIPATTERNS WITH THE MAPPING OF PAML
ONTO PCM

This Section is aimed at defining an explicit semantic link between the Software Mod-
elling Language (SML+) we proposed (see Section 4.1) and PCM metamodel elements.
The mapping is finally used to deduce the antipattern-based rules used to perform the
detection of antipatterns in PCM models.

Tables 5.4, 5.5, 5.6 respectively report the mapping of SML+ Static, Dynamic, Deploy-
ment Views into PCM metamodel elements: each entry specifies the meta-class and its
meta-attributes are reported in brackets. More details on the attributes are explained in
the following.

SML+ Static View Model Element PCM metamodel element

SoftwareEntity (isDB, capacity) PCM Basic Component (-, Passive Resource)

SoftwareEntityInstance PCM Allocation Component

Relationship (multiplicity) PCM Assembly Connector (Required Role/ Pro-
vided Role)

Operation (probability) PCM Service Effect Specification (Usage Model),
associated to a PCM Basic Component

OperationInstance PCM Service Effect Specification, associated to a
PCM Allocation Component

StructuredResourceDemand PCM Resource Demanding SEFF

BasicResourceDemand (type, value) PCM Parametric Resource Demand (Processing
Resource Type, Processing Resource Specifica-
tion)

PerformanceMetrics (throughput, responseTime) PCM SimuCom

Table 5.4: SML+ Static View Model Elements and their mapping to PCM metamodel
elements.

SoftwareEntity.isDB- it is not directly available in the PCM, but it could be added by intro-
ducing a decorator model [61] that explicitly marks the database Basic Components.

SoftwareEntity.capacity- the capacity of a PCM Basic Component can be modeled
with a Passive Resource: if each of the SEFFs of the basic component starts with
an Aquire Action and ends with a Release Action to that passive resource, then
the capacity of such resource corresponds to the capacity of the basic component.

Relationship.multiplicity- it maps to the number of Required Roles of a PCM Basic
Component in case such component is involved in the relationship as client, whereas it
maps to the number of Provided Roles of a PCM Basic Component in case such
component is involved in the relationship as supplier.

Operation.probability- the operation probability is not known at the static structure of a
PCM instance, however it can be derived as soon as the PCM Usage Model is known
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by analysing the control flow with the PCM dependency solver.

BasicResourceDemand.type, BasicResourceDemand.value- it refers to the amount of
processing requested to a certain type of resource in a parameterized way, i.e.
Processing Resource Type such as CPU or hard disk, and Processing
Resource Specification such as 5 Ghz or 20 MByte/s.

PerformanceMetrics.throughput, PerformanceMetrics.responseTime- the transformation
from the PCM software architectural model to the performance model [90] generates
the simulation code for the PCM SimuCom [22], i.e. a simulation tool by which the
performance model is simulated to obtain the performance indices of interest such as
throughput, response time, utilization, etc.

SML+ Dynamic View Model Element PCM metamodel element

Service (exchangeFormats) PCM Usage Scenario (-)

Behavior (probability) -

Message (multiplicity, type, maxMsgsSize,
sizeMsgUnit, numRemMsgs, numRemInstances,
isCreateObjectAction, isDestroyObjectAction)

PCM External Call Action (noOfCalls, syn-
chronous, BYTESIZE Characterisation, Alloca-
tion Model, Allocation Model, -, -)

Table 5.5: SML+ Dynamic View Model Elements and their mapping to PCM metamodel
elements.

Service.exchangeFormats- it is not directly available in the PCM, since data flow is more
abstract and it does not include information on data formats. It is for this reason that the
Tower of Babel antipattern cannot be currently detected in the PCM modeling language.

Behavior.probability- it is not explicitly available in the PCM, as the PCM only models
the behavior of single components, so that the behavior of the system can be derived from
analyses. For each part of the system, a global behavior model could be derived starting
from the entry level system calls, because then a full trace through the system can be
derived. The probability attribute, similarly to the operation probability, can be derived as
soon as the PCM Usage Model is known by analysing the control flow with the PCM
dependency solver.

Message.multiplicity- it can be derived for a Basic Component by counting the num-
ber of External Call Actions in the SEFFs it is involved.

Message.type- the PCM External Call Actions always model synchronous calls,
i.e. the caller waits until the called service finishes, before continuing the execution itself.

Message.maxMsgsSize- the message size in PCM is specified by means of the BYTESIZE
Characterisation, and the size of the file is expressed in bytes.

Message.numRemMsgs, Message.numRemInstances- both these data can be obtained
by looking at the PCM Allocation Model, since it maps the PCM Assembly
Contextwith Resource Containers, thus to give information if basic components
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are remotely deployed.

Message.isCreateObjectAction, Message.isDestroyObjectAction- it is not directly avail-
able in the PCM, since no object-oriented detail is available in the current abstraction
level. It is for this reason that the Excessive Dynamic Allocation antipattern cannot be
currently detected in the PCM modeling language.

SML+ Deployment View Model Element PCM metamodel element

HardwareEntity (type, maxDevicesUtil) PCM Active Resource (type, PCM SimuCom)

ProcesNode (serviceTime, waitingTime,
maxDevicesUtil, maxQueueLength, maxNet-
workLinksUtil, minNetworkLinksCapacity)

PCM Resource Container (PCM SimuCom, PCM
SimuCom, PCM SimuCom, PCM SimuCom,
PCM SimuCom, PCM SimuCom)

HardwareDevice (utilization, queueLength) PCM Active Resource (PCM SimuCom, PCM
SimuCom)

NetworkLink (usedBandwidth, capacity, bitRate) PCM Linking Resource (PCM SimuCom, PCM
SimuCom, Variable Characterisation)

Params (dbConnections, webConnections, poole-
dResources, concurrentStreams)

-

Table 5.6: SML+ Deployment View Model Elements and their mapping to PCM meta-
model elements.

Many attributes belonging to the Deployment View are derived from the PCM Simu-
Com [22], i.e. the simulation tool by which the performance model is simulated
to obtain the performance indices of interest. In particular, we refer to Hard-
wareEntity.maxDevicesUtil, ProcesNode.serviceTime, HardwareDevice.utilization, Net-
workLink.usedBandwidth, etc.

HardwareEntity.type- in the PCM hardware platforms are modeled as Resource Contain-
ers, which can contain Active Resources, such as CPU and hard disk (HDD), or
Passive Resources, such as semaphores or thread pools.

NetworkLink.bitRate- the PCM Variable Characterisation is meant to store
performance critical information on the Random Variable attribute referring to the
PCM Linking Resource.

Params- it is not directly available in the PCM, since data flow is more abstract and it
does not include information on run time parameters such as database connections, web
connections, etc. It is for this reason that the More is Less antipattern cannot be currently
detected in the PCM modeling language.

Note that multiple-values antipatterns might be supported by introducing in the PCM the
concept of state as suggested in [84], and it might be possible to inform the designer that
a resource demand increasingly grows due to state changes.

In the following we present an example that demonstrates how to use the mapping of
PAML onto PCM to deduce the antipattern-based rules.
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Concurrent Processing Systems Starting from the PAML-based antipattern model (see
Figure 4.7) the following rules are deduced.

Rule cps.deployment.queue - there is at least one PCM Resource Container, e.g.
PN1, that has a high average queue length. This rule is evaluated by extracting the queue
length of its PCM Active Resources from the PCM simulation results, and checking
if it is greater or equal to the threshold ThmaxQueue.

Rule cps.deployment.unbalancedCpus - there is at least one PCM Active Resource
cpuPN1 (with type equal to CPU) nested in the PCM Resource Container PN1

that has a high average utilization. This rule is evaluated by extracting the utilization
from the PCM simulation results, and checking if it is greater or equal to the threshold
ThcpuMaxUtil. There is at least another PCM Active Resource cpuPN2 (with type
equal to CPU) nested in a PCM Resource Container, e.g. PN2, that has a low
average utilization. This rule is evaluated by extracting the utilization from the PCM
simulation results, and checking if it is lower than the threshold ThcpuMinUtil.

Rule cps.deployment.unbalancedDisks - there is at least one PCM Active Resource
diskPN1 (with type equal to HDD) nested in the PCM Resource Container PN1

that has a high average utilization. This rule is evaluated by extracting the utilization
from the PCM simulation results, and checking if it is greater or equal to the threshold
ThdiskMaxUtil. There is at least another PCM Active Resource diskPN2 (with type
equal to HDD) nested in a PCM Resource Container, e.g. PN2, that has a low
average utilization. This rule is evaluated by extracting the utilization from the PCM
simulation results, and checking if it is lower than the threshold ThdiskMinUtil.

Each (PN1, PN2) ∈ the set of all the PCM Resource Containers represents
a Concurrent Processing Systems antipattern in a PCM model if it matches the
CPS.deployment.queue Rule AND the CPS.deployment.unbalancedCpus Rule OR the
CPS.deployment.unbalancedDisks Rule, as stated in the PAML-based antipattern model
(see Figure 4.7).

5.2.3 SOLVING ANTIPATTERNS IN PCM

From the informal representation of the solution (see Table 3.1) a set of actions is built,
where each action addresses part of the antipattern solution specification.

Blob - the solution of this antipattern can be performed with the following actions.

DelegateWork Action- delegate the business logics from the Blob PCM Basic
Component to the other ones by decreasing the number of RequiredRole or
ProvidedRole connectors. In the PCM Assembly Model it is possible to move one or
more SEFFs from the Blob component to the surrounding ones by deleting some depen-
dencies. Such changes must be reflected in PCM SEFF(s) by moving External Call
Actions.
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Redeploy Action- if the Blob Basic Component (bcx) and the surrounding ones (bcx1,
bcx2, . . . , bcxn) are distributed on different PCM Resource Containers, the re-
deployment of components can avoid remote communications and should automatically
improve the utilization of the involved resource containers. Such action can be performed
in the PCM Allocation Model by changing the relation of deployed-on between PCM
Basic Components and PCM Resource Containers.

IncreaseSpeed Action- if the Blob Basic Component (bcx) and the surrounding ones
(bcx1, bcx2, . . . , bcxn) are deployed on the same PCM Resource Container, the
increasing speed of such node should automatically improve its utilization. Such ac-
tion can be performed in the PCM Allocation Model by modifying the value of the
processingRate in the ProcessingResourceSpecification. Another op-
tion is to analyze all the PCM Resource Container instances in order to decide if it
is better to re-deploy all the involved components in another container, and then increase
the rate of the latter one by a smaller percentage.

Mirror Action- the Blob Basic Component (bcx) and the surrounding ones (bcx1,
bcx2, . . . , bcxn) can be mirrored as new components and deployed into another PCM
Resource Container (an existing one, if possible), thus to balance the workload
of requests incoming to the system.

Concurrent Processing Systems - the solution of this antipattern can be performed with
the following actions.

BalanceLoad Action- if the Resource Containers rcx and rcy offer the same
Interfaces, change the scheduling algorithms and distribute in a balanced way (from
rcx to rcy) the requests for such services by modifying the probability to be called.

Mirror Action- mirror the Basic Components of the Resource Container rcx
into rcy and balance the workload, so that the requests incoming to the system are dis-
tributed to both Resource Containers.

MostCritical Action- identify the Basic Component of the Resource
Container rcx that has the highest resource demand of the critical type t, and
re-deploy it in the Resource Container rcy.

Redeploy Action- re-deploy some Basic Components from the Resource
Container rcx to rcy. Such action can be performed by taking into account a set
of system properties or their combination, as argued in the following.

The first option is aimed at re-deploying components on the basis of their resource de-
mand types. The re-deployment of components can be performed by evaluating the re-
source container rcy and deciding whenever it is better to re-deploy CPU-critical (high
computation demand) components and/or HardDisk-critical (high storage demand) ones.

The second option is aimed at re-deploying components on the basis of the utilization of



126Chapter 5. Detecting and Solving Antipatterns in Concrete Modeling Languages

nodes under analysis. The nodes can be considered more or less critical if: a) there is
at least one nested Active Resource of type t∗ (i.e. CPU, HardDisk) that exceeds
a threshold value; b) all the nested Active Resources of type t∗ exceed a threshold
value.

The third option is aimed at re-deploying components on the basis of their communi-
cation. Linking resources can considered more or less critical if: a) two components
communicate through a Linking Resource that exceeds a threshold value, but such
components also use other linking resources that do not provide any violation; b) all the
linking resources provide a violation.

Pipe and Filter Architectures - the solution of this antipattern can be performed with
the following actions.

IncreaseCapacity Action- increase the capacity of the Passive Resources providing
the acquire and release actions for the slowest filter, thus requests with a lower resource
demand are not delayed.

SplitAndRedeploy Action- split the slowest filter, i.e. the PCM protected region, into two
SEFFs and re-deploy one of them thus to facilitate the processing of incoming requests
to the system, especially the ones with a lower resource demand.

Extensive Processing - the solution of this antipattern can be performed with the follow-
ing actions.

IncreaseCapacity Action- increase the capacity of Passive Resource locking the
Branch Action.

UnblockExecution Action- change the scheduling algorithm of the resource and/or re-
deploy one of the Basic Components containing seffa or seffb thus they do not
queue for the same Active Resource anymore.

Circuitous Treasure Hunt - the solution of this antipattern can be performed by refac-
toring the database basic component (i.e. annotated with a custom mark model) in its
internal structure. We leave this task to the designer that better knows how to organize the
structure of the database in such a way that incoming requests avoid to access too many
tables.

Empty Semi Trucks - the solution can be performed with the following action.

Batching Action- optimize the usage of the bandwidth by reducing the number of sent
messages through the batching, i.e. joining all small messages in few messages of a
bigger size through changes to the PCM BYTESIZE Characterisation attribute.

One-Lane Bridge - the solution can be performed with the following action.
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IncreaseCapacity Action- increase the capacity of the Passive Resources. A
smarter methodology can be devised in order to optimize the capacity by evaluating the
minimal multiplicity able to solve performance issues.

Traffic Jam - the solution of this antipattern can be performed with the following action.

IncreaseCapacity Action- increase the speed of the Resource Container on which
the SEFF detected as responsible of the large backlog (seffa) is executed. Such
action can be performed in the PCM Allocation Model by modifying the value of
the processingRate attribute of the PCM ProcessingResourceSpecifica-
tion.

The Ramp - the solution of this antipattern can be performed by notifying the designer
that a PCM SEFF is increasingly getting worse (from a performance perspective), i.e.
increasing response time and decreasing throughput over time. We leave the task of re-
structuring such situations to the designer.

Note that the Tower of Babel, Excessive Dynamic Allocation, and More is Less antipat-
terns cannot be detected in PCM models, hence we exclude them from the definition of
refactoring actions.

5.3 SUMMARY AND LESSONS LEARNED

Table 5.7 summarizes the expressiveness of the UML and PCM modeling languages for
specifying performance antipatterns. In particular, it is organized as follows: each row
represents a specific antipattern and it is characterized by the antipattern name, if it is
automatically detectable and solvable in UML and PCM models respectively.

The entries of Table 5.7 can be of three different types with the following meaning:
√

(i.e. yes), × (i.e. no), and − denotes that the corresponding operation does not make
sense, i.e. if an antipattern cannot be detected it is obvious that it cannot be solved.

These experiences have allowed to classify the antipatterns in three categories: (i) de-
tectable and solvable; (ii) semi-solvable (i.e. the antipattern solution is only achieved
with refactoring actions to be manually performed); (iii) neither detectable nor solvable.

Table 5.7 points out that the most interesting performance antipatterns in UML and PCM
are: Blob, Concurrent Processing Systems, Pipe and Filter Architectures, Extensive Pro-
cessing, Empty Semi Trucks, One-Lane Bridge, and Traffic Jam, since they are either
detectable and solvable.

Table 5.7 shows that there are currently two semi-solvable performance antipatterns, i.e.
Circuitous Treasure Hunt, and The Ramp, since they can be detected, but they cannot be
automatically solved in both UML and PCM modeling languages.
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Antipattern
UML PCM

Detectable Solvable Detectable Solvable

Blob (or god class/component)
√ √ √ √

Concurrent
Processing
Systems

√ √ √ √

Single-

Unbalanced
Processing

Pipe and Filter
Architectures

√ √ √ √

value

Extensive Pro-
cessing

√ √ √ √

Circuitous Treasure Hunt
√

×
√

×

Empty Semi Trucks
√ √ √ √

Tower of Babel
√

× × −

One-Lane Bridge
√ √ √ √

Excessive Dynamic Allocation
√

× × −

Multiple-
Traffic Jam

√ √ √ √

values The Ramp
√

×
√

×

More is Less × − × −

Table 5.7: Performance Antipatterns detectable and solvable in UML and PCM.
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Table 5.7 highlights with shaded rows that two antipatterns, i.e. Tower of Babel and
Excessive Dynamic Allocation are expressed in a different way in UML and PCM. In
particular, we can notice that in UML these antipatterns can be detected, but they cannot
be automatically solved, whereas in PCM they are neither detectable nor solvable.

Tower of Babel is an antipattern whose bad practice is on the translation of information
into too many exchange formats, i.e. data is parsed and translated into an internal for-
mat, but the translation and parsing is excessive [123]. In the PCM, data flow is more
abstract and does not include information on data formats in the current abstraction level.
However, it might be possible to replace the current modeling language to specify the
behavioural description of services, i.e. the PCM service effect specification (SEFF), by
another behavioural description language that includes such detail.

Excessive Dynamic Allocation is an antipattern whose bad practice is on unnecessarily
creating and destroying objects during the execution of an application [119]. In the PCM,
no object-oriented detail is available, because it is not included in the current abstraction
level. However, it might be possible to detect such bad practice in PCM models that
are re-engineered from byte code [91], because constructor invocations are then stored as
special type of resource demands at the modeling layer.

Finally, Table 5.7 indicates that there is currently one performance antipattern, i.e. More
is Less, neither detectable nor solvable in UML and PCM.

More is Less is an antipattern whose bad practice is on the overhead spent by the system
in thrashing in comparison of accomplishing the real work [121]. Currently thrashing, in
particular page faults, cannot be explicitly modeled neither in UML nor in PCM.

In UML it might be added by introducing a specific event (e.g. “page fault”) in the subset
type of an EventOccurrence belonging to the MARTE Causality::RunTimeContext
package (see Figure 5.5).

RunTimeContext

CoreElements::Foundations::
Instance

BehaviorExecution1 0..1
cause effect

Causality::CommonBehavior::
Event

EventOccurrence

event
{subset type}

1

Figure 5.5: An excerpt of the MARTE RunTimeContext package.

In PCM it might be added by introducing layered execution environment models, as sug-
gested in [76]. A controller infrastructure can be modeled to capture page faults as an
execution environment model and it can be integrated in the PCM resource environment.





CHAPTER 6

VALIDATION

The goal of this Chapter is to demonstrate that the antipattern-based approach we propose
is built on methodologies that can be applied on industrial products without delaying the
software development process. Such methodologies are aimed at providing automation in
the software performance process, thus to achieve an early performance validation.

In this direction we here report our experience in the analysis of two case studies whose
performance issues have been solved with the usage of the antipattern solution. We dis-
cuss the advantages and the disadvantages of the applied techniques in UML and PCM,
and we compare them in order to abstract towards the suitable characteristics the software
systems should have.

6.1 A CASE STUDY IN UML

This Section deals with a UML example, and is organized as follows. First, Section 6.1.1
describes the UML model of the system under analysis, the so-called E-commerce System
(ECS). Then, the stepwise application of our antipattern-based process is performed, i.e.
the detection of antipatterns (see Section 6.1.2) and their solution (see Section 6.1.3).

Performance
Results

UML annotated with

MARTE profile

Results Interpretation
& Feedback Generation

5.b5.a

Prima-UML MVA1 2 3

4
6

Performance
Antipatterns5.c

Queueing Networks

ECS

Figure 6.1: ECS case study: customized software performance process.

Figure 6.1 customizes the approach of Figure 1.2 to the specific methodology adopted
for this case study in the forward path. The E-commerce System has been modeled with

131
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UML and annotated with the MARTE profile that provides all the information we need
for reasoning on performance issues. The transformation from the software architectural
model to the performance model is performed with PRIMA-UML, i.e. a methodology
that generates a Queueing Network model from UML models [48]. Once the Queueing
Network (QN) model is derived, classical QN solution techniques based on well-known
methodologies [81] can be applied to solve the model, such as Mean Value Analysis
(MVA). The performance model is analyzed to obtain the performance indices of interest
(i.e. response time, utilization, throughput, etc.). Thereafter performance antipatterns
are used to capture a set of properties in UML models and MARTE profile annotations,
thus to determine the causes of performance issues as well as the refactoring actions to
overcome such issues.

6.1.1 E-COMMERCE SYSTEM

Figure 6.2 shows an overview of the ECS software system. It is a web-based system
that manages business data: customers browse catalogs and make selections of items that
need to be purchased; at the same time, suppliers can upload their catalogs, change the
prices and the availability of products, etc. The services we analyze here are browseCat-
alog and makePurchase. The former can be perfomance-critical because it is required
by a large number of (registered and not registered) customers, whereas the latter can be
perfomance-critical because it requires several database accesses that can drop the system
performance.

system services

uploadCatalog

manageProducts

deliverOrder

makePurchase

browseCatalog

login

invoiceOrder

register

supplier

customer

bank

<<include>>

Figure 6.2: ECS case study: Use Case Diagram.

In Figure 6.3 we report an excerpt of the ECS annotated software architectural model.
We use UML 2.0 [12] as modeling language and MARTE [13] to annotate additional
information for performance analysis (such as workload to the system, service demands,
hardware characteristics).
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In particular, the UML Component Diagram in Figure 6.3(a) describes the software com-
ponents and their interconnections, whereas the UML Deployment Diagram of Figure
6.3(b) shows the deployment of the software components on the hardware platform. The
deployment is annotated with the characteristics of the hardware nodes to specify CPU
attributes (speedFactor and schedPolicy) and network delay (blockT).

Performance requirements are defined for the ECS system on the response time of the
main services of the system (i.e. browseCatalog and makePurchase) under a closed work-
load with a population of 200 requests/second, and thinking time of 0.01 seconds. The
requirements are defined as follows: the browseCatalog service must be performed in
1.2 seconds, whereas the makePurchase in 2 seconds. These values represent the upper
bound for the services they refer to.

The Prima-UML methodology requires the modeling of: (i) system requirements with
a UML Use Case Diagram, (ii) the software dynamics with UML Sequence Diagrams,
and (iii) the software-to-hardware mapping with a UML Deployment Diagram. The Use
Case Diagram must be annotated with the operational profile, the Sequence Diagram with
service demands and message size of each operation, and the Deployment Diagram with
the characteristics of hardware nodes (see more details in [48]).

Figure 6.4 shows the Queueing Network model (see more details in Section B.2) produced
for the ECS case study. It includes: (i) a set of queueing centers (e.g. webServerNode, li-
braryNode, etc.) representing the hardware resources of the system, a set of delay centers
(e.g. wan1, wan2, etc.) representing the network communication delays; (ii) two classes
of jobs, i.e. browseCatalog (class A, denoted with a star symbol in Figure 6.4) is invoked
with a probability of 99%, and makePurchase (class B, denoted with a bullet point in
Figure 6.4) is invoked with a probability of 1%.

The parametrization of the Queueing Network model for the ECS case study is summa-
rized in Table 6.1. In particular the input parameters of the QN are reported: the first
column contains the service center names, the second column shows their corresponding
service rates for each class of job (i.e. class A and class B).

Input parameters

Service Center ECS

classA classB

lan 44 msec 44 msec

wan 208 msec 208 msec

webServerNode 2 msec 4 msec

libraryNode 7 msec 16 msec

controlNode 3 msec 3 msec

db cpu 15 msec 30 msec

db disk 30 msec 60 msec

Table 6.1: Input parameters for the queueing network model in the ECS system.
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Figure 6.4: ECS - Queueing Network model.

Table 6.2 summarizes the performance analysis results of the ECS Queueing Network
model: the first column contains the names of requirements; the second column reports
their required values; the third column shows their predicted values, as obtained from the
QN solution. As it can be noticed both services have a response time that does not fulfill
the required ones: the browseCatalog service has been predicted as 1.5 sec, whereas the
makePurchase service has been predicted as 2.77 sec. Hence we apply our approach to
detect performance antipatterns.

Required Predicted Value

Requirement Value ECS

RT(browseCatalog) 1.2 sec 1.5 sec

RT(makePurchase) 2 sec 2.77 sec

Table 6.2: Response time requirements for the ECS software architectural model.

As a first step, the approach joins the (annotated) software architectural model and the
performance indices (see Figure 3.1) in an XML representation [5] of the software system.

As said in Section 3.4, basic predicates contain boundaries that need to be actualized on
each specific software architectural model. In ECS the estimation of numerical values for
thresholds has been calculated as suggested in Tables 3.3 and 3.4.

Table 6.3 reports the binding of the performance antipatterns boundaries (see Figure 3.1)
for the ECS system. Such values allow to set the basic predicates, thus to proceed with
the actual detection.
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antipattern parameter value

Blob ThmaxConnect 4

ThmaxMsgs 18

ThmaxHwUtil 0.75

ThmaxNetUtil 0.85

CPS ThmaxQueue 40

ThcpuMaxUtil 0.8

ThdiskMaxUtil 0.7

ThcpuMinUtil 0.3

ThdiskMinUtil 0.4

EST ThremMsgs 12

ThremInst 5

ThminNetUtil 0.3

. . . . . . . . .

Table 6.3: ECS- antipatterns boundaries binding.

6.1.2 DETECTING ANTIPATTERNS

The detection of antipatterns is performed by running the detection engine on the XML
representation of the ECS software architectural model . This leaded to assess that:
(lc1, bl1, browseCatalog) originates an instance the Blob antipattern; (libraryNode, web-
ServerNode) originates an instance of the Concurrent Processing Systems antipattern; and
finally (uc1, makePurchase) originates an instance of the Empty Semi Trucks antipattern.

In Figure 6.5 we illustrate an excerpt of the ECS software architectural model where we
highlight, in the shaded boxes, the parts of the model that evidence the Blob antipattern
occurrence. Such antipattern is detected in the ECS software architectural model since
there is the instance lc1 of the component libraryController such that (see Table 6.3 and
Figure 6.5): (a) it has more than 4 usage dependencies towards the instance bl1 of the
component bookLibrary; (b) it sends more than 18 messages (not shown in Figure 6.5 for
sake of space); (c) the component instances (i.e. lc1 and bl1) are deployed on different
nodes, and the LAN communication host has an utilization (i.e. 0.92), higher than the
threshold value (0.85).

In Figure 6.6 we illustrate an excerpt of the ECS software architectural model where we
highlight, in the shaded boxes, the parts of the model that evidence the CPS antipattern
occurrence. Such antipattern is detected in the ECS software architectural model since
there are two nodes, i.e. libraryNode and webServerNode that (see Table 6.3 and Figure
6.6) are not used in a well-balanced way. It means that: (i) the queue size of libraryNode
(i.e. 50) is higher than the threshold value of 40; (ii) an unbalanced load among CPUs
does not occur, because the maximum utilization of CPUs in libraryNode (i.e. 0.82 in the
lbNodeproc1 instance) is higher than 0.8 threshold value, but the maximum utilization
of CPUs in webServerNode (i.e. 0.42 in the wsNodeproc1 instance) is not lower than
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Antipattern Problem Solution

Blob libraryController performs most of
the work, it generates excessive
message traffic.

Refactor the design to keep related
data and behavior together. Dele-
gate some work from libraryCon-
troller to bookLibrary.

Concurrent Process-
ing Systems

Processing cannot make use of the
processor webServerNode.

Restructure software or change
scheduling algorithms between
processors libraryNode and web-
ServerNode.

Empty Semi Trucks An excessive number of requests
is performed for the makePurchase
service.

Combine items into messages to
make better use of available band-
width.

Table 6.4: ECS Performance Antipatterns: problem and solution.

0.3 threshold value; (iii) an unbalanced load among disks occurs, in fact the maximum
utilization of disks in libraryNode (i.e. 0.78 in the lbNodemem1 instance), is higher than
the threshold value of 0.7, and the maximum utilization of disks in webServerNode (i.e.
0.35 in the wsNodemem1 instance), is lower than the threshold value of 0.4.

In Figure 6.7 we illustrate an excerpt of the ECS software architectural model where we
highlight, in the shaded boxes, the parts of the model that evidence the EST antipattern
occurrence. Such antipattern occurs since there is the instance uc1 of the userController
component such that (see Table 6.3 and Figure 6.7): (a) it sends more than 12 remote
messages (not shown in Figure 6.7 for sake of space); (b) the component instances are
deployed on different nodes, and the communication host has a utilization (i.e. 0.25 in
the wan instance), lower than 0.3 threshold value; (c) it has more than 5 remote instances
(ce1, . . . , ce8) of the catalogEngine component with which it communicates.

6.1.3 SOLVING ANTIPATTERNS

Whenever an antipattern instance of a certain type has been detected, we tailored the
corresponding solution (see Table 3.1) on the ECS system, as reminded in Table 6.4.

According to the antipattern solutions proposed in Table 6.4, we refactored the ECS (an-
notated) software architectural model and we obtained three new software architectural
models, namely ECS r {blob}, ECS r {cps}, and ECS r {est}, where the Blob,
the Concurrent Processing Systems and the Empty Semi Trucks antipatterns have been
solved, respectively.

The Blob antipattern is solved by modifying the inner behavior of the libraryController
software component, thus it is not anymore the intermediate component for services
provided by the bookLibrary and movieLibrary components. The CPS antipattern is
solved by re-deploying the software component userController from libraryNode to web-
ServerNode. The EST antipattern is solved by modifying the inner behavior of the user-
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Controller component in the communication with the catalogEngine component for the
makePurchase service.
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Figure 6.8: ECS model refinement: reiteration of the software performance process.

Input parameters

Service Center ECS r {cps} ECS r {est} ECS r {blob}

classA classB classA classB classA classB

lan 44 msec 44 msec 44 msec 44 msec 44 msec 44 msec

wan 208 msec 208 msec 208 msec 208 msec 208 msec 208 msec

webServerNode 4 msec 12 msec 2 msec 4 msec 2 msec 4 msec

libraryNode 5 msec 8 msec 7 msec 12 msec 5 msec 14 msec

controlNode 3 msec 3 msec 3 msec 3 msec 3 msec 3 msec

db cpu 15 msec 30 msec 15 msec 30 msec 15 msec 30 msec

db disk 30 msec 60 msec 30 msec 60 msec 30 msec 60 msec

Table 6.5: Input parameters for the queueing network model across different software
architectural models.

ECSr{blob}, ECSr{cps}, and ECSr{est} systems have been separately analyzed.
Input parameters are reported in Table 6.5 where bold numbers represent the changes
induced from the solution of the corresponding antipatterns.

For example, in the column ECS r {cps} we can note that the service centers web-
ServerNode and libraryNode have different input values, since the re-deployment of the
software component userController implies to move the load among the involved re-
sources, in this case from libraryNode to webServerNode.

In case of class A, the load is estimated of 2 msec, in fact in libraryNode the initial value
of 2 msec in ECS (see Table 6.1) is increased of 2 msec, thus to become 4 msec in
ECS r {cps} (see Table 6.5), whereas in webServerNode the initial value of 7 msec in
ECS (see Table 6.1) is decreased of 2 msec, thus to become 5 msec in ECS r {cps}
(see Table 6.5). In case of class B, the load is estimated of 8 msec, in fact in libraryNode
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the initial value of 4 msec in ECS (see Table 6.1) is increased of 8 msec, thus to become
12 msec in ECS r {cps} (see Table 6.5), whereas in webServerNode the initial value
of 16 msec in ECS (see Table 6.1) is decreased of 8 msec, thus to become 8 msec in
ECS r {cps} (see Table 6.5).

6.1.4 EXPERIMENTATION

Table 6.6 summarizes the performance analysis results obtained by solving the QN models
of the new ECS systems (i.e. ECSr{blob}, ECSr{cps}, and ECSr{est} columns),
and by comparing them with the results obtained from the analysis of the initial system
(i.e. ECS column). The response time of the browseCatalog service is 1.14, 1.15, and
1.5 seconds, whereas the response time of the makePurchase service is 2.18, 1.6, and 2.24
seconds, across the different reconfigurations of the ECS architectural model.

Required Predicted Value

Requirement Value ECS ECS r {blob} ECS r {cps} ECS r {est}

RT(browseCatalog) 1.2 sec 1.5 sec 1.14 sec 1.15 sec 1.5 sec

RT(makePurchase) 2 sec 2.77 sec 2.18 sec 1.6 sec 2.24 sec

Table 6.6: Response time required and observed.

The solution of the Blob antipattern has satisfied the first requirement, but not the second
one. The solution of the Concurrent Processing System leads to satisfy both requirements.
Finally, the Empty Semi Trucks solution was useless for the first requirement as no im-
provement was carried out, but it was quite beneficial for the second one, even if both of
them were not fulfilled.

We can conclude that the software architectural model candidate that best fits with user
needs is obtained by applying the following refactoring action: the userController soft-
ware component is re-deployed from libraryNode to webServerNode, i.e. the solution of
the Concurrent Processing Systems antipattern. In fact, as shown in Table 6.6 both re-
quirements have been fulfilled by its solution, i.e. the fulfilment termination criterion (see
Section 1.3). The experimental results are promising, and other decisions can be taken by
looking at these results, whereas software architects use to blindly act without this type
of information.

This experimentation allows us to ground our antipattern-based process as a general ap-
proach that can be applied to the UML modeling notation. Note that the antipattern so-
lution (i.e. the model refactoring) has been manually executed, and it might represent a
tedious and error-prone task for the software architect.
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6.2 A CASE STUDY IN PCM

First, Section 6.2.1 describes the PCM model of the system under analysis, the so-called
Business Reporting System (BRS). Then, the stepwise application of our antipattern-
based process is performed, i.e. the detection of antipatterns (see Section 6.2.2) and their
solution (see Section 6.2.3). Finally, Section 6.2.4 illustrates a non trivial experimental
session.
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Figure 6.9: BRS case study: customized software performance process.

Figure 6.9 customizes the approach of Figure 1.2 to the specific methodology adopted
for this case study in the forward path. The Business Reporting System has been mod-
eled with the Palladio Component Model (PCM). The transformation from the software
architectural model to the performance model is performed with PCM2SimuCom, i.e. a
methodology that generates an Extended Queueing Network model from PCM models
[90]. In particular, it generates the simulation code for the PCM simulation tool Simu-
Com [22]. The performance model is then simulated to obtain the performance indices of
interest (i.e. response time, utilisation, throughput, etc.). Thereafter performance antipat-
terns are used to capture a set of properties in PCM models, thus to determine the causes
of performance issues as well as the refactoring actions to overcome such issues.

The approach has been implemented as an extension to the PCM Bench tool1 (see Figure
6.10). It allows to automatically interpret the performance analysis results and generate
the architectural feedback to the PCM models. Hence, if some performance antipatterns
are detected in the PCM model, their solution suggests the architectural alternatives that
lead to obtain new software architectural model candidates (see Figure 1.4).

Note that the current implementation can detect and solve three antipatterns in PCM mod-
els, namely Concurrent Processing Systems, Extensive Processing and One-Lane Bridge.
The tool completely automates the described iterative search (see Figure 1.4), support-
ing the termination criteria of “no-actions” and “#iterations” (see Section 1.3). In the
following we present the results of the experimentation with the PCM Bench tool.

1The PCM Bench extension can be downloaded at sdqweb.ipd.kit.edu/wiki/PerOpteryx.
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Figure 6.10: Screenshot of the PCM Bench extension providing the usage of antipatterns
knowledge.
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6.2.1 BUSINESS REPORTING SYSTEM

Figure 6.11 shows an overview of the BRS software system. It lets users retrieve reports
and statistical data about running business processes, it is a 4-tier system consisting of
several basic components, as described in the following. The Webserver handles user re-
quests for generating reports or viewing the plain data logged by the system. It delegates
the requests to a Scheduler, which in turn forwards the requests. User management func-
tionalities (e.g. login, logout) are directed to the UserManagement, whereas report and
view requests are forwarded to the OnlineReporting or GraphicalReporting, depending
on the type of request. Both components make use of a CoreReportingEngine for the
common report generation functionality. The latter one frequently accesses the Database,
but for some request types uses an intermediate Cache. The allocation of software compo-
nents on resource containers is shown in Figure 6.11, e.g. Proc2 deals with the scheduling
of requests by hosting Scheduler, UserManagement, OnlineReporting and GraphicalRe-
porting basic components.

Figure 6.11: PCM software architectural model for the BRS system.

The system supports seven use cases: users can login, logout and request both reports
or views, each of which can be both graphical or online; administrators can invoke the
maintenance service.

Not all services are inserted in Figure 6.11 for sake of readability, however two examples
are shown: SEFF onlineReport of component OnlineReporting implements the interface
IOnlineReporting, and SEFF graphicalReport of component GraphicalReporting imple-
ments the interface IGraphicalReporting. Both services require an InternalAction, that



6.2 A case study in PCM 145

are performed respectively by OnlineReporting and GraphicalReporting components, to
setup the report. Then an ExternalCallAction demands to get the report from the CoreRe-
portingEngine component. For the graphicalReport service is necessary to additionally
calculate the report for each requested entry. Each internal action is annotated with a re-
source demand indicating the time spent for processing such operation, e.g. the setup of
the onlineReport requires 0.001 CPU units.

The PCM software architectural model contains the static structure, the behavior speci-
fication of each component and it is annotated with resource demands and resource en-
vironment specifications. For performance analysis, the software architectural model is
automatically transformed to simulation code, and executed by the SimuCom tool [22].

Figure 6.12 shows the PCM usage model that is the representation of how users use the
system: users login, 25 times the onlineView service is invoked, 5 times the graphicalView
and onlineReport services are invoked, and finally the graphicalReport and maintain ser-
vices are performed before the logout.

Figure 6.12: PCM usage model for the BRS system.

For sake of simplification, our experimentation is focused on the analysis of the response
time of the system, i.e. the average time a user spends in the system according to the
defined usage model (see Figure 6.12). The performance analysis of the BRS software
architectural model reveals that the response time of the system (under a closed workload
of 20 requests with thinking time of 5 seconds) is 18.71 seconds, so it does not meet
the required 10 seconds. Since the requirement is not satisfied we apply our approach to
detect and solve performance antipatterns.

6.2.2 DETECTING ANTIPATTERNS

Figure 6.11 shows some labels that indicate the detected antipatterns, because seven in-
stances (PA1, . . . , PA7) are found. Consider as examples: (Proc1, Proc2) originates an
instance of the Concurrent Processing Systems antipattern; (Scheduler, OnlineReporting,
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Antipattern Problem Solution

Concurrent Process-
ing Systems

Processing cannot make use of the
processor Proc1.

Restructure software or change
scheduling algorithms between pro-
cessors Proc1 and Proc2.

Blob Scheduler performs most of the
work, it generates excessive mes-
sage traffic.

Refactor the design to keep related
data and behavior together. Dele-
gate some work from Scheduler to
Online Reporting.

Empty Semi Trucks An excessive number of requests is
performed for the onlineReport ser-
vice.

Combine items into messages to
make better use of available band-
width.

One-Lane Bridge Processes are delayed while they
wait for their turn for accessing the
Database component.

use the Shared Resources Principle
in the Database component.

Concurrent Process-
ing Systems

Processing cannot make use of the
processor Proc4.

Restructure software or change
scheduling algorithms between pro-
cessors Proc2 and Proc4.

Circuitous Treasure
Hunt

An object must look in several
places to find the information that it
needs in the Database component.

Refactor the design to provide al-
ternative paths for accessing the
Database component.

Extensive Processing Extensive processing between
onlineReport and graphicalReport
services impedes overall response
time.

Move extensive processing so that
it does not impede high traffic.

Table 6.7: BRS Performance Antipatterns: problem and solution.

onlineReport) originates an instance the Blob antipattern; (Proc2, Proc4) originates an
instance of the Concurrent Processing Systems antipattern; (onlineReport, graphicalRe-
port, getReport) originates an instance of the Extensive Processing antipattern. Note that
shaded labels represent the antipatterns solvable in the PCM Bench tool, i.e. the only ones
that we consider for the solution.

Several instances of the same antipattern can be detected. For example, in the BRS system
we found two instances of the Concurrent Processing Systems (see Table 6.7). In this
case such antipatterns instances are not independent since they both contain the processor
Proc2 as the over utilized one. It is for this reason that we consider refactoring actions
separately, similarly to what we have done in the UML example, to avoid unfeasible
architectural alternatives.

6.2.3 SOLVING ANTIPATTERNS

Whenever an antipattern instance of a certain type has been detected, we tailored the
corresponding solution (see Table 3.1) on the ECS system, as described in Table 6.7.

According to the antipattern solutions proposed in Table 6.7, in the first iteration we refac-
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tored the BRS (annotated) software architectural model and we obtained four new soft-
ware architectural models, namely BRSr {PA1}, BRSr {PA4}, BRSr {PA5}, and
BRSr{PA7} (see Figure 6.11) where the Concurrent Processing Systems among Proc1
and Proc2, the One-Lane Bridge, the Concurrent Processing Systems among Proc2 and
Proc4, the Extensive Processing antipatterns have been solved, respectively.

The Concurrent Processing Systems antipattern among Proc1 and Proc2 is solved by
re-deploying the software component GraphicalReporting from Proc2 to Proc1. The
One-Lane Bridge antipattern is solved by increasing the capacity of the passive resource
DBconnection by 5 units. The Concurrent Processing Systems antipattern among Proc2
and Proc4 is solved by re-deploying the software component GraphicalReporting from
Proc2 to Proc4. The Extensive Processing is solved by changing the scheduling algo-
rithm of Proc2 from First-Come First-Served (i.e. FCFS) to Processor-Sharing.

6.2.4 EXPERIMENTATION

Figures 6.13 reports our experimentation across multiple iterations (see Figure 1.4) of the
process: the target performance index is the response time of the system and it is plotted
on the y-axis, whereas on the x-axis the iterations of the antipattern-based process are
listed. Single points represent the response times observed after the separate solution of
each performance antipattern.

At the iteration 0 the BRS software architectural model is simulated, and the initial value
(18.71 seconds) for the target performance index is reported on the y-axis. As said in Sec-
tion 6.2.3, in the first iteration we refactored the BRS (annotated) software architectural
model and we obtained four new software architectural model candidates. All these four
candidates are simulated, and their predicted values for the target performance index are
reported in the (1, value) points.

Figure 6.13 summarizes the whole experimentation across iteration(s): 40 software ar-
chitectural model candidates are found, and the response time of the system spans from
18.71 seconds (i.e. the initial value) to 9.26 sec (i.e. the value that fits with the require-
ment). Note that at each iteration a performance improvement is achieved up to the forth
iteration, and the final improvement is roughly of 50%.

Figure 6.14 depicts the process we presented in Figure 1.4 in a graph-like way. Each node
reports the performance index of our interest, i.e. RT(system), and its predicted value
(e.g. 18.71 seconds in the root of the graph represents the predicted value for the initial
system). Each arc represents a refactoring action (e.g. the re-deployment of the Graph-
icalReporting component from Proc2 to Proc1) applied to solve a detected antipattern
(e.g. Concurrent Processing Systems). In our experimentation we applied the fulfilment
criterion (see Section 1.3) to terminate the process, since the requirement is satisfied at
the forth iteration and a software model candidate able to cope with user needs (i.e. the
shaded node of Figure 6.14) is found.
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Figure 6.13: Response time of the system across the iterations of the antipattern-based
process.

Figure 6.14: Summary of the process for the BRS system.
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Figure 6.14 shows at the iteration i a node depicted with a double circle and namedBRSi.
Such node is meant to highlight the software architectural model candidate that best fits
with the performance index under analysis in the iteration it belongs to. The output can-
didate is obtained from the fulfillment of a termination criteria, and depicted as a shaded
node with a cross. Note that all candidates are newly analyzed and the best candidate
of one iteration (local optimum) not necessary is included in the path of the final best
candidate (global optimum).

The experimental results we obtained are finally collected in Table 6.8. The performance
index of our interest is the response time of the system. Four iterations were performed
up to achieve a software architectural model able to cope with the system requirement,
and for each iteration i we call BRSi (see Figure 6.14) the software architectural model
candidate that best fits with the requirement under analysis. The first row of Table 6.8
shows the performance improvement of the response time of the system across the differ-
ent iterations, whereas the second row reports the number of software architectural model
candidates that are evaluated at each iteration.

Observed Value

Required

Requirement Value BRS BRS1 BRS2 BRS3 BRS4

RT(system) 10 sec 18.71 sec 12.25 sec 10.40 sec 10.02 sec 9.26 sec

# candidates 1 4 9 11 16

Table 6.8: Response time of the system across BRS software architectural model candi-
dates.

We can conclude that the software architectural model candidate that best fits with user
needs is obtained by applying the following refactoring actions (see Figure 6.14): (i) the
GraphicalReporting component is re-deployed from Proc2 to Proc1; (ii) the Database
component is re-deployed from Proc3 to Proc4; (iii) the capacity of the passive resource
DBconnection is increased from 1 to 6; (iv) the GraphicalReporting component is re-
deployed from Proc1 to Proc3.

This experimentation allows us to ground our antipattern-based process as a general ap-
proach that can be applied to the PCM modeling notation. Note that the antipattern solu-
tion (i.e. the model refactoring) has been automatically executed, since it is supported by
the PCM Bench tool.

More in general, the step of solving antipatterns opens to multiple problems to be tackled,
in fact different cross-cutting concerns (e.g. requirements, workload, operational profile,
etc.) might influence the choice of the refactoring actions to apply. Here we like to only
say that, once a number of performance antipatterns are detected, a certain strategy has
to be introduced to decide which ones have to be solved in order to quickly convey the
desired result of users satisfaction (see more details in Chapter 7).





CHAPTER 7

A STEP AHEAD IN THE ANTIPATTERNS SOLUTION

The goal of this Chapter is to present a step ahead in the antipatterns solution, i.e. a
technique to decide the most promising model changes that can rapidly lead to remove
performance problems. In particular, the antipatterns detected in the software architec-
tural models are ranked on the basis of their guiltiness versus violated requirements. Such
ranked list will be the input to the solution step that can use it to give priorities to antipat-
tern solutions.

Without such ranking technique the antipattern solution process can only blindly move
among antipattern solutions without eventually achieving the desired result of require-
ments satisfaction. The core questions tackled in this Chapter are the following: (i) “What
are the most guilty antipatterns?” and (ii) “How much does each antipattern contribute to
each requirement violation?”.

7.1 A STRATEGY TO IDENTIFY ”GUILTY” PERFORMANCE

ANTIPATTERNS

In this Section the problem of identifying, among a set of detected performance antipat-
terns, the ones that are the real causes of problems (i.e. the “guilty” ones) is tackled. A
process to elaborate the performance analysis results and to score performance require-
ments, model entities and performance antipatterns is introduced. The cross observation
of such scores allows to classify the level of guiltiness of each antipattern.

Figure 7.1 reports the process that we propose: the goal is to modify a software architec-
tural model in order to produce a model candidate where the performance problems of
the former one have been removed. Shaded boxes of Figure 7.1 represent the ranking step
that is object of this Chapter.

The inputs of the detection engine are: the software architectural model, the performance
results, and the performance antipatterns (see Figure 1.2). We here explicitly report per-
formance requirements (label 5.d) because they will be used in the ranking step. We
obtain two types of outputs from the detection step: (i) a list of violated requirements
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Figure 7.1: A process to improve the performance analysis interpretation.

as resulting from the analysis, and (ii) a complete antipatterns list. If no requirement is
violated by the current software architectural model then the process terminates here.

Then we compare the complete antipatterns list with the violated requirements and exam-
ine relationships between detected antipatterns and each violated requirement through the
system entities involved in them. We obtain a filtered antipatterns list, where antipatterns
that do not affect any violated requirement have been filtered out. In the following step, on
the basis of relationships observed before, we estimate how guilty an antipattern is with
respect to a violated requirement by calculating a guiltiness score. As a result, we obtain
a ranked antipatterns list for each violated requirement. Finally, software architectural
model candidates can be built by applying to the current software architectural model the
solutions of one or more high-ranked antipatterns for each violated requirement.

7.2 AN APPROACH FOR RANKING ANTIPATTERNS

In this section a detailed description of the approach shown in the shaded boxes of Figure
7.1 is provided. The input data for the approach are a set of violated requirements (Sec-
tion 7.2.1) and a complete antipatterns list for the system under study (Section 7.2.2). In
the first step, we filter out antipatterns that do not affect any requirements and obtain a
matrix of filtered antipatterns (Section 7.2.3). In the second step, we assign a guiltiness
score for the filtered antipatterns with respect to each violated requirement (Section 7.2.4).
The resulting ranked antipatterns list for each requirement can be used to decide the an-
tipattern solution(s) to apply in order to obtain an improved software architectural model.



7.2 An approach for ranking antipatterns 153

7.2.1 VIOLATED REQUIREMENTS

The performance requirements that, upon the model analysis, result to be violated repre-
sent very likely the effects (to be removed) of some antipatterns, therefore we focus on
them.

System requirements are classified on the basis of the performance indices they address
and the level of abstraction they apply.Various levels of abstraction can be defined for
a requirement: system, processor, device (e.g., CPU, Disk), device operation (e.g., read,
write), software component, basic and composed services. In the following, by “basic ser-
vice” we denote a functionality that is provided by a component without calling services
of other components. By “composed service”, we denote a functionality that is provided
by a component and involves a combination of calls to services of other components. Both
types of services can be offered to the end user at the system boundary, or be internal and
only used by other components.

However, we do not consider all possible combinations of indices and levels of abstrac-
tion. Our experience on system requirements leads us to focus on the most frequent types
of requirements, that concern: utilization of processors, response time and/or throughput
of basic and composed services.

Table 7.1 contains simplified examples of performance requirements and their observed
values. Each requirement is represented by: (i) an identifier (ID), (ii) the type of re-
quirement (Requirement) that summarizes the performance index and the target system
element, (iii) the required value of the index (Required Value), (iv) the maximum system
workload for which the requirement must hold (System Workload), and (v) the observed
value as obtained from the performance analysis (Observed Value). In Table 7.1 three
example requirements are reported. The first one refers to the utilization index (i.e., U ):
it requires that processor Proc1 is not utilised more than 70% under a workload of 200
reqs/sec, while it shows an observed utilization of 64%. The second one refers to the
response time index (i.e., RT ) and the third one refers to the throughput index (i.e., T ) of
certain software services. Requirements R2 and R3 are violated, whereas R1 is satisfied.

Requi- Required System Observed

ID rement Value Workload Value

R1 U(Proc1) 0.70 200 reqs
sec 0.64

R2 RT(CSy) 2 sec 50 reqs
sec 3.07 sec

R3 T(BSz) 1.9 reqs
sec 2 reqs

sec 1.8 reqs
sec

... ... ... ... ...

Table 7.1: Example of Performance Requirements.
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ID Involved Entities

R2 Compx.BSa, Compy.BSb, P roc2

R3 Compw.BSz, P roc3

... ...

Table 7.2: Details of Violated Requirements.

Violated requirements are further detailed by specifying the system entities involved in
them. For utilization requirements, we only consider as involved the processor for which
the requirement is specified. For example, if a utilization requirement has been specified
for processing node Proc2, we consider only Proc2 to be involved. For requirements
on services (i.e. response time and throughput requirements), all services that partici-
pate in the service provisioning are considered as involved. For example, if a violated
requirement is specified for a service S1, and S1 calls services S2 and S3, we consider all
three services S1, S2 and S3 to be involved. Furthermore, all processing nodes hosting the
components that provide involved services are considered as involved (1). Namely, if the
component providing service S1 is deployed on a processing node Proc1, and the compo-
nent(s) providing S2 and S3 are deployed on Proc2, we additionally consider Proc1 and
Proc2 to be involved. With this definition we want to capture the system entities that are
most likely to cause the observed performance problems.

In Table 7.2, the involved services of two violated requirements are reported: R2 involves
all basic services participating in the composed service CSy (i.e., BSa, BSb) prefixed by
the names of components that provide them (i.e., Compx, Compy respectively), whereas
R3 only involves the target basic service BSz similarly prefixed. The list of involved
entities is completed by the processors hosting these components.

7.2.2 COMPLETE ANTIPATTERNS LIST

We assume that a detection engine has parsed the annotated architectural model and has
identified all performance antipatterns occurring in it. All detected performance antipat-
terns and the involved system entities are collected in a Complete Antipatterns List. An
example of this list is reported in Table 7.3: each performance antipattern has an identifier
(ID), the type of antipattern (Detected Antipattern), and a set of system entities such as
processors, software components, composed and basic services, that are involved in the
corresponding antipattern (Involved Entities).

1The allocation of services to processing nodes is part of the software architectural model.
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Detected Involved

ID Antipattern Entities

PA1 Blob Compx

Concurrent

PA2 Processing Proc1

Systems Proc2

PA3 Circuitous Compt.BSz

Treasure Hunt

... ... ...

Table 7.3: Complete Antipatterns List.

7.2.3 FILTERING ANTIPATTERNS

The idea behind the step that filters the list of detected antipatterns is very simple. For each
violated requirement, only those antipatterns with involved entities in the requirement
survive, whereas all other antipatterns can be discarded.

Requirements

R1 R2 . . . Rj

Antipatterns

PA1 Compx

PA2 Proc1

. . .

PAx e1, .., ek

Table 7.4: Filtered Antipatterns List.

A filtered list is shown in Table 7.4: rows represent performance antipatterns taken from
the complete list (i.e. Table 7.3), and columns represent violated performance require-
ments (i.e. Table 7.2). A non-empty (x, j) cell denotes that the performance antipat-
tern PAx is a candidate cause for the violation of the requirement Rj . In particular, the
(x, j) cell contains the intersection set of system entities {e1, .., ek} that are involved
in the antipattern PAx and the violated requirement Rj . We will refer to this set as
involvedIn(PAx, Rj) in the following. Antipatterns that do not have any entity in com-
mon with any violated requirement do not appear in this list.

This filtering step allows to reason on a restricted set of candidate antipatterns for each
requirement. In Section 7.2.4 we illustrate how to use a filtered antipattern list to introduce
a rank for each antipattern that allows to estimate its guiltiness vs. a requirement that has
been violated.
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7.2.4 RANKING ANTIPATTERNS

The goal of ranking antipatterns is to introduce an order in the list of filtered antipatterns
for each requirement, where highly ranked antipatterns are the most promising causes for
the requirement violation. The key factor of our ranking process is to consider the entities
involved in a violated requirement. We first assign a score to each entity, and then we
rank an antipattern on the basis of a combination of the scores of its involved entities, as
follows.

In Table 7.5 we have summarized all equations that we introduce to assign scores to
system entities involved in a violated requirement. As outlined in Section 7.2.1, the re-
quirements that we consider are: utilization of processors, response time and throughput
of composed and basic services.

Type Equation

utilization scorei,j = (observedUtili − requiredUtilj)

Response time scorei,j =
ownComputationi

maxOwnComputationj
· observedRespT imej − requiredRespT imej

observedRespT imej

Throughput scorei,j =


requiredThrpj−observedThrpj

requiredThrpj
if workloadi > observedThrpi

or isClosed(systemWorkload)

0 else

Table 7.5: How to rank performance antipatterns

Utilization- The violation of an utilization requirement can only target (in this context
scope) a processor. For each violated requirement Rj , we introduce a utilization score
to the involved processor Proci as reported in the first row of Table 7.5. scorei,j rep-
resents a value between 0 and 1 that indicates how much the Proci observed utilization
(observedUtili) is higher than the required one (requiredUtilj).

Response time- The violation of the response time in composed services involves all
services participating to that end-user functionality. For each violated requirementRj , we
introduce a response time score to the involved service Si as reported in the second row of
Table 7.5. We quantify how far the observed response time of the composed service CSj

(observedRespT imej) is from the required one (requiredRespT imej). Additionally, in
order to increase the guiltiness of services that mostly contribute to the response time of
the composed service, we introduce the first multiplicative factor of the equation. We de-
note with ownComputationi the observed computation time of a service Si participating



7.2 An approach for ranking antipatterns 157

in the composed service CSj . If service Si is a basic service, ownComputationi equals
the response time RT (Si) of service Si. However, composite services can also consist of
other composite services. Thus, if service Si is a composite service that calls services S1

to Sn with probability P (S1) to P (Sn), ownComputationi is the response time of service
Si without the weighted response time of called services:

ownComputationi = RT (Si)−
∑

1≤c≤n

P (Sc)RT (Sc)

We divide by the maximum own computation over all services participating inCSj , which
we denote by maxOwnComputationj . In this way, services with higher response time
will be more likely retained responsible for the requirement violation.

The violation of the response time in basic services involves just the referred service. The
same equation can be used, where in this case the first multiplicative factor is equal to 1
because ownComputationi corresponds to maxOwnComputationj .

Throughput- The violation of the throughput in composed services involves all ser-
vices participating to the end-user functionality. For each violated requirement Rj , we
introduce a throughput score to each involved service Si as reported in the third row
of Table 7.5. We distinguish between open and closed workloads here. For an open
workload (isOpen(systemWorkload)), we can identify bottleneck services Si that can-
not cope with their arriving jobs (workloadi > observedThrpi). A positive score is
assigned to these services, whereas all other services are estimated as not guilty for
this requirement violation and a score of 0 is assigned to them. For closed workloads
(isClosed(systemWorkload)), we always observe job flow balance at the steady-state
and thus for all services workloadi = observedThrpi holds. Thus, we cannot easily de-
tect the bottleneck service and we assign a positive score to all involved services. For the
positive scores, we quantify how much the observed throughput of the overall composed
service (observedThrpj) is far from the required one (requiredThrpj).

The violation of the throughput in basic services involves just this one service. We can use
the previous equation as it is, because the only involved service is the one under stress.

Combining the scores of entities Finally, we rank the filtered antipatterns for each
violated requirement Rj . To each antipattern PAx that shares involved entities with a
requirement Rj is assigned a guiltiness degree GDPAx(Rj) that measures the guiltiness
of PAx for Rj . We consider system entities involved in both PAx and Rj , as reported in
the filtered antipatterns matrix involvedIn(PAx, Rj). We define the guiltiness degree as
the sum of the scores of all involved entities:

GDPAx(Rj) =
∑

i∈involvedIn(PAx,Rj)

scorei,j
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Thus the problematic entities that have a high score contribute to consistently raise the
overall score of the antipatterns they appear in.

7.3 EXPERIMENTING THE APPROACH

In this Section the experimentation of the approach on a business reporting system case
study is reported. First, the example software architectural model and the performance
analysis are described; then, the stepwise application of the approach is proposed.

7.3.1 CASE STUDY

The system under study is the so-called Business Reporting System (BRS), which lets
users retrieve reports and statistical data about running business processes from a data
base (see more details in Section 6.2.1). Figure 7.2 shows an overview of the software
architectural model, and some labels indicate the detected antipatterns.
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Figure 7.2: BRS software architectural model.

Note that in Figure 7.2 the only depicted services are those ones for which requirements
are specified for. Not shown in the diagram is the workload of the system: 30 users use
the system in a closed workload with a think time of 10 seconds. The software archi-
tectural model of BRS contains the static structure, the behavior specification of each
component annotated with resource demands and a resource environment specification.
For performance analysis, the software architectural model is transformed automatically
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into an Extended Queueing Network model suited for simulation. A discrete-event simu-
lator is used to collect arbitrarily distributed response time, throughput and utilization for
all services of the system.

7.3.2 EXPERIMENTAL RESULTS

The results of the performance analysis of the BRS model are reported in Table 7.6, where
the focus is on performance requirements and their observed values. The required values
are defined according to the end-user expectations, whereas the observed values are the
mean values obtained by the simulation. ID’s of violated requirements are typed as bold
(i.e. R2, R5, R6, R7, R9). In the following, the focus will be on solving the shaded R5

requirement in order to illustrate the approach.

Required Observed

ID Requirement Value Value

R1 U(Proc1) 0.50 0.08

R2 U(Proc2) 0.75 0.80

R3 U(Proc3) 0.60 0.32

R4 U(Proc4) 0.40 0.09

R5 RT(CSgraphicalReport) 2.5 sec 4.55 sec

R6 T(CSgraphicalReport) 0.5 req/sec 0.42 req/sec

R7 RT(CSonlineReport) 2 sec 4.03 sec

R8 T(CSonlineReport) 2.5 req/sec 2.12 req/sec

R9 RT(BSmaintain) 0.1 sec 0.14 sec

R10 T(BSmaintain) 0.3 req/sec 0.41 req/sec

Table 7.6: BRS - Performance requirement analysis

The violated requirements are further detailed with their involved system entities in Table
7.7. Following the approach, the detected performance antipatterns occurring in the soft-
ware system are collected in the Complete Antipatterns List, as shown in Table 7.8. These
antipatterns have been also annotated in Figure 7.2 on the architectural model.

The combination of violated requirements and detected antipatterns produces the ranked
list of BRS antipatterns shown in Table 7.9. It represents the result of the antipatterns
ranking process, where numerical values are calculated according to the equations re-
ported in Table 7.5, whereas empty cells contain a value 0 by default, that is no guiltiness.
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ID Involved Entities

R2 Proc2

WebServer, Scheduler,

UserMgmt, GraphicalReport,

CoreReportingEngine,

R5 Database, Cache

WebServer, Scheduler,

UserMgmt, GraphicalReport,

CoreReportingEngine,

R6 Database, Cache

WebServer, Scheduler,

UserMgmt, OnlineReport,

CoreReportingEngine,

R7 Database, Cache

R9 CoreReportingEngine

Table 7.7: BRS - Violated Requirements

Detected

ID Antipattern Involved Entities

Circuitous Database.getSmallReport, Database.getBigReport

PA1 Treasure Hunt Proc3, CoreReportingEngine.getReport, Proc4

Concurrent

PA2 Processing Systems Proc1, Proc2

PA3 Blob Scheduler, Proc2

PA4 One-Lane Bridge Database, Proc3

OnLineReporting.viewOnLine, Proc2, Proc4

PA5 Empty Semi Trucks CoreReportingEngine.prepareView, CoreReportingEngine.finishView

PA6 Ramp Database, Proc3

PA7 Extensive Processing GraphicalReporting, OnLineReporting, Proc2

PA8 Ramp Cache, Proc4

Table 7.8: BRS- Complete Antipatterns List
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Requirements

R2 R5 R6 R7 R9

Anti-

patterns

PA1 0.558 0.122 0.633

PA2 0.054

PA3 0.054 0.051 0.135 0.032

PA4 0.616 0.161 0.689

PA5 0.054

PA6 0.616 0.161 0.689

PA7 0.054 0.125 0.135 0.06

PA8 0.003 0.015 0.03

Table 7.9: BRS - Ranked Antipatterns List

Table 7.9 can be analyzed by columns or by rows. Firstly, by columns, a certain require-
ment can be analysed, for example R5, and then the scores of antipatterns is checked. The
approach indicate which antipatterns are more guilty for that requirement violation (i.e.,
PA4 and PA6) and which is the less guilty one (i.e., PA8). As another example, four
antipatterns affect the requirement R2, but none of them is apparently more guilty than
the other ones. So, in this case the approach is able to identify the antipatterns involved
without providing a distinction between them. Yet for the requirement R9 no detected
antipattern has a non-zero guiltiness. This means that the violation of R9 cannot be asso-
ciated to any known antipattern. In such a case, further performance improvements could
be obtained manually, or the requirement has to be relaxed as it is infeasible.

Observing the table by rows, instead, it is possible to distinguish either the antipatterns
that most frequently enter the violation of requirements (i.e. PA3 and PA7 in this case)
or the ones that sum up to the highest total degree of guiltiness (i.e. PA4 and PA6 in this
case). Different types of analysis can originate from these different views of the ranked
list. In the following an analysis by columns on requirements R5 and R7 is performed.

In order to satisfy R5, on the basis of information in Table 7.9 the following antipatterns
are separately solved one-by-one: PA4, PA6 and, as counterexample, PA8.

PA4 is a “One-Lane Bridge” in the Database. To solve this antipattern, the level of
parallelism in the Database is increased, thus at the same time multiple threads can
access concurrently. PA6 is a “Ramp” in the Database. Here, the data access algo-
rithms have to be optimised for larger amounts of data. This can be solved with a reduced
resource demand of the database. In the example, the assumption is that the resource de-
mand is halved. PA8 is a “Ramp” in the Cache. The latter accumulates more and more
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information over time and is slowed down. This can be solved with a reduced resource
demand of the Cache. In the example, the assumption is again that the resource demand
is halved.

The results of the new software systems (i.e., BRSPAx , the BRS initial system with PAx

solved) are collected in Table 7.10. It can be noticed that the high guiltness degrees of
PA4 and PA6 have provided a relevant information because their removal consistently
improved the response time. After the removal of PA8, instead, the requirement R5 is
still violated because it has been removed a cause that affects much less the violated
requirement considered.

Observed Value

Required

ID Requirement Value BRS BRSPA4 BRSPA6 BRSPA8

R5 RT(CSgraphicalReport) 2.5 sec 4.55 sec 2.14 sec 2.06 sec 4.73 sec

Table 7.10: RT(CSgraphicalReport) across different software architectural models

In Figure 7.3 the experiments on the requirement R5 are summarized. The target perfor-
mance index of R5 (i.e. the response time of the graphicalReport service) is plotted on
the y-axis, whereas on the x-axis the degree of guiltiness of antipatterns is represented.
The horizontal bottommost line is the requirement threshold, that is the response time
required, whereas the horizontal topmost line is the observed value for the original BRS
system before any modification. Single points represent the response times observed after
the separate solution of each performance antipatterns, and they are labeled with the ID
of the antipattern that has been solved for that specific point. Of course, the points are sit-
uated, along the x-axis, on the corresponding guiltiness degree of the specific antipattern.

What is expected to observe in such representation is that the points approach (and pos-
sibly go below) the required response time while increasing their guiltiness degree, that
is while moving from left to right on the diagram. This would confirm that solving a
more guilty antipattern helps much more than solving a less guilty one, thus validating
the guiltiness metric.

All antipatterns with non-zero guiltiness have been solved, one by one, to study their
influence on the requirement R5. Figure 7.3 very nicely validates the hypothesis, in that
very guilty antipatterns more dramatically affect the response time, and their solution
leads towards the requirement satisfaction. The same considerations made above can be
reiterated for the other requirements.

For example, Figures 7.4 and 7.5 respectively represent the experiments on the require-
ments R6 (i.e. the throughput of the graphicalReport service) and R7 (i.e. the response
time of the onlineReport service).

In Figure 7.4 we can observe that the antipatterns that have been assigned a significant
guiltiness score improve the system’s response time for that service. The score reflects
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Figure 7.3: RT(CSgraphicalReport) vs the guiltness degree of antipatterns.
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Figure 7.5: T(CSgraphicalReport) vs the guiltness degree of antipatterns.

the potential improvement of each antipattern as well.

In Figure 7.5 we can observe that the solution of the antipatterns that have been assigned
a significant guiltiness score (i.e. PA4 and PA6) indeed improve the system throughput,
by increasing the initial value. The score can roughly predict the amount of improvement:
the solution of antipatterns PA3 and PA7 is more beneficial in comparison to the PA1

antipattern. Still, none of the antipattern solutions can ultimately satisfy the requirement.

7.4 DISCUSSION

The experimentation in Section 7.3 shows promising results for the architectural model
example and the types of requirements introduced. This is a proof of concept that such a
ranking approach can help to identify the causes of performance problems in a software
system. The experimentation phase has been very important to refine the approach, in fact
by observing the performance analysis results the equations that represent the antipattern
ranking have been fine tuned.

However, this is only a first step in this direction, and several issues are yet to be ad-
dressed. Although promising results have been obtained in the experimentation, the score
model can certainly be improved and needs more experimentation on models of different
application domains.
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Other types of requirements, among the one listed in Section 7.2, may need appropriate
formulas for scoring the entities involved in them. Nested requirements could be pre-
processed to eliminate from the list of violated requirements those that are dominated
from other ones.

More experience could lead to refine the antipattern scoring on the basis of, let say, the
application domain (e.g. web-based application) or the adopted technology (e.g. Ora-
cle DBMS). For example, a detected “Circuitous Treasure Hunt” might be of particular
interest in database-intensive applications, whereas a detected “Concurrent Processing
Systems” might be more important for web-based applications.

Finally, to achieve more differentiation in the scoring process for guilty performance an-
tipatterns, negative scores to the entities involved in satisfied requirements can be devised.

The benefit of using the ranked antipattern list of antipatterns is to decide the most promis-
ing model changes that can rapidly lead to remove performance problems. In this direction
several interesting issues have to be faced, such as the simultaneous solution of multiple
antipatterns. In the following we report some ideas about how to apply moves, i.e. the
solution of a set of performance antipatterns at the same time.

7.5 TOWARDS THE SIMULTANEOUS SOLUTION OF

ANTIPATTERNS

A graphical representation on how to perform the combination of performance antipat-
terns solutions is shown in Figure 7.6. Starting from the ranked antipatterns list, it is
possible to plan a set of different moves: {M1, ..., Mk}, each containing a set of some
performance antipatterns: Mi = {PAx, . . . , PAy}. The application of the move Mk

on a software architectural model aims at obtaining another software architectural model
candidate, where a set of antipatterns PAx, . . . , PAy have been solved.

Solving Antipatterns
(i.e. Feedback Generation)

Ranked
Antipatterns List

(Annotated) Software 
Architectural Model

Candidate

(Annotated) Software 
Architectural Model

Candidate

...
1

n

M  = {PA  , PA  }1 x y

M  = {PA  , PA  , PA  }k x y z

Figure 7.6: How to decide between different moves.
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(Annotated) Software 
Architectural Model

Solving Antipatterns
(i.e. Feedback Generation)

Ranked
Antipatterns List

(Annotated) Software 
Architectural Model

Candidate

COMBINING
STEP

...

Strategies Engine

Candidate
Moves List

Learning
Learning

Knowledge

[1] proceed with the next move

[2] apply a learning process

[3] choose the best candidate up to now

Figure 7.7: Process for the combination of performance antipatterns.

Applying moves In Figure 7.7 we report a process able to manage the combination of
the performance antipatterns. The process shown in Figure 7.7 is the continuation of
the Figure 7.1, in fact we report the starting point (i.e. annotated software architectural
model) and the result of the ranking antipatterns process (i.e. ranked antipatterns list).
Thus the dots of Figure 7.7 represent the entire process of Figure 7.1.

The goal of the combining step (see Figure 7.7) is to define a candidate moves list, i.e.
a list of moves {M1, . . . , Mk}, ordered from the most promising one. It means that a
ranking process for moves must be introduced. It is also possible to define some strategies
to further reorder the list if we observe particular properties of the moves.

After the application of a move we obtain a software architectural model candidate to
be evaluated, and a set of new performance results on the latter one are obtained. If
all the requirements are satisfied the process can be stopped, we have found a candidate
able to solve the performance flaws. If the new predicted values do not fit with all the
requirements, it is possible to apply three different options, as depicted in Figure 7.7:

[1] coming back to the candidate moves list and applying the next one, as previously
defined;

[2] coming back to the set of candidate moves, but possibly re-ordering the list of can-
didate moves by means of a learning step based on the moves already performed,
thus to extract the learning knowledge able to support such re-ordering;

[3] coming back to apply the whole process of ranking antipatterns from the current
software architectural model candidate.
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Ranking moves In the following we collect some ideas on how to evaluate a combination
of performance antipattern solutions, thus to obtain a rank on the moves. Six metrics,
i.e. Mt1, . . . , Mt6, can be devised to evaluate the candidate moves. In the following, we
define

involvedInMove(Mi) :=
⋃

PAx∈Mi

involvedInPA(PAx)

to be the set of all entities addressed by the antipattern PAx of the move Mi.

Mt1: Coverage of the model- we count the number of entities, involved in the requirement
violations, that are covered by the suggested move, i.e. by the antipatterns the move
Mi consists of.

coverageModeli = |involvedInMove(Mi)|

Mt2: Score of the involved entities- we sum up the scores of all involved entities addressed
in move Mi:

scoreMovei =
∑

e∈involvedInMove(Mi)

scorex

Mt3: Cost of the move- we can introduce a parameterized cost function for each type of
antipattern. For example, the god class antipattern type might have a cost function

cost = number of messages · 5 + number of associations · 2

With this functions, we can determine cost(PAx) as the cost of a particular antipat-
tern PAx. Then, we obtain the overall cost of a move as

costi =
∑

PAx∈Mi

cost(PAx)

Mt4: Scores of the antipatterns- we can take into account whether a move focuses on
promising antipatterns, i.e. antipatterns with a high score. Thus, we include the
score of the antipatterns in the move Mi:

scoreAPi =
∑

PAx∈Mi

scorex

Mt5: Number of addressed antipatterns- in order to prefer moves that address few, but
important antipatterns, we also include the total number of antipatterns applied in a
move Mi. Thus, we can derive the average score of the antipatterns involved with
this metric and Mt4:

NumberOfAPi = |{PAx ∈Mi}|
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Mt6: Coverage of the requirements- the final goal is to solve all requirements,
hence for each violated requirement Rj , at least one of the involved entities
involvedInReq(Rj) or affected entities affectingReq(Rj) has to be covered by
the move. We can count the number of requirements addressed by move Mi. With
weighting factors (involvedFactor, affectedFactor) we allow to weight the im-
portance of requirements covered basing on involved entities (the requirements are
collected in the set setCovReqInvolved, see below) and requirements only covered
by affected entities (which can be considered less covered):

setCovReqInvi =

{
r

∣∣∣∣∣ r is a violated requirement

∧ invInReq(r) ∩ invInMove(Mi) 6= ∅

}
(7.1)

covInvi = |setCovReqInvi| (7.2)

covAffi =

r
∣∣∣∣∣∣∣∣
r is a violated requirement

∧ r ∈ setCovReqInvi

∧ affReq(Rj) ∩ invInMove(Mi) 6= ∅

 (7.3)

coverageReqsi = invFactor · covInvi + affFactor · covAffi (7.4)

Note that the actual decision of which metric is more or less important may depend on
the actual software system under study and its domain. In addition to the metrics, several
strategies might allow to re-order the promising moves; we adopt the following syntax for
strategies, i.e. Strategyx [conditiony] − > actions : {actionz, ...}.

For example: Strategy1 [performance antipatterns deal with the same entities involved]
− > actions : {apply the one with the highest value of the score, and introducing the
others only after}. This means that if PAi has a lower value of the score than PAj , PAi

is only used as a refinement of PAj . All moves that contain PAi without PAj are put at
the end of the list, or they can be punished with a negative score.

Learning In the following we collect some ideas on how to perform a learning process
from the performance antipattern solutions, thus to obtain knowledge about the effects
of single antipatterns and their combinations for the software architectural model under
study and for the new candidates derived from it.

Two methodologies can be used to perform the learning activity. The first methodology is
that after evaluating several moves, we might detect that a certain combination of antipat-
terns (e.g. the pair PA1, PA5) is correlated with a particularly good or bad performance.
Based on such observation, we can add a positive or negative extra score to all moves
containing this combination. The second methodology is that the weights of the differ-
ent metrics to rank the moves could be adjusted based on the evaluation of a number of
moves, which may lead to a re-ordering the list of moves. For example, it could be de-
tected that moves with a high score for the coverage of the model exhibited rather poor
performance indices, hence it is better to reduce the weight for this score.



CHAPTER 8

FURTHER STEPS IN THE ANTIPATTERNS SOLUTION

In this Chapter we discuss the cross-cutting concerns that influence the automated gen-
eration of architectural feedback in order to give a wide explanation of issues that might
emerge in this context. To this scope we define a set of research directions aimed at:
(i) verifying to which extent the architectural feedback can be defined; (ii) showing the
challenges and the areas where further research is required.

Similarly to Chapter 7 in which the analysis of the requirements is used to support the an-
tipatterns solution process, other emerging research directions are outlined: the workload
sensitivity, the stakeholders, the operational profile, and the cost analysis. All these activ-
ities are meant to support the antipatterns solution by providing a strategy to decide which
ones have to be solved in order to quickly convey the desired result of users satisfaction.

8.1 WORKLOAD SENSITIVITY ANALYSIS

The workload sensitivity analysis represents the process of evaluating the relationship
between individual or groups of requests and their demands. In general, it is quite com-
mon to focus on the expected workload for a specific system even if workloads can vary
in many different situations and maybe the analysis of peaks can be useful to stress the
system up to point out its limitations.

Consider the following example. A performance model predicts that a service, e.g. Sx,
has a response time of 3.5 seconds under a workload of 100 requests/second. What hap-
pens while increasing the number of requests? The designer is expecting the maximum
workload able to fulfill the required value. If the requirement is that the service Sx must
have a response time not greater than 5 seconds than the designer is interested to know
that the required value is achieved up to a certain workload, e.g. of 300 requests/second.

Figure 8.1 shows how the workload sensitivity analysis activity can be used to prioritize
performance antipatterns: on the x-axis the workload, expressed in requests/second, is
reported; on the y-axis the performance antipatterns instances are listed. A “×” symbol
is in the (workload value, PAi) point if a performance antipattern PAi occurs when the
workload is fixed to that workload value.

169
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workload 
(e.g. requests/sec)

500

PAi

PAj

PAz

...

...

performance 
antipatterns

30 50 100 200

Figure 8.1: Workload sensitivity analysis as a support for solving antipatterns.

For example, in Figure 8.1 we can notice that if the workload is 30 requests/second no
antipatterns occur, hence there should be no performance problems in the system. Instead
a workload of 50 requests/second leads the occurrence of the PAz antipattern. Note that a
further increase of the workload usually makes worse the system performance. We might
expect that other antipatterns will be triggered, e.g. a workload of 100 requests/second
adds the occurrence of the PAi antipattern, whereas a workload of 200 requests/second
may cause the disappearance of the PAz antipattern.

The mapping between performance antipatterns and workload may be useful to give a
priority in the sequential solution of antipatterns. For example, under a workload of 100
requests/second PAz and PAi antipatterns are detected, but PAz may be considered more
critical than PAi whose first occurrence appears with a higher value of the workload (i.e.
it may be considered as less critical).

In the context of the workload sensitivity analysis it might be useful to devise methodolo-
gies to examine if performance scenarios have a different workload intensity for different
situations such as peak hour, average hour, peak day, and so on. In fact it is fundamental
to have an estimate of the workload intensity along the time, since it provides a basis
for evaluating the amount of work under which the system operates, thus to estimate the
effectiveness of the final software architectural model [122].

8.2 STAKEHOLDERS ANALYSIS

Stakeholders are persons or organizations (e.g. legal entities such as companies) that
have an interest in the software system, and they may be affected by it either directly or
indirectly. The term “stakeholder” can include several meanings such as it might refers
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to someone who operates in the system (normal and maintenance operators) or someone
who benefits from the system (functional, political, financial and social beneficiaries) or
someone involved in purchasing or procuring the system (mass-market customers) [125].
Stakeholder analysis refers to the process of analyzing the attitudes of stakeholders and
such evaluation can be done one shot or on a regular basis to track how stakeholders
changed their attitudes over time.

Consider the following example. There are two different stakeholders: the first one
is a customer and requires to buy products more and more faster, e.g. the service
makePurchase must have a response time not larger than 2 seconds; the second one
is a supplier of the products and it requires to sell products only if they are already
available because the production of old products might be too expensive. The service
makePurchase becomes a critical one, since for each request it is necessary to check the
quantity of the products in the database and the response time of the service is predicted
to 3 seconds. Database accesses are considered critical and they must be improved.

Figure 8.2 shows how the stakeholders analysis activity can be used to prioritize perfor-
mance antipatterns: on the x-axis the different stakeholders are reported; on the y-axis
the performance antipatterns instances are listed. A “×” symbol is in the (stakeholderx,
PAi) point if a performance antipattern PAi occurs when considering the requirements
of the stakeholderx.

stakeholders

PAi

PAj

PAz

...

performance 
antipatterns

customer ...supplier developer manager

Figure 8.2: Stakeholders analysis as a support for solving antipatterns.

The mapping between performance antipatterns and stakeholders may be useful to give
a priority in the sequential solution of antipatterns. For example, in Figure 8.2 we can
notice that the antipattern PAj occurs by considering many stakeholders (i.e. supplier,
developer, manager), hence it might be beneficial to start the solution process by applying
its refactoring actions, thus to embrace common needs.
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In the context of the stakeholders analysis it might be useful to devise methodologies
to balance in a proper way the preferences of all the different stakeholders playing a
valuable role in the system. In fact different stakeholders might understand and judge
with conflicting utilities the multiple performance attributes (e.g. the hardware utilization,
the response time of a service).

8.3 OPERATIONAL PROFILE ANALYSIS

The operational profile represents a quantitative characterization of how the software will
be used, hence it is essential in any software performance engineering process. More
specifically, the operational profile can be expressed as a set of scenarios describing how
users interact with the system, i.e. the operations that a software system performs, their
probabilities to be invoked, and which dependencies exist in the process [122].

operational
profiles

PAi

PAj

PAz

...

performance 
antipatterns

...

profilex profiley

Figure 8.3: Operational profile analysis as a support for solving antipatterns.

Figure 8.3 shows how the operational profile analysis activity can be used to prioritize
performance antipatterns: on the x-axis the different operational profiles are reported (e.g.
profilex, profiley, . . . ); on the y-axis the performance antipatterns instances are listed.
A “×” symbol is inserted in the (profilex, PAi) point if a performance antipattern PAi

occurs when considering the operational profile profilex.

Similarly to the stakeholders analysis, the mapping between performance antipatterns
and the operational profile may be useful to give a priority in the sequential solution of
antipatterns. For example, in Figure 8.3 we can notice that the antipattern PAz occurs in
both the profiles we consider, hence it might be beneficial to start the solution process by
applying its refactoring actions, thus to embrace common needs.



8.4 Cost analysis 173

8.4 COST ANALYSIS

The cost analysis activity is meant to predict the costs of the reconfiguration actions aimed
at improving the system performance. The evaluation of how much a reconfiguration
action costs can be expressed in terms of time necessary to the designer to apply that
action, or in terms of the capital outlay. In the following we refer as cost both the amount
of effort that software designers need to apply the suggested design alternative and the
monetary employment.

Figure 8.4 shows how the cost analysis activity can be used to prioritize performance
antipatterns: on the x-axis the cost units are reported; on the y-axis the performance
antipatterns instances are listed. A “×” symbol is in the (costx, PAi) point by indicating
that solving a performance antipattern PAi implies costx units.
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PAj

PAz

...

...

performance 
antipatterns
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Figure 8.4: Cost analysis as a support for solving antipatterns.

The mapping between performance antipatterns and costs may be useful to give a priority
in the sequential solution of antipatterns. For example, in Figure 8.4 we can notice that
the PAj antipattern is the most expensive one. In general hardware solutions are usually
more expensive than software solutions, in fact buying a new hardware machine is more
expensive than buying a new software component; however, the best strategy is to reuse
in a better way the available resources (e.g. re-deploy a software component), without
increasing any cost, like for the PAi antipattern (see Figure 8.4).

Note that several issues might emerge in the process of quantifying the cost of the solu-
tions for some antipatterns. The cost estimation might be restricted only to a subset of
the detected antipatterns. For example, the cost of restructuring the database can be more
or less expensive, depending on the experience of the software designer that actually per-
forms the operation.





CHAPTER 9

CONCLUSION

In this thesis we dealt with the automated generation of performance feedback in software
architectures. We devised a methodology to keep track of the performance knowledge that
usually tends to be fragmented and quickly lost, with the purpose of interpreting the per-
formance analysis results and suggesting the most suitable architectural reconfigurations.
Such knowledge base is aimed at integrating different forms of data (e.g. architectural
model elements, performance indices), in order to support relationships between them
and to manage the data over time, while the development advances.

The performance knowledge that we have organized for reasoning on performance analy-
sis results can be considered as an application of data mining to the software performance
domain. It has been grouped around design choices and performance model analysis re-
sults concepts, thus to act as a data repository available to reason on the performance of a
software system. Performance antipatterns have been of crucial relevance in this context
since they represent the source of the concepts to identify performance flaws as well as to
provide refactorings in terms of architectural alternatives.

The framework we proposed (i.e. PANDA: Performance Antipatterns aNd FeeDback in
Software Architectures) is aimed at supporting the management of antipatterns. It per-
forms three main activities: specifying antipatterns, to define in a well-formed way the
properties that lead a software system to reveal a bad practice as well as the changes that
provide a solution; detecting antipatterns, to locate antipatterns in software architectural
models; solving antipatterns, to remove the detected performance problems with a set of
refactoring actions that can be applied on the software architectural model.

The antipattern-based approach has been validated with two case studies to demonstrate
its applicability and validity. We experimented two software modeling notations (i.e.
UML and Marte profile, Palladio Component Model) and two performance analysis tech-
niques (i.e. analytic solution, simulation). The validation activity allowed us to identify
the benefits of the antipattern-based approach to complex systems in order to assess its
suitability to support software designers.
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9.1 ACHIEVEMENTS

The aim of this thesis is to achieve a deep insight in the model-based performance anal-
ysis of software architectures by interpreting the performance results and generating ar-
chitectural alternatives able to overcome performance flaws. A list of the main scientific
contributions of this thesis is given in the following.

Specifying performance antipatterns. The activity of specifying antipatterns has been
addressed in [45]: a structured description of the system elements that occur in the defini-
tion of antipatterns has been provided, and performance antipatterns have been modeled
as logical predicates. Additionally, in [45] the operational counterpart of the antipattern
declarative definitions as logical predicates has been implemented with a java rule-engine
application. Such engine was able to detect performance antipatterns in an XML repre-
sentation of the software system that grouped the software architectural model and the
performance results data.

A model-driven approach for antipatterns. A Performance Antipattern Modeling Lan-
guage (PAML), i.e. a metamodel specifically tailored to describe antipatterns, has been
introduced in [44]. Such metamodel allows a user-friendly representation of antipatterns,
i.e. models expressed by the concepts encoded in PAML. The antipattern representation
as PAML-based models allows to manipulate their (neutral) specification. In fact in [44]
it has been also discussed a vision on how model-driven techniques (e.g. weaving models
[29], difference models [39]) can be used to build a notation-independent approach that
addresses the problem of embedding antipatterns knowledge across different modeling
notations.

Detecting and solving antipatterns in UML and PCM. The activities of detecting and
solving antipatterns have been currently implemented by defining the antipattern rules
and actions into two modeling languages: (i) the UML and Marte profile notation in [42];
(ii) the PCM notation in [129]. In [42] performance antipatterns have been automatically
detected in UML models using OCL [107] queries, but we have not yet automated their
solution. In [129] a limited set of antipatterns has been automatically detected and solved
in PCM models through a benchmark tool. These experiences led us to investigate the
expressiveness of UML and PCM modeling languages by classifying the antipatterns in
three categories: (i) detectable and solvable; (ii) semi-solvable (i.e. the antipattern so-
lution is only achieved with refactoring actions to be manually performed); (iii) neither
detectable nor solvable.

A step ahead in the antipatterns solution. Instead of blindly moving among the an-
tipattern solutions without eventually achieving the desired results, a technique to rank
the antipatterns on the basis of their guiltiness for violated requirements has been defined
in [47, 46], thus to decide how many antipatterns to solve, which ones and in what or-
der. Experimental results demonstrated the benefits of introducing ranking techniques to
support the activity of solving antipatterns.
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9.2 OPEN ISSUES AND FUTURE WORKS

Due to the wide range of topics the thesis deals with, there are some open issues in the
current version of the framework and many directions can be identified for future works.

9.2.1 SHORT TERM GOALS

In a short term many directions can be identified about future works. A list of the most
important ones is given in the following.

Further validation. The approach has to be more extensively validated in order to de-
termine the extent to which it can offer support to user activities. The validation of the
approach includes two dimensions: (i) it has to be exposed to a set of target users, such
as graduate students in a software engineering course, model-driven developers, more or
less experienced software architects, in order to analyze its scope and usability; (ii) it has
to be applied to complex case studies by involving industry partners, in order to analyze
its scalability. Such experimentation is of worth interest because the final purpose is to
integrate the framework in the daily practices of the software development process.

Both the detection and the solution of antipatterns generate some pending issues that give
rise to short term goals.

The detection of antipatterns generates the following main categories of open issues:

Accuracy of antipatterns instances. The detection process may introduce false pos-
itive/negative instances of antipatterns. We outlined some sources to suitably tune the
values of antipatterns boundaries, such as: (i) the system requirements; (ii) the domain
expert’s knowledge; (iii) the evaluation of the system under analysis. However, threshold
values inevitably introduce a degree of uncertainty and extensive experimentation must be
done in this direction. Some fuzziness can be introduced for the evaluation of the thresh-
old values [124]. It might be useful to make antipattern detection rules more flexible, and
to detect the performance flaws with higher/lower accuracy.

Some metrics are usually used to estimate the efficiency of design patterns detection,
such as precision (i.e. measuring what fraction of detected pattern occurrences are real)
and recall (i.e. measuring what fraction of real occurrences are detected). Such metrics
do not apply for antipatterns, since the latter ones are not explicitly stated in projects’
specifications, due to their nature of capturing bad practices. A confidence value can
be associated to an antipattern to quantify the probability that the formula occurrence
corresponds to the antipattern presence.

Relationship between antipatterns instances. The detected instances might be related
to each other, e.g. one instance can be the generalization or the specialization of another
instance. A dependence value can be associated to an antipattern to quantify the proba-
bility that its occurrence is dependent from other antipatterns presence.
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The solution of antipatterns generates the following main categories of open issues:

No guarantee of performance improvements. The solution of one or more antipatterns
does not guarantee performance improvements in advance: the entire process is based on
heuristics evaluations. Applying a refactoring action results in a new software architec-
tural model, i.e. a candidate whose performance analysis will reveal if the action has been
actually beneficial for the system under study. However, an antipattern-based refactoring
action is usually a correctness-preserving transformation that does not alter the semantics
of the application, but it may improve the overall performance.

Dependencies of performance requirements. The application of antipattern solutions
leads the system to (probably) satisfy the performance requirements covered by such so-
lutions. However, it may happen that a certain number of other requirements get worse.
Hence, the new candidate architectural model must take into account at each stage of the
process all the requirements, also the previously satisfied ones.

Conflict between antipattern solutions. The solution of a certain number of antipat-
terns cannot be unambiguously applied due to incoherencies among their solutions. It
may happen that the solution of one antipattern suggests to split a component into three
finer grain components, while another antipattern at the same time suggests to merge the
original component with another one. These two actions obviously contradict each other,
although no pre-existing requirement limits their application. Even in cases of no explicit
conflict between antipattern solutions, coherency problems can be raised from the order
of application of solutions. In fact the result of the sequential application of two (or more)
antipattern solutions is not guaranteed to be invariant with respect to the application order.
Criteria must be introduced to drive the application order of solutions in these cases. An
interesting possibility may be represented by the critical pairs analysis [103] that provides
a mean to avoid conflicting and divergent refactorings.

9.2.2 LONG TERM GOALS

In a longer term many directions can be identified about future works. A list of the most
important ones is given in the following.

Lack of model parameters. The application of the antipattern-based approach is not
limited (in principle) along the software lifecycle, but it is obvious that an early usage is
subject to lack of information because the system knowledge improves while the devel-
opment process progresses. Both the architectural and the performance models may lack
of parameters needed to apply the process. For example, internal indices of subsystems
that are not yet designed in details cannot be collected. Lack of information, or even un-
certainty, about model parameter values can be tackled by analyzing the model piecewise,
starting from sub-models, thus to bring insight on the missing parameters.

Influence of domain features. Different cross-cutting concerns such as the workload, the
operational profile, etc. usually give rise to different performance analysis results that, in
turn, may result in different antipatterns identified in the system. This is a critical issue



and, as usually in performance analysis experiments, the choice of the workload(s) and
operational profile(s) must be carefully conducted.

Influence of other software layers. We assume that the performance model only takes
into account the (annotated) software architectural model that usually contains informa-
tion on the software application and hardware platform. Between these two layers there
are other components, such as different middlewares and operating systems, that can em-
bed performance antipatterns. The approach shall be extended to these layers for a more
accurate analysis of the system. An option can be to integrate benchmarks or models
suitable for these layers in our framework.

Limitations from requirements. The application of antipattern solutions can be re-
stricted by functional or non-functional requirements. Example of functional require-
ments may be legacy components that cannot be split and re-deployed whereas the an-
tipattern solution consists of these actions. Example of non-functional requirements may
be budget limitations that do not allow to adopt an antipattern solution due to its ex-
tremely high cost. Many other examples can be provided of requirements that (implicitly
or explicitly) may affect the antipattern solution activity. For sake of automation such
requirements should be pre-defined so that the whole process can take into account them
and preventively excluding infeasible solutions.

Consolidate the formalization of performance antipatterns. The Performance Antipat-
terns Modeling Language (PAML) currently only formalizes the performance problems
captured by antipatterns. As future work we plan to complete PAML with a Refactor-
ing Modeling Language (RML) for formalizing the solutions in terms of refactorings, i.e.
changes of the original software architectural model.

Note that the formalization of antipatterns reflects our interpretation of the informal lit-
erature. Different formalizations of antipatterns can be originated by laying on different
interpretations. This unavoidable gap is an open issue in this domain, and certainly re-
quires a wider investigation to consolidate the formal definition of antipatterns. Logical
predicates of antipatterns can be further refined by looking at probabilistic model check-
ing techniques, as experimented in [67].

Investigate architectural description languages. The framework is currently consider-
ing two modeling notations: UML and PCM. In general, the subset of target modeling
languages can be enlarged as far as the concepts for representing antipatterns are avail-
able; for example, architectural description languages such as AADL [10] can be also
suited to validate the approach. A first investigation has been already conducted on how
to specify, detect, and solve performance antipatterns in the Æmilia architectural language
[26], however it still requires a deep experimentation.

Multi-objective goals. The framework currently considers only the performance goals
of software systems. It can be extended to other quantitative quality criteria of software
architectures such as reliability, security, etc., thus to support trade-off decisions between
multiple quality criteria.
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APPENDIX A

AN XML SCHEMA FOR PERFORMANCE ANTIPATTERN

ELEMENTS

In this Appendix we provide a structured description of the architectural model elements
that occur in the definitions of antipatterns [123] (such as software entity, hardware uti-
lization, operation throughput, etc.), which is meant to be the basis for a definition of
antipatterns as logical predicates (see Section 3.4).

Since an (annotated) software architectural model contains details that are not relevant for
the antipattern definition, as a first step we have filtered the minimal amount of concepts
we need for the antipatterns definition. These concepts have been organized in an XML
Schema, i.e. aimed at detecting performance issues, not representing software systems.
The choice of XML [4] as representation language comes from its primary nature of
interchange format supported by many tools that makes it one of the most straightforward
means to define generic structured data.

Software architectural model elements are organized in views. We consider three different
views representing three sources of information: the Static View that captures the mod-
ules (e.g. classes, components, etc.) involved in the software system and the relationships
among them; the Dynamic View that represents the interactions that occur between the
modules to provide the system functionalities; and finally the Deployment View that de-
scribes the mapping of the modules onto platform sites. This organization stems from the
Three-View Model that was introduced in [132] for performance engineering of software
systems.

Overlaps among views can occur. For example, the elements interacting in the dynamics
of a system are also part of the static and the deployment views. In particular, we adopt
the term Service to represent the high-level functionalities of the software system that are
meant to include all the interacting elements among the three views. To avoid redundancy
and consistency problems, concepts shared by multiple views are defined once in a view,
and simply referred in the other ones (through XML RFID).

The XML Schema we propose for performance antipatterns [6] is synthetically shown in
Figure A.1: a System has an identifier (systemID) and it is composed of a set of Mod-
elElements belonging to the three different Views, and of the set of Functionalities it
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Figure A.1: An excerpt of the XML Schema.
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provides. The Static View groups the elements needed to specify structural aspects of the
software system; the Dynamic View deals with the behavior of the system; and finally the
Deployment View captures the elements of the deployment configuration.

A Service has an identifier (serviceID) and it can be associated to a Workload, i.e. Open
(specified by the interArrivalTime, e.g. a new request arrives each 0.5 seconds) or Closed
(specified by the population and the thinkTime, e.g. there is a population of 25 requests
entering the system, executing their operational profile, and then re-entering the system
after a think time of 2 minutes). Note that the measurement unit (e.g. micro seconds,
seconds, minutes) for the workload is specified in the metricUnit attribute. In fact the
metricUnit element uses an enumeration aimed at specifying a set of valid values for that
element, i.e. msec (referring to micro seconds), sec (referring to seconds), min (referring
to minutes), and other (referring to any other metric unit customized by the user).

Each service contains static, dynamic and deployment elements; the reference to the ar-
chitectural model elements is obtained by specifying that a service is ProvidedBy a set of
Behaviors whose id reference (the behaviorID attribute, see Figure A.6(a)) is referred in
the attribute behaviorRole. It will be the behavior (belonging to the Dynamic View) to
contain all the other references among the model elements belonging to the other views
(i.e. Static and Deployment).

A.1 STATIC VIEW

The Static View contains elements to describe the static aspects of the system, it is com-
posed of a set of SoftwareEntity and Relationship model elements.

The SoftwareEntity element has an identifier (softwareEntityID), a boolean value to spec-
ify if it is a database (isDB), an integer value to specify its pool size (capacity). A soft-
ware entity contains a set of SoftwareEntityInstance elements specified by their identifiers
(softwareEntityInstanceID), and a set of Operation(s).

A Relationship has an identifier (relationshipID), its multiplicity, and it contains a Client
and a Supplier. Both these elements have an attribute, i.e. clientRole and supplierRole
respectively, that refers to a software entity instance identifier (softwareEntityInstanceID)
previously declared. From a performance perspective, the only interesting relationship
between two software entities is the usage relationship. Thus, the XML Schema does not
contains elements for all relationships between two software entities (e.g. association,
aggregation, etc.), but it flattens any of them in a client/supplier one. For example, in the
aggregation relationship, a software entity aggregates one or more instances of another
software entity in order to use their methods. In our Schema this is represented as a
Relationship where the first software entity instance has a clientRole and the aggregated
ones has a supplierRole. In fact, we recall that the XML Schema we propose is not
meant to represent software systems, but only to organize all the concepts providing useful
information for the performance antipatterns.
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(a) SoftwareEntity and Relationship elements.

(b) Operation element.

Figure A.2: XML Schema - Static View.
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The details of the Operation element are shown in Figure A.2(b). An Operation has an
identifier (operationID), and the probability of its occurrence. Besides, an operation has
a StructuredResourceDemand composed by multiple BasicResourceDemand(s). A basic
resource demand is composed by the resource type (e.g. cpu work units, database ac-
cesses, and network messages), and its value (e.g. number of cpu instructions, number of
DB accesses, and number of messages sent over the network). Note that the resource type
element uses an enumeration aimed at specifying a set of valid values for that element,
i.e. computation (referring to cpu work units), storage (referring to database accesses),
bandwidth (referring to network messages), and other (referring to any other resource
type customized by the user).

An operation contains a set of OperationInstances specified with their identifiers (opera-
tionInstanceID), and some performance metrics are associated to each instance, namely
PerformanceMetrics. The metricUnit attribute denotes the measurement unit adopted
(e.g. micro seconds, seconds, minutes), and they can be either Throughput or Respon-
seTime. Multiple values can be specified for these two latter indices, and they represent
the results from the simulation or the monitoring of the system over time. In fact they can
be evaluated at a certain date and/or time (timestamp), thus to capture the multiple-values
antipatterns.

Figures A.3, A.4, A.5 show some examples of elements belonging to the Static View
of the XML Schema: the left sides of these Figures give graphical representations of a
software architectural model, whereas the right sides report excerpts of the XML files
(compliant to the XML Schema) representing the features of the software architectural
model.

Figure A.3 shows an example of the Relationship element. There are two software entity
instances, i.e. the webServer w1 with a pool size of ten requests, and the database d1,
and they are related each other through many connections. The Relationship involves the
webServer in the clientRole and the database in the supplierRole; the number of oper-
ations required from the client to the supplier (i.e. getUserName, getUserAddress, ge-
tUserPassport, getUserWorkInfo), that is four, is stored in the multiplicity attribute of the
Relationship element.

Figure A.4 shows an example of the StructuredResourceDemand element. There is a
Service (authorizeTransaction), that is provided by means of three operations (i.e. vali-
dateUser, validateTransaction, sendResult). The operation validateUser requires the fol-
lowing amount of resource demand: 1 computation unit, 2 storage units, and 0 bandwidth
unit. We recall that computation, storage, and bandwidth represent the enumeration val-
ues for the basic resource demand type element of the XML Schema. The Operation
validateUser that has two OperationInstances (i.e. v1 and v2) that will be referred in
Figure A.5.

Figure A.5 shows an example of the PerformanceMetrics element. The OperationIn-
stances v1 and v2 are deployed on different processing nodes, i.e. proc1 and proc2. Note
that performance metrics can be obtained by simulating or monitoring the performance
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w1: webServer

<<SoftwareEntity
Instance>>

getUserName

getUserAddress
getUserWorkInfo

getUserPassport

{poolSize = 10}

<System>
  <StaticView>
     <SoftwareEntity softwareEntityID="webServer" capacity="10">
        <SoftwareEntityInstance softwareEntityInstanceID="w1"/>
     </SoftwareEntity>
     <SoftwareEntity softwareEntityID="Database" isDB="true">
        <SoftwareEntityInstance softwareEntityInstanceID="d1"/>
           <Operation operationID="getUserName"/>
           <Operation operationID="getUserAddress"/>
              ...
     </SoftwareEntity>
     <Relationship relationshipID="getUserInfo" multiplicity="4">
        <Client clientRole="w1"/>
        <Supplier supplierRole="d1"/>
     </Relationship>
  </StaticView>
   ...
</System>

d1: Database

<<SoftwareEntity
Instance>>

Figure A.3: An example of the Relationship element.

validateUser

WorkUnits

DB

Msgs

1

2

0

validateTransaction

WorkUnits

DB

Msgs

2

3

0

sendResult

WorkUnits

DB

Msgs

2

1

1

<<Operation>>

<<Operation>>

<<Operation>>

authorization
<<SoftwareEntity>>

validateUser

validateTransaction

sendResult

<System>
  <StaticView>
      <SoftwareEntity softwareEntityID="authorization">
           <SoftwareEntityInstance softwareEntityInstanceID="a1"/>
           <SoftwareEntityInstance softwareEntityInstanceID="a2"/>
           <Operation operationID="validateUser">
               <StructuredResourceDemand>
                  <BasicResourceDemand type="computation" value="1"/>
                  <BasicResourceDemand type="storage" value="2"/>
                  <BasicResourceDemand type="bandwidth" value="0"/>
                </StructuredResourceDemand>
                <OperationInstance operationInstanceID="v1"/>
                <OperationInstance operationInstanceID="v2"/>
            </Operation>
             ...
        </SoftwareEntity>
  </StaticView>
   ...
</System>  

authorizeTransaction
<<Service>>

Figure A.4: An example of the StructuredResourceDemand element.
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model or by solving it analytic or other ways. In the example that we propose in Figure
A.5 both solutions are applied: (i) the OperationInstance v1 is evaluated by simulating
the performance model, and the simulation reveals that after the system is running for 10
seconds there are the following performance metrics: Throughput = 100 requests/second,
ResponseTime = 1.8 seconds; whereas after the system is running for 100 seconds there
are the following performance metrics: Throughput = 80 requests/second, ResponseTime
= 2.1 seconds; (ii) the OperationInstance v2 is evaluated by solving the performance
model in an analytic way, and the analytic solution reveals that there are the following
performance metrics: Throughput = 40 requests/second, ResponseTime = 4.8 seconds.
We recall that msec, sec, and min represent the enumeration values for the operation in-
stance metricUnit element of the XML Schema.

{ throughput = 80 reqs/sec
responseTime = 2.1 sec
timeStamp = 100 sec}

.........

a1: authorization

<<SoftwareEntity
Instance>>

proc1
<<ProcesNode>>

{ throughput = 100 reqs/sec
responseTime = 1.8 sec

timeStamp = 10 sec}

<System>
  <StaticView>
     <SoftwareEntity softwareEntityID="authorization">
        <Operation operationID="validateUser"/>
             <OperationInstance operationInstanceID = "v1" metricUnit="sec">
                    <PerformanceMetrics timestamp="10">
                           <Throughput>100</Throughput>
                           <ResponseTime>1.8</ResponseTime>
                    </PerformanceMetrics>
                    <PerformanceMetrics timestamp="100">
                           <Throughput>80</Throughput>
                           <ResponseTime>2.1</ResponseTime>
                    </PerformanceMetrics>
                     ...
              </OperationInstance>
              <OperationInstance operationInstanceID = "v2" metricUnit="sec" >
                    <PerformanceMetrics>
                           <Throughput>40</Throughput>
                           <ResponseTime>4.8</ResponseTime>
                    </PerformanceMetrics>
              </OperationInstance>
         </Operation>
     </SoftwareEntity>
  </StaticView>
   ...
</System>

proc2
<<ProcesNode>>

{ throughput = 40 reqs/sec
responseTime = 4.8 sec

timeStamp = "inf"}

a2: authorization

<<SoftwareEntity
Instance>>

v1: validateUser
<<OperationInstance>>

v2: validateUser
<<OperationInstance>>

Figure A.5: An example of the PerformanceMetrics element.

A.2 DYNAMIC VIEW

The Dynamic View (Figure A.6(a)) is made of Behavior(s). Each behavior has an iden-
tifier (behaviorID), and its execution probability. A Behavior contains either a set of
Message(s) or an Operator.

As shown in Figure A.6(a), an Operator can be either a behavior Alternative with the
probability it occurs, or a Loop with the number of iterations (no of iterations). An oper-
ator might contain Message(s) and optionally another nested Operator.

As shown in Figure A.6(b), a Message is described by the multiplicity of the commu-
nication pattern, the size and its sizeUnit (e.g. Kilobyte, Megabyte, Gigabyte), and the
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(a) Behavior element.

(b) Message element.

Figure A.6: XML Schema - Dynamic View.
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format (e.g. xml) used in the communication. Note that the sizeUnit element uses an
enumeration aimed at specifying a set of valid values for that element, i.e. Kb (referring
to Kilobyte), Mb (referring to Megabyte), Gb (referring to Gigabyte), and other (referring
to any other size unit customized by the user). From a performance perspective, the size
of messages is useful to detect antipatterns in message-based systems that require heavy
communication overhead for sending messages with a very small amount of information,
whereas the format of messages is useful when the sender of the message translates it into
an intermediate format, and then the receiver parses and translates it in an internal format
before processing it. The translation and parsing of formats could be time consuming,
thus degrading the performance.

A message has a Sender identified by senderRole, a Receiver identified by receiverRole,
and they both refer to a softwareEntityInstanceID playing such role. Additionally, it is
possible to specify if the message is Synchronous or Other. We are not interested to
asynchronous and reply messages, we flatten them in Other. Also in this case we can
notice that the XML Schema we propose it is not meant to represent software systems,
but to keep all the concepts providing useful information for the antipatterns. In fact,
synchronous messages are of particular interest for the One-Lane Bridge antipattern, since
it occurs when a set of processes make a synchronous call to another process that is not
multi-threaded, hence only a few processes may continue to execute concurrently. Note
that Other is intentionally added to enrich the vocabulary of the XML Schema, and it can
be further detailed if new antipatterns are considered.

The Task determines the invocation of one operation, it is characterized by an identifier
(taskRole) that refers to an operationInstanceID playing such role. Optionally there may
be an attribute to specify the semantic of the message (i.e. IsCreateObjectAction or Is-
DestroyObjectAction) that allows the detection of frequent and unnecessary creations and
destructions of objects belonging to the same software entity instance.

a1: authorization

<<SoftwareEntity
Instance>>

<System>
   ...
  <DynamicView>
     <Behavior behaviorID="exchangeUserCredentials" probability="0.7">
           <Message multiplicity="1" size="0.5" sizeUnit="kb" format="xml">
                 <Sender senderRole= "a1"/>
                 <Receiver receiverRole= "a2"/>
                  <Synchronous/>
                  <Task taskRole="v2"/>
           </Message>
           <Message multiplicity="1" size="0.5" sizeUnit="kb" format="xml">
                 <Sender senderRole= "a2"/>
                 <Receiver receiverRole= "a1"/>
                  <Synchronous/>
                  <Task taskRole="v1"/>
           </Message>
       </Behavior>
      ...
  </DynamicView>
   ...
</System>

a2: authorization

<<SoftwareEntity
Instance>>

execute_Operation_validateUser
{msgSize = "0.5kb", format="xml"}

execute_Operation_validateUser
{msgSize = "0.5kb", format="xml"}

validateUser

validateUser

Figure A.7: An example of the Behavior element.
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Figure A.7 shows an example of elements belonging to the Dynamic View of the XML
Schema: the left side of the Figure gives a graphical representation of a software architec-
tural model, whereas the right side reports an excerpt of the XML file (compliant to the
XML Schema) representing the features of the software architectural model. In particu-
lar, Figure A.7 shows an example of the Behavior element. There are two software entity
instances (a1 and a2) exchanging the user credentials, and the behavior is performed as
follows. The software entity instance a1 sends a synchronous message (with a size of 0.5
kilobyte and xml format) to the software entity instance a2 by invoking the execution of
the operation validateUser. Note that the taskRole attribute of Figure A.7 refers to the
operationInstanceID of Figure A.5.

A.3 DEPLOYMENT VIEW

The DeploymentView (see Figure A.8(a)) is made of a set of processing nodes (Pro-
cesNode), and optional NetworkLink(s) that enable the communication between the nodes.

As shown in Figure A.8(b), a processing node has an identifier (procesNodeID), and it
contains a set of DeployedInstance(s). Each DeployedInstance has an identifier (de-
ployedInstanceRole) that refers to a softwareEntityInstanceID already defined in the Static
View.

A processing node additionally contains a set of hardware entities (HardwareEntity).
Each hardware entity has an identifier (hardwareEntityID), the Utilization and the Queue-
Length values, and the type indicating whether it is a cpu or a disk. In fact the type element
uses an enumeration aimed at specifying a set of valid values for that element, i.e. cpu (re-
ferring to cpu devices), disk (referring to disk devices), and other (referring to any other
type customized by the user). From a performance perspective, the distinction between
cpu(s) and disk(s) is useful to point out the type of work assigned to a processing node by
checking their utilization values (e.g. a database transaction uses more disk than cpu).

Specific performance metrics for a processing node are also defined, i.e. ProcNodePerf-
Metrics, such as its ServiceTime (e.g. the average processing time used to execute requests
incoming to the processing node is 2 seconds), and its WaitingTime (e.g. the average
waiting time for requests incoming to the processing node is 5 seconds). The metricU-
nit attribute denotes again the measurement unit adopted (e.g. micro seconds, seconds,
minutes).

From the performance perspective, some additional information can be useful in this view.
It may happens that while trying to run too many programs at the same time this introduces
an extremely high paging rate, thus systems spend all their time serving page faults rather
than processing requests. In order to represent such scenario we introduce a set of parame-
ters, Params, that the processing nodes can manage: the number of database connections
(dbConnections), the number of internet connections (webConnections), the amount of
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(a) NetworkLink element.

(b) ProcesNode element.

Figure A.8: XML Schema - Deployment View.
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pooled resources (pooledResources), and finally the number of concurrent streams (con-
currentStreams). All these parameters are associated to a certain timestamp to monitor
their trend along the time.

A NetworkLink (see Figure A.8(a)) has an identifier (networkLinkID), and two or more
EndNodes. Each end node has an identifier (endNodeRole) that refers to procesNodeID
playing such role. It optionally contains information about the network: the available
bandwidth (capacity) denoting the maximum message size it supports, its utilization
(usedBandwidth), and the bitRate used in the communication. Note that the bitRate el-
ement uses an enumeration aimed at specifying a set of valid values for that element,
i.e. Kbit/s (referring to Kilobit/second), Mbit/s (referring to Megabit/second), Gbit/s (re-
ferring to Gigabit/second), and other (referring to any other bit rate unit customized by
the user). From a performance perspective, the bit rate of the network is useful to detect
antipatterns in message-based systems that require heavy communication overhead for
sending messages with a very small amount of information.

Figures A.9, A.10 show some examples of elements belonging to the Deployment View
of the XML Schema: the left sides of the Figures give graphical representations of a
software architectural model, whereas the right sides report an excerpt of the XML files
(compliant to the XML Schema) representing the features of the software architectural
model.

proc1

<<ProcesNode>>

proc2

<<ProcesNode>>

net1

<<NetworkLink>>

proc3

<<ProcesNode>>

net2

<<NetworkLink>>

proc4

<<ProcesNode>>

utilization = 0.42

utilization = 0.65

bandwidth = 100 Mbit/s

bandwidth = 1 Gbit/s

<System>

      ...

    <DeploymentView>

        <ProcesNode procesNodeID="proc1"/>

        <ProcesNode procesNodeID="proc2"/>

        <ProcesNode procesNodeID="proc3"/>

        <ProcesNode procesNodeID="proc4"/>

        <NetworkLink networkLinkID="net1" capacity="100"

                             bitRate="Mbit/s" usedBadwidth="0.42">

              <EndNode endNodeRole="proc1"/>

              <EndNode endNodeRole="proc2"/>

              <EndNode endNodeRole="proc3"/>

        </NetworkLink>

        <NetworkLink networkLinkID="net2" capacity="1"

                             bitRate="Gbit/s" usedBadwidth="0.65">

              <EndNode endNodeRole="proc3"/>

              <EndNode endNodeRole="proc4"/>

        </NetworkLink>

  </DeploymentView>

     ...

</System>

Figure A.9: An example of the NetworkLink element.

Figure A.9 shows an example of the NetworkLink element. There are four processing
nodes, i.e. proc1, . . . , proc4, communicating through two network links: the NetworkLink
net1 allows the communication among the processing nodes proc1, proc2, and proc3;
the NetworkLink net2 allows the communication among the processing nodes proc3, and
proc4. For each network link it is specified the bandwidth and the utilization; for ex-
ample, net1 has a capacity of 100 with a bitRate expressed in Megabit/second and its
usedBandwidth is equal to 0.42.



A.4 Conclusion 203

a1: authorization
<<SoftwareEntityInstance>>

proc1
<<ProcesNode>>

proc1_cpu1
<<cpu>>

utilization = 0.3
qL = 30 users

proc1_cpu2
<<cpu>>

proc1_disk1
<<disk>>

{ serviceTime = 1.5 sec
waitingTime = 0.01 sec}

utilization = 0.5
qL = 42 users

utilization = 0.42
qL = 18 users

<System>
     <StaticView>
         <SoftwareEntity softwareEntityID="authorization">
              <SoftwareEntityInstance softwareEntityInstanceID="a1"/>
        </SoftwareEntity>
     </StaticView>
      ...
    <DeploymentView>
        <ProcesNode procesNodeID="proc1">
            <DeployedInstance deployedInstanceID="a1"/>
            <HardwareEntity hardwareEntityID="proc1_cpu1" type="cpu"> 
                  <Utilization>0.3</Utilization>
                 <QueueLength>30</QueueLength>
            </HardwareEntity>
            <HardwareEntity hardwareEntityID="proc1_disk1" type="disk"> 
                  <Utilization>0.42</Utilization>
                  <QueueLength>18</QueueLength>
            </HardwareEntity>
            ...
            <ProcNodePerfMetrics metricUnit="sec">
                  <ServiceTime>1.5</ServiceTime>
                  <WaitingTime>0.01</WaitingTime>
            </ProcNodePerfMetrics>
        </ProcesNode>
  </DeploymentView>
     ...
</System>

Figure A.10: An example of the ProcesNode element.

Figure A.10 shows an example of the ProcesNode element. There is a processing node
(proc1) with three hardware entities, i.e. two cpus (proc1 cpu1, proc1 cpu2) and one disk
(proc1 disk1). For each hardware entity it is possible to specify the queue length (qL) and
the utilization; for example the proc1 cpu1 hardware entity reveals an average utilization
of 0.3, and an average queue length of 30 users. Additionally, some performance metrics
are evaluated for the processing node: the serviceTime keeps the time necessary to per-
form a task (i.e. 1.5 seconds in proc1), and the waitingTime stores how long incoming
requests to the node must wait before being processed (i.e. 0.01 seconds in proc1).

A.4 CONCLUSION

In this Appendix we provided a generic data structure (an XML Schema) collecting all
the architectural model elements that occur in the definitions of antipatterns [123] (such as
software entity, hardware utilization, operation throughput, etc.). It represents a ground-
work for the definition of antipatterns as logical predicates (see Section 3.4), thus to
achieve a formalization of the knowledge commonly encountered by performance en-
gineers in practice.

The XML Schema we defined obviously shares many concepts with existing software
modeling languages (such as UML [12] and ADL [102]). However, it is not meant to
be another software modeling language, rather it is strictly aimed at specifying the basic
elements of performance antipatterns. Note that we only address performance antipatterns
that can be defined independently of the notation adopted for the software modeling, in
fact in our XML Schema we define elements that are independent from any particular
modeling notation.





APPENDIX B

MODELING NOTATIONS

This Chapter briefly reviews the most used software (e.g. automata, process algebras,
etc.) and performance modeling (e.g. queueing networks, generalized stochastic petri
nets, etc.) notations. The introduction of modeling notations makes indeed the problem of
interpreting the results of performance analysis quite complex as each modeling notation
is intended to give a certain representation of the software system, expressed in its own
syntax, and the performance results are necessarily tailored to that notation.

B.1 SOFTWARE ARCHITECTURAL MODEL

In the following we shortly review Automata [82], Process Algebras [104], Petri Nets
[66], Message Sequence Charts [49], and Use Case Maps [17]. Unified Modeling Lan-
guage (UML) [12] and Palladio Component Model (PCM) [22] are both software model-
ing notations used for the validation of the thesis approach, for more details please refer
to Sections 5.1.1 and 5.2.1 respectively.

B.1.1 AUTOMATA

Automaton [82] is a simple mathematical and expressive formalism that allows to model
cooperation and synchronization between subsystems, concurrent and not. It is a com-
positional formalism where a system is modeled as a set of states and its behavior is
described by transitions between them, triggered by some input symbol.

More formally an automaton is composed of a (possibly infinite) set of states Q, a set of
input symbols

∑
and a function δ : Q ×

∑
→ Q that defines the transitions between

states. In Q there is a special state q0 ∈ Q, the initial state from which all computations
start, and a set of final states F ⊂ Q reached by the system at the end of correct finite
computations [82]. It is always possible to associate a direct labeled graph to an automa-
ton, called State Transition Graph (or State Transition Diagram), where nodes represent
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the states and labeled edges represent transitions of the automata triggered by the input
symbols associated to the edges.

There exist many types of automata: deterministic automata with a deterministic transi-
tion function, that is the transition between states is fully determined by the current state
and the input symbol; non deterministic automata with a transition function that allows
more state transitions for the same input symbol from a given state; stochastic automata
which are non deterministic automata where the next state of the system is determined
by a probabilistic value associated to each possibility. Besides, automata can also be
composed through composition operators, notably the parallel one that composes two
automata A and B by allowing the interleaving combination of A and B transitions.

Figure B.1: A simple example of the Automata modeling notation.

Figure B.1 shows a simple example of the Automata modeling notation. It contains six
states labeled A, B, C, D, E and F. The state labeled A is the initial one. The states A,
C, and D are final. Starting in the initial states, the automaton processes a sequence of
input symbols. In a given state, it checks if the next input symbol matches any of the
labels of the transitions that go out of the state. A set of sequences of symbols gathered
by pursuing all paths from initial states to the final ones is called the language accepted
by the automaton.

B.1.2 PROCESS ALGEBRAS

Process Algebras, such as Communicating Sequential Processes (CSP) [18] and Calculus
of Communicating Systems (CCS) [104], are a widely known modeling technique for the
functional analysis of concurrent systems. These are described as collections of entities,
or processes, executing atomic actions, which are used to describe concurrent behaviors
which synchronize in order to communicate.

Processes can be composed by means of a set of operators, which include different forms
of parallel composition. Operators are provided by the language to construct processes out
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of smaller processes [78]. A parallel composition operator is used to express concurrent
execution and possible synchronization of processes. Another important operator realizes
abstraction. Details of a specification which are internal details at a certain level of system
description can be internalized by hiding them from the environment. Several notions of
equivalence make it possible to reason about the behavior of a system, e.g. to decide
whether two systems are equivalent.

More recent additions to the family of process algebras include the Π-calculus [105],
the ambient calculus [36]. The semantics of these calculi is usually defined in terms
of Labelled Transition Systems (LTS) [86] following the structural operating semantics
approach. Moreover Process Algebra formalism is used to detect undesirable properties
and to formally derive desirable properties of a system specification. Notably, process
algebra can be used to verify that a system displays the desired external behavior, meaning
that for each input the correct output is produced.

B.1.3 PETRI NETS

Petri Nets (PN) are a formal modeling technique to specify synchronization behavior of
concurrent systems. A PN [112] is defined by a set of places, a set of transitions, an input
function relating places to transitions, an output function relating transition to places, and
a marking function, associating to each place a non negative integer number where the
sets of places and transitions are disjoint sets.

PN have a graphical representation: places are represented by circles, transitions by bars,
input function by arcs directed from places to transitions, output function by arcs di-
rected from transitions to places, and marking by bullets, called tokens, depicted inside
the corresponding places. Tokens distributed among places define the state of the net. The
dynamic behavior of a PN is described by the sequence of transition firings that change
the marking of places (hence the system state). Firing rules define whether a transition is
enabled or not.

Figure B.2: A simple example of the Petri Nets modeling notation.
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Figure B.2 shows a simple example of the Petri Nets modeling notation. It contains three
places, i.e. P1, P2, and P3, and one transition, i.e. t1. Places contain four, three, and one
tokens respectively. The transition is enabled, since in P1 there are at least three (i.e. the
weight of the arc connecting the P1 place with the transition t1) tokens, and in in P2 there
is at least one (i.e. the weight of the arc connecting the P2 place with the transition t1)
token. The firing of the transition t1 lead the system to evolve in a new configuration: the
tokens of P1 and P2 places are respectively decreased of 3 and 1 units, whereas tokens in
P3 are increased of 2 units.

B.1.4 MESSAGE SEQUENCE CHARTS

Message Sequence Charts (MSC) is a language to describe the interaction among a num-
ber of independent message-passing instances (e.g. components, objects or processes) or
between instances and the environment. This language is specified by the International
Telecommunication Union (ITU) in [11]. MSC is a scenario language that describes the
communication among instances, i.e. the messages sent, messages received, and the local
events, together with the ordering between them. One MSC describes a partial behavior
of a system. Additionally, it allows for expressing restrictions on transmitted data values
and on the timing of events.

MSC is also a graphical language which specify two-dimensional diagrams, where each
instance lifetime is represented as a vertical line, while a message is represented by a
horizontal or slanted arrow from the sending process to the receiving one. MSC supports
complete and incomplete specifications and it can be used at different levels of abstraction.
It allows to develop structured design since simple scenarios described by basic MSC can
be combined to form more complete specifications by means of high-level MSC.

B.1.5 USE CASE MAPS

Use Case Maps (UCM) [34] is a graphical notation allowing the unification of the sys-
tem use (Use Cases) and the system behavior (Scenarios and State Charts) descriptions.
UCM is a high-level design model to help humans express and reason about system large-
grained behavior patterns. However, UCM does not aim at providing complete behavioral
specifications of systems. At requirement level, UCM models components as black boxes,
and at high-level design refines components specifications to exploit their internal parts.

Figure B.3 shows the basic elements of UCM notation. UCM represents scenarios through
path scenarios: the starting point of a map corresponds to the beginning of a scenario.
Moving through the path, UCM represents the scenario in progress till its end.
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Figure B.3: Basic Symbols of the Use Case Maps modeling notation.

B.2 PERFORMANCE MODEL

In the following we shortly review Markov Processes [87], Queueing Networks [88, 83,
92], Stochastic Process Algebras [77], Stochastic Timed Petri Nets [38, 97], and Simula-
tion Models [20].

B.2.1 MARKOV PROCESSES

A stochastic process is a family of random variables X = {X(t) : t ∈ T} where X(t) :
T × Ω → E defined on a probability space Ω, an index set T (usually referred as time)
with state space E. Stochastic processes can be classified according to the state space,
the time parameter, and the statistical dependencies among the variables X(t). The state
space can be discrete or continuous (processes with discrete state space are usually called
chains), the time parameter can also be discrete or continuous, and dependencies among
variables are described by the joint distribution function.

Informally, a stochastic process is a Markov process if the probability that the process
goes from state s(tn) to a state s(tn+1) conditioned to the previous process history equals
the probability conditioned only to the last state s(tn). This implies that a process is fully
characterized by these one-step probabilities. Moreover, a Markov process is homoge-
neous when such transition probabilities are time independent. Due to the memoryless
property, the time that the process spends in each state is exponential or geometrically
distributed for the continuous-time or discrete-time Markov process, respectively.

Markov processes [87] can be analyzed and under certain constraints it is possible to
derive the stationary and the transient state probability. The stationary solution of the



210 Chapter B. Modeling Notations

Markov process has a time computational complexity of the order of the state space E
cardinality. Markov processes play a central role in the quantitative analysis of systems,
since the analytical solution of the various classes of performance models relies on a
stochastic process which is usually a Markov process.

B.2.2 QUEUEING NETWORKS

Queueing Network (QN) models have been widely applied as system performance models
to represent and analyze resource sharing systems [88, 83, 92]. A QN model is a collec-
tion of interacting service centers representing system resources and a set of customers
representing the users sharing the resources. Its informal representation is a direct graph
whose nodes are service centers and edges represent the behavior of customers’ service
requests.

The popularity of QN models for system performance evaluation is due to the relative high
accuracy in performance results and the efficiency in model analysis and evaluation. In
this setting the class of product form networks plays an important role, since they can be
analyzed by efficient algorithms to evaluate average performance indices. Specifically, al-
gorithms such as convolution and Mean Value Analysis have a computational complexity
polynomial in the number of QN components. These algorithms, on which most approxi-
mated analytical methods are based, have been widely applied for performance modeling
and analysis.

Informally, the creation of a QN model can be split into three steps: definition, that include
the definition of service centers, their number, class of customers and topology; param-
eterization, to define model parameters, e.g., arrival processes, service rate and number
of customers; evaluation, to obtain a quantitative description of the modeled system, by
computing a set of figures of merit or performance indices such as resource utilization,
system throughput and customer response time. These indices can be local to a resource
or global to the whole system.

Extensions of classical QN models, namely Extended Queuing Network (EQN) models,
have been introduced in order to represent several interesting features of real systems,
such as synchronization and concurrency constraints, finite capacity queues, memory
constraints and simultaneous resource possession. EQN can be solved by approximate
solution techniques [83, 92].

Another extension of QN models is the Layered Queuing Network (LQN) which allows
the modeling of client-server communication patterns in concurrent and/or distributed
software systems [136, 60]. The main difference between LQN and QN models is that in
LQN a server may become client (customer) of other servers while serving its own clients
requests. A LQN model is represented as an acyclic graph whose nodes are software
entities (or tasks) and hardware devices, and whose arcs denote service requests (through
synchronous, asynchronous or forwarding messages). A task has one or more entries
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providing different services, and each entry can be decomposed in two or more sequential
phases. A recent extension of LQN allows for an entry to be further decomposed into
activities which are related in sequence, loop, parallel (AND fork/join) and alternative
(OR fork/join) configurations forming altogether an activity graph. LQN models can
be solved by analytic approximation methods based on standard methods for EQN with
simultaneous resource possession and Mean Value Analysis or they can be simulated.

B.2.3 STOCHASTIC PROCESS ALGEBRAS

Several Stochastic extensions of Process Algebras (SPA) have been proposed in order to
describe and analyze both functional and performance properties of software specifica-
tions. Among these we consider PEPA (Performance Evaluation Process Algebra) [65],
and EMPA (Extended Markovian Process Algebra) [27, 28, 25]. PEPA is of worth in-
terest, since it extends classical process algebras such as CSP and CCS by introducing
probabilistic branching and timing of transitions. EMPAgr [24] was introduced in or-
der to easy the use of SPA as software architectural model notation, and in particular it
represents the algebra on which it is based an Architectural Description Language (ADL)
called Æmilia [26].

Flow Graph AEmilia Specification

Figure B.4: A simple example of the Æmilia modeling notation.

Æmilia aims at facilitating the designer in the process algebra-based specification of soft-
ware architectures, by means of syntactic constructs for the description of architectural
components and connections. Æmilia is also equipped with checks for the detection of
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possible architectural mismatches. Moreover for Æmilia specifications a translation into
the Queueing Network (QN) performance models (see Section B.2) has been proposed
in order to take advantage of the orthogonal strengths of the two formalisms: formal
techniques for the verification of functional properties for Æmilia as SPA in general, and
efficient performance analysis for Queueing Networks.

Figure B.4 shows a simple example of the Æmilia modeling notation. On the left side
of the Figure the flow graph representation of a software system (i.e. the Alternating Bit
Protocol) is shown; on the right side of the Figure an excerpt of the Æmilia specification
is reported. In particular, only the topology of the system (i.e. architectural element
instances, interactions, and attachments) is shown, whereas the behavior of the different
element types is not reported for sake of readability 1.

B.2.4 STOCHASTIC TIMED PETRI NETS

Stochastic Timed Petri Net (STPN) are extensions of Petri nets. Petri nets can be used to
formally verify the correctness of synchronization between various activities of concur-
rent systems. The underlying assumption in PN is that each activity takes zero time (i.e.
once a transition is enabled, it fires instantaneously). In order to answer performance-
related questions beside the pure behavioral ones, Petri nets have been extended by asso-
ciating a finite time duration with transitions and/or places (the usual assumption is that
only transitions are timed) [38, 97, 83].

The firing time of a transition is the time taken by the activity represented by the transi-
tion: in the stochastic timed extension, firing times are expressed by random variables.
Although such variables may have an arbitrary distribution, in practice the use of non
memoryless distributions makes the analysis unfeasible whenever repetitive behavior is
to be modeled, unless other restrictions are imposed (e.g. only one transition is enabled
at a time) to simplify the analysis.

The quantitative analysis of a STPN is based on the identification and solution of its as-
sociated Markov Chain built on the basis of the net reachability graph. In order to avoid
the state space explosion of the Markov Chain, various authors have explored the possi-
bility of deriving a product-form solution for special classes of STPN. Non polynomial
algorithms exist for product-form STPN, under further structural constraints. Beside the
product-form results, many approximation techniques have been defined [38].

A further extension of Petri Nets is the class of the so called Generalized Stochastic Petri
Nets (GSPN), which are continuous time stochastic Petri Nets that allow both exponen-
tially timed and untimed (or immediate) transitions [96]. Immediate transition fires imme-
diately after enabling and have strict priority over timed transitions. Immediate transitions
are associated with a (normalized) weight, so that, in case of concurrently enabled imme-

1The example is widely illustrated in [50]
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diate transitions the choice of the firing one is solved by a probabilistic choice. GSPN
admit specific solution techniques [38].

B.2.5 SIMULATION MODELS

Besides being a solution technique for performance models, simulation can be a perfor-
mance evaluation technique itself [20]. It is actually the most flexible and general analysis
technique, since any specified behavior can be simulated. The main drawback of simula-
tion is its development and execution cost. Simulation of a complex system includes the
following phases:

- building a simulation model (i.e., a conceptual representation of the system) using
a process oriented or an event oriented approach;

- deriving a simulation program which implements the simulation model;

- verifying the correctness of the program with respect to the model;

- validating the conceptual simulation model with respect to the system (i.e. check-
ing whether the model can be substituted to the real system for the purposes of
experimentation);

- planning the simulation experiments, e.g. length of the simulation run, number of
run, initialization;

- running the simulation program and analyzing the results via appropriate output
analysis methods based on statistical techniques.
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