RESEARCH PROSPECT

Need a dissertation on a similar topic? Check out how our dissertation services can help you.

Master Thesis Electrical Engineering July 2014

ON EFFICIENT AUTOMATED METHODS FOR SIMULATION OUTPUT DATA ANALYSIS

MARTIN BROŽOVIČ

Department of Communication Systems (DIKO) Blekinge Institute of Technology 37179 Karlskrona Sweden This thesis is submitted to the Department of Communication Systems at Blekinge Institute of Technology in partial fulfilment of the requirements for the degree of Master of Science in Electrical Engineering. The thesis is equivalent to 20 weeks of full time studies.

Contact Information

Author(s): Martin Brožovič Address: Jesenická 25, 794 01, Krnov, Czech Republic E-mail: martinbrozovic@gmail.com

External Advisor(s)

Professor Krzysztof Pawlikowski Department of Computer Science and Engineering University of Canterbury Address: College of Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand Phone: +64 3 364 2987

University advisor(s):

Professor Markus Fiedler Department of Communication Systems (DIKO)

Department of Communication Systems	Internet: www.bth.se
Blekinge Institute of Technology	Phone: +46 455 385000
371 79 KARLSKRONA SWEDEN	SWEDEN

Abstract

With the increase in computing power and software engineering in the past years computer based stochastic discrete-event simulations have become very commonly used tool to evaluate performance of various, complex stochastic systems (such as telecommunication networks). It is used if analytical methods are too complex to solve, or cannot be used at all. Stochastic simulation has also become a tool, which is often used instead of experimentation in order to save money and time by the researchers. In this thesis, we focus on the statistical correctness of the final estimated results in the context of steady-state simulations performed for the mean analysis of performance measures of stable stochastic processes. Due to various approximations the final experimental coverage can differ greatly from the assumed theoretical level, where the final confidence intervals cover the theoretical mean at much lower frequency than it was expected by the preset theoretical confidence level.

We present the results of coverage analysis for the methods of dynamic partially-overlapping batch means, spectral analysis and mean squared error optimal dynamic partially-overlapping batch means. The results show that the variants of dynamic partially-overlapping batch means, that we propose as their modification under Akaroa2, perform acceptably well for the queueing processes, but perform very badly for auto-regressive process. We compare the results of modified mean squared error optimal dynamic partially-overlapping batch means method to the spectral analysis and show that the methods perform equally well.

Keywords: Akaroa2, batch means, simulation output analysis, sequential coverage analysis, spectral analysis.

Contents

A	bstra	act	i
\mathbf{C}	onte	nts	ii
\mathbf{Li}	ist of	f Figures	v
\mathbf{Li}	ist of	f Tables vi	ii
In	trod	luction	1
1	Intr	roduction	2
	1.1	Research Questions	3
	1.2	Aims and Objectives	4
	1.3	Thesis Structure	4
2	Bac	ckground	5
	2.1	Simulations	6
	2.2	Computer-based Quantitative Stochastic Simulations	6
	2.3	Credibility of results	7
	2.4	Simulation Approach	9
		2.4.1 Fixed sample size approach	9
		2.4.2 Sequential approach	9
	2.5	Automated Simulation Controller Akaroa2	0
		2.5.1 Akmaster	10
		2.5.2 Akslave \ldots 1	10
		2.5.3 Akrun	1
		2.5.4 Distributed Simulations	12
	2.6	Pseudo Random Number Generators	13
		2.6.1 Linear Congruential Generators	14
		2.6.2 Combined Multiple Recursive Generator 1	4

3	Methods of Output Analysis	16
	3.1 Independent Replications	16
	3.2 Batch Means Methods	17
	3.2.1 Non-overlapping batch means	17
	3.2.2 Sequential implementation of NBM	18
	3.2.3 Overlapping Batch Means	19
	3.2.4 Dynamic Non-Overlapping Batch Means	20
	3.2.5 Dynamic Partial-Overlapping Batch Means	21
	3.2.6 Spectral Analysis	24
4	Initial Transient Detection	26
	4.1 Stationarity	26
	4.2 Initialization Detection	26
	4.2.1 Schruben's Test	27
	4.2.2 Method Of Cumulative Means	28
Α	nalysis	30
5	Coverage Analysis	31
	5.1 $M/G/1$	33
	5.2 $M/M/1$	33
	5.3 $M/D/1$	33
	5.4 $M/H_2/1$	33
	5.5 Autoregressive Process	34
	5.6 Open Queueing Network	34
	5.7 Implementation of Coverage Analysis	35
E	xperiment Design	38
	I A A A A A A A A A A A A A A A A A A A	
6	Experiment Design	39
	6.1 Akaroa2 Simulation Controller	39
	6.2 Output Analysis Methods	39
	6.2.1 Dynamic Partially-Overlapping Batch Means	40
	6.2.2 MSE-DPBM	42
	6.2.3 Modified MSE-DPBM	44
\mathbf{R}	esults	47
7	Results	48
	7.1 Experiment 1: Average Run Length	48
	7.2 Experiment 2: Coverage Analysis	52
	$7.2.1 AR(1) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	53
	iii	

		7.2.2	M/M/1			56
		7.2.3	M/D/1			59
		7.2.4	$M/H_2/1$			61
		7.2.5	Open Queueing Network		•	64
	7.3	Exper	ciment 3: Memory Requirements		•	67
		7.3.1	AR(1)		•	68
		7.3.2	M/M/1		•	69
		7.3.3	M/D/1		•	71
		7.3.4	$M/H_2/1$		•	72
		7.3.5	Queueing Network		•	73
	7.4	Avera	ge Number of Runs		•	74
8	Cor	clusio	me			78
0	8.1	Answe	ers to Research Questions			79
	8.2	Future	e Work	• •	•	81
	0.2	ratur		• •	•	01
Bi	blio	graph	У			82
		1.				05
A	ppen	aices				85
\mathbf{A}	pper	ıdix				86
Α	DP	\mathbf{BM}				86
в	MS	F_DPI	BM			03
D	IVID					30
\mathbf{C}	Mo	dified	MSE-DPBM			103
Б	C					110
D	Cov	verage	Anaiysis			112
\mathbf{E}	Tab	les of	Results per Model			120
			-			
\mathbf{F}	Akaroa2 Method Registration 138					

List of Figures

2.1	The normal distribution of random variable [20]	8
2.2	Akaroa2 output	11
2.3	Akaroa2 function $[5]$	12
3.1	NBM Batching	18
3.2	OBM Batching	20
3.3	Collapsing in DNBM	21
3.4	DPBM Collapsing [28]	24
5.1	Open Queueing network	34
5.2	Coverage Analysis	36
7.1	M/M/1's average run length per simulation using 25 crossings	
	rule	49
7.2	M/M/1's average run length per simulation using Cumulative	
	Means	50
7.3	M/D/1's average run length per simulation using 25 crossings	
	rule	50
7.4	M/D/1's average run length per simulation using Cumulative	
	Means	51
7.5	$M/H_2/1$'s average run length per simulation using 25 cross-	
	ings rule	51
7.6	$M/H_2/1$'s average run length per simulation using Cumula-	
	tive Means \hdots	52
7.7	AR(1)'s coverage, using variants of DPBM and 25 crossings	
	rule	53
7.8	AR(1)'s coverage, using variants of DPBM and Cumulative	
	Means	53
7.9	AR(1)'s coverage, SA/HW vs. Mod. MSE-DPBM using 25	
	crossings rule	54
7.10	AR(1)'s coverage, SA/HW vs. Mod. MSE-DPBM using Cu-	
	mulative Means	54
7.11	AR(1)'s run length using 25 crossings rule	55
7.12	AR(1)'s run length using Cumulative Means	55

7.13	M/M/1's coverage, using variants of DPBM and 25 crossings	
	rule	56
7.14	M/M/1's coverage, using variants of DPBM and Cumulative	
	Means	57
7.15	M/M/1's coverage, SA/HW vs. Mod. MSE-DPBM using 25	
	crossings rule	57
7.16	M/M/1's coverage, SA/HW vs. Mod. MSE-DPBM using	
	Cumulative Means	58
717	M/D/1's coverage using variants of DPBM and 25 crossings	00
1.11	rulo	50
7 18	M/D/1's coverage using variants of DPBM and Cumulative	00
1.10	Moong	50
7 10	M/D/12 CA/UW Mad MCE DDDM	99
1.19	M/D/1's coverage, SA/HW vs. Mod. MSE-DPBM using 25	<u>co</u>
	crossings rule	60
7.20	M/D/1's coverage, SA/HW vs. Mod. MSE-DPBM using	
	Cumulative Means	60
7.21	$M/H_2/1$'s coverage, using variants of DPBM and 25 crossings	
	rule	61
7.22	$M/H_2/1$'s coverage, using variants of DPBM and Cumulative	
	Means	62
7.23	$M/H_2/1$'s coverage, SA/HW vs. Mod. MSE-DPBM using 25	
	crossings rule	63
7.24	$M/H_2/1$'s coverage, SA/HW vs. Mod. MSE-DPBM using	
	Cumulative Means	63
7.25	ONet's coverage, using variants of DPBM and 25 crossings rule	64
7 26	ONet's coverage, using variants of DPBM cumulative Means	65
7.27	ONet's coverage SA/HW vs Mod MSE-DPBM using 25	00
1.21	crossings rule	65
7 98	ONot's coverage SA/HW vs. Mod. MSE DPBM using Cu	00
1.20	wiletive Means	66
7.00		00
7.29	QNet Run length using 25 crossings rule	00
7.30	QNet Run length using Cumulative Means	67
7.31	Average batch sizes recorded during the coverage experiment	
	of $AR(1)$ model	68
7.32	Average number of batches recorded during the coverage ex-	
	periment	68
7.33	Average batch sizes recorded during the coverage experiment	
	of $M/M/1$ model	69
7.34	Average number of batches recorded during the coverage ex-	
	periment of $M/M/1$ model	70
7.35	Average batch sizes recorded during the coverage experiment	
	of M/D/1 model	71
7.36	Average number of batches recorded during the coverage ex-	
	Average number of batches recorded during the coverage ex-	
	periment of $M/D/1$ model	71

7.37	Average batch sizes recorded during the coverage experiment	
	of $M/H_2/1$ model	72
7.38	Average number of batches recorded during the coverage ex-	
	periment of $M/H_2/1$ model $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	72
7.39	Average batch sizes recorded during the coverage experiment	
	of queueing network model	73
7.40	Average number of batches recorded during the coverage ex-	
	periment of queueing network model	73
7.41	The number of runs required for the coverage experiment of	
	AR(1)	75
7.42	The number of runs required for the coverage experiment of	
	M/M/1	75
7.43	The number of runs required for the coverage experiment of	-
	M/D/1	76
7.44	The number of runs required for the coverage experiment of	-
	$M/H_2/1$	76
1.45	The number of runs required for the coverage experiment of	77
	queueing network	"
A.1	DPBM Algorithm as implemented in Akaroa2	87
B.1	MSE-DPBM Algorithm as implemented in Akaroa2	94
C_{1}	Modified MSE-DPBM Algorithm as implemented in Akaroa?	104
U.1	inouniou nice bi bii nigonum do implemented in marouz	TOT

List of Tables

3.1	Asymptotic bias and variance result [27]
5.1	Coverage Experiments
E.1	AR(1) Results Table $\ldots \ldots \ldots$
E.2	$\rm M/M/1$ Results Table $\hfill \ldots \hfill 124$
E.3	M/D/1 Results Table
E.4	$M/H_2/1$ Results Table
E.5	QNet Results Table
E.6	Avearge batch size and number of batches per method 137

Introduction

Chapter 1

Introduction

With the increase in computing power and software engineering in the past years computer based stochastic discrete-event simulations have become very commonly used tool to evaluate performance of various, complex stochastic systems (such as telecommunication networks). It is used if analytical methods cannot be used. Stochastic simulation has also become a tool, which is often used instead of experimentation in order to save money and time by the researchers. Unfortunately, as shown in [21] stochastic simulations are often used incorrectly, without proper analysis of the output, and then the simulation results cannot be considered credible. In the case of steadystate simulations the problem is that the simulation output data are usually strongly correlated. This has led to proposal of methods of simulation output analysis with various interval estimators. In this thesis, we focus on the statistical correctness of the final estimated results in the context of steadystate simulations performed for the mean analysis of performance measures of stable stochastic processes.

Sequential analysis of output data in steady-state stochastic simulations, used in order to produce final estimates, is nowadays regarded as the approach to use in order to properly control the simulation length and produce appropriately credible final estimates [13], [18]. The simulation runs from checkpoint to checkpoint until a stopping condition is met. In our case we use the relative precision of the final estimate, defined as the ratio of current half-width of confidence interval to the current point estimate of wanted estimation of a performance measure, steady-state mean in our case [17], [20]. The simulation is stopped when such stopping condition is met. One of the main indicators that a method is good is its coverage defined as relative frequency with which the final confidence interval contains the true value μ_x . Any method used for analysis of simulation output data should produce narrow and stable confidence intervals and the experimental coverage should not differ too much from the assumed theoretical level $1-\alpha$. Pawlikowski argues in [22] that such analysis should be done sequentially in order to produce statistically correct results of the experimental coverage. Pawlikowski outlines rules that should be used for such analysis in [22]. Using these rules we study the coverage of 4 different methods of the mean value analysis, namely Dynamic Partially-Overlapping Batch Means (DPBM) [27], Mean Squared Error Optimal DPBM (MSE-DPBM) [28], modified version of MSE-DPBM (Mod. MSE-DPBM) and Spectral Analysis (SA/HW) as implemented in [16].

Initial transient period is present during the initialization of stochastic processes, it is a period, where the processes do not characterize the steadystate. It has been shown in [17] that a method of detecting the initial transient and truncating all the observations from such period reduces the risk that simulation might stop too early. In [20] it is shown that discarding observation from the initial period leads to reduced bias of the final steady-state estimates. Two techniques are used namely Schruben's test [20] and method of Cumulative Means [6]. The results of the experimental coverage, using variations of the 4 methods of mean value analysis for steady-state systems and one simulation engine per each, have been obtained using a fully automated simulation controller of distributed stochastic simulation Akaroa2 [18].

1.1 Research Questions

- 1. Are DPBM and MSE-DPBM implementable as a tool for steady-state simulation under Akaroa2?
- 2. Can MSE-DPBM be improved as a method of simulation output analysis?
- 3. Which of the variants of DPBM perform the best in terms of coverage analysis?
- 4. Are the DPBM variants accurate as an automated data analysis method in steady-state simulations?
- 5. Does a variant of DPBM perform better than Spectral Analysis in terms of coverage analysis?
- 6. Is Schruben's test better than Cumulative Means as a method of initial transient detection?

1.2 Aims and Objectives

- To implement DPBM and MSE-DPBM as a component of Akaroa2.
- To modify MSE-DPBM and implement as a component of Akaroa2.
- To implement sequential coverage analysis experiment.
- To compare variants of DPBM and SA/HW in terms of their quality of coverage of confidence intervals using stochastic, analytically tractable reference models.
- To decide upon overall quality of variants of DPBM and SA/HW.
- To decide if Schruben's test performs better than Cumulative Means as a method of initial transient period detection.

1.3 Thesis Structure

In Chapter 1 we give an introduction to the research to present our motivation and aims behind the thesis. Chapter 2 describes the background of this thesis. This knowledge helps the reader to understand the fundamental concepts behind steady-state simulations and problems encountered in. Chapter 3 gives an introduction to the simulation output analysis methods (SOAMs). The chapter explains the fundamental theory behind the used variants of DPBM and SA/HW. Chapter 4 presents the initial transient detection methods that are used in the experiment. Chapter 5 presents the analysis of the coverage and rules that have been set up. Chapter 6 describes the necessary changes to implementation of DPBM variants and their implementation as a component of Akaroa2. Chapter 7 provides the results of coverage analysis. Finally, the conclusions are presented in Chapter 8. Future work and discussion are presented in Chapter 8, as well.

Chapter 2

Background

This peer review will examine the main issues surrounding the credibility of results while using quantitative sequential stochastic discrete-event simulations as a tool to evaluate behaviour of real world systems. The main focus is given to proper analysis of the simulation output and methods used for such analysis.

In the Sections 2.1 and 2.2 the introduction to quantitative sequential stochastic simulations will be shown. Section 2.3 will include an explanation of valid simulation studies, and how to ensure credibility of the results of simulation studies of various complex stochastic systems. Next in Section 2.4, the sequential and fixed sample size approach to simulation will be shown, the benefits and pitfalls of these two approaches will be discussed. Section 2.5 will introduce the automated controller of distributed simulations Akaroa2. Lastly, the Section 2.6 will describe nowadays vastly used pseudo-random number generators. Various methods of simulation output analysis will be introduced and discussed in Chapter 3, need for such methods is justified in the Section 2.3. Used methods of initial transient detection and their justification will be presented in Chapter 4. Coverage analysis will be introduced in Chapter 5 and its usage, as a tool to assess quality of such output analysis methods, will be justified. Together with the coverage analysis, the reference stochastic processes used for the empirical evaluation of the coverage will be introduced.

At the end of these three major chapters it is hoped that a critical understanding of the key issues is presented, that the reader will be better informed in these areas, and that the research will be justified.

2.1 Simulations

Simulations are used to imitate the behaviour and operation of a real-world system, where system is a "collection of entities e.g., people or machines, that act and interact together toward the accomplishment of some logical end [24]". A system state is a collection of variables, which are necessary to describe a system at a particular time. We will focus our attention to *discrete* systems, where the "state variables of a system changes instantaneously at separated points of time [13]", such system can be a stochastic process such as telecommunication network, which we focus on in this thesis. Compared to *continuous* systems, where the state variable change continuously with time. These systems have to be modelled accordingly, one would produce a set of mathematical and logical relationships, called assumptions, about the behaviour and working principle of the system under study. These assumptions would then constitute a model of the system [13].

2.2 Computer-based Quantitative Stochastic Simulations

The assumptions, if simple enough, can be solved analytically by using theorems from algebra, probability theory or calculus and provide insight about the performance, behaviour, of the system under various circumstances and input parameters. However, if these assumptions are highly complex, as most of the real-world systems are, the analytical solution would not be possible, either too complex to solve in timely manner or too costly. To overcome this issue computer-based quantitative stochastic simulations are used. In these simulations we use a numerical evaluation of the assumptions of a system under study. The simulation gathers data and based on these data it estimates the wanted performance parameter. Since stochastic processes are solely controlled by random numbers, "the results produced are nothing more than statistical samples [20]". As mentioned in [20] by Pawlikowski, the simulation studies are sometimes taken as a complex programming exercise only and little or no effort is put into proper statistical analysis of the simulation output.

We are focusing on steady-state simulations of stochastic systems, where the simulated processes approach steady-state and the distribution of collected data, observations, become time invariant. Processes are not necessarily in their steady-state as the simulation begins, the steady-state parameters still vary with time. The use of a method to detect this period and truncate such observations can be included to reduce the bias in the final estimates. These methods of initial transient detection are introduced in Chapter 4.

2.3 Credibility of results

What is a valid simulation? That was a question that Pawlikowski et al. have asked in [21]. The article has pointed out that one cannot rely on majority of results from research papers published on studies of stochastic system. These studies have been using a simulation as a tool for producing results and deciding upon final claims.

To ensure credibility of a simulation study, experiment, one would need to abide by three basic rules [21]:

- 1. Use a valid and verified model of a system.
- 2. Use a correct and tested pseudo-random number generator.
- 3. Use a proper method of simulation output analysis.

Since the main purpose of this thesis study was solely focused on assessing quality of various output analysis methods, it will be given the most space in this chapter. Section 2.6 will introduce basic introduction and explanation of PRNGs.

Focus is given solely on simulations of stochastic processes in their steadystate, and therefore looking for an unknown mean μ_x of a wanted performance parameter. This is achieved by taking an average i.e.:

$$\hat{\theta}(n) = \frac{1}{n} \sum_{i=1}^{n} x_i,$$
(2.1)

where x_i is the *i*-th observation collected during the simulation, for i = 1, 2, ..., n and is called a point estimator and characterizes the system analysed. To ensure a proper analysis of the output the final estimates $\hat{\theta}(n)$ have to be determined together with their statistical error [22]. The precision with which the point estimator in Equation 2.1 estimates the unknown mean μ_x is given by:

$$P(\hat{\theta} - \Delta_{1-\alpha}(n) \le \mu_x \le \hat{\theta} + \Delta_{1-\alpha}(n)) = 1 - \alpha, \qquad (2.2)$$

where $\Delta_{1-\alpha}(n)$ is a half-width of a confidence interval (CI) at a given confidence level $1 - \alpha$ of the point estimator. More precisely, if the simulation is run sufficiently many times and the observations x_n are random variables, the interval at Equation 2.2 would contain the true value of mean approximately $1 - \alpha$ times, example can be seen in Figure 2.1. We call this proportion the coverage by the confidence interval. The $\Delta_{1-\alpha}(n)$ is calculated based on the standard deviation of the estimate $\hat{\theta}(n)$ and assumes that the observations $x_1, x_2, ..., x_n$ are independent and normally distributed (IID) variables:

Figure 2.1: The normal distribution of random variable [20]

$$\Delta_{1-\alpha} = t_{df,1-\frac{\alpha}{2}} \hat{\sigma}(\hat{\theta}(n)), \qquad (2.3)$$

where $1 - \alpha/2$ is the critical point for the *t* distribution with n - 1 degrees of freedom, $\hat{\sigma}(\hat{\theta}(n))$ is the standard deviation of the estimate of the mean [13]. Therefore, the $\sigma^2(\hat{\theta}(n))$, variance of the estimate of the mean, can be called a quality measure, or accuracy, of using the point estimator $\hat{\theta}(n)$. The central limit theorem says, that if *n* is "sufficiently large", the random variable (estimated mean $\hat{\theta}(n)$) can be assumed to be distributed as a standard normal random variable, regardless of the underlying distribution of the x_n observations [13]. It is well known, that if n > 30 the Equation 2.3 becomes [20]:

$$\Delta_{1-\alpha} = z_{1-\frac{\alpha}{2}} \hat{\sigma}(\theta(n)), \qquad (2.4)$$

where the $z_{1-\frac{\alpha}{2}}$ is the upper critical point obtained from standard normal distribution. For good approximation a value of n should be greater than 100, as recommended in [20] and [13]. Then if the random variables are independent and identically distributed we can use an unbiased estimator of variance [13]:

$$\sigma^2 = \frac{\sum_{i=1}^{n} [x_n - \hat{\theta}(n)]^2}{n - 1},$$
(2.5)

However, as it will be shown in Chapter 3, that is not possible in simulation of stochastic processes, where random components are involved. It is due to that the observations are usually highly autocorrelated.

It is also necessary to say that a correct method of detecting the transient period has to be used. Transient period is a period where the processes do not represent steady state yet, these initial observations have to be disregarded to reduce the final bias of the steady-state estimates. Chapter 4 will go into more detail regarding this problem.

2.4 Simulation Approach

There are currently two approaches to simulation that are widely used and will be introduced in this section. It is argued that sequential approach has to be used in order to properly simulate different stochastic systems and evaluate the final estimates, of performance measure of systems in the steady-state, together with their statistical errors [18].

2.4.1 Fixed sample size approach

Many limitations can be encountered when using this approach. The main issue is that collected sample n of output data can be too small and, because of that, it may not represent steady-state yet or the CI is too large, or in other words: "one does not have control over the size of the CI which results [14]". Additionally, the collected observations are almost always autocorrelated. If these two issues are not properly resolved, the results might differ greatly from the true measure such as steady state mean μ_x (for example queueing time θ_w of M/M/1 system), since it is impossible to decide in advance how large the sample of output data should be, to make sure that it contains observations representing steady-state behaviour. Generally, results of a simulation run under this approach cannot be relied upon. The main cause of this is that different systems behave in different way and different run lengths are necessary in order to construct adequately small and stable CIs.

2.4.2 Sequential approach

"No procedure in which the run length is fixed before the simulation begins can generally be relied upon to produce a confidence interval that covers μ_x with the desired probability $1 - \alpha$, if the fixed run length is too small for the system being simulated [13]". Other justifications for sequential approach can be found here [22], [18]. This method is based on sequential analysis of the quality of the confidence interval i.e.: relative precision of the estimate $\hat{\theta}$, after *n* observations have been collected, is given as:

$$\epsilon(n) = \frac{\Delta_{1-\alpha(n)}}{\hat{\theta}(n)},\tag{2.6}$$

where $\Delta_{1-\alpha}(n)$ is the half-width of the CI at the specified $1-\alpha$ confidence level for the estimate $\hat{\theta}(n)$ of the required performance measure $\hat{\theta}$ after nobservations [17]. The equation (Equation 2.4) for half-width calculation is presented in Section 2.3.

This approach as proposed in [10] by Heildeberger and Welch, takes two arguments: the desired relative precision of CI (as mentioned above), and the maximal run length of the simulation. Both need to be set up before the simulation is started. The sequential simulation uses a sequence of checkpoints. A checkpoint is a point in time at which the $\epsilon(n)$ is compared with the desired level ϵ . If $\epsilon(n) \leq \epsilon$ the simulation is stopped. If $\epsilon(n) > \epsilon$ the simulation proceeds to the next checkpoint, therefore, giving the experimenter a full control over the final error.

2.5 Automated Simulation Controller Akaroa2

Akaroa2, developed at the University of Canterbury [18], is an automatic controller based on Multiple Replications in Parallel (MRIP) scenario of sequential distributed simulations. It automatically launches multiple replications, which produce statistically equivalent sequences of observations. These sequences are then provided to the global analyser, which estimates the wanted measure and assesses if the stopping conditions have been met. Akaroa2 implements a modified method of Spectral Analysis (SA/HW) (non-modified version is introduced later in Section 3.2.6) [16] and a sequential version of the classical non-overlapping batch means method (introduced later in Section 3.2.2, as proposed in [20] by Pawlikowski. It has been shown that SA/HW is superior to non-overlapping batch means in terms of quality of the coverage of CIs [22] (it has not been compared to dynamic batch means methods yet, see Section 3.2.5). Akaroa2 is coded in C++ and runs on Unix workstations, it can also be used not only for mean analysis, but also for proportions and quantiles.

Akaroa2 has four main components: *akmaster*, *akslave*, *akrun* and *simulation engines*. Where simulation engines are the processes that run on multiple CPUs, in a LAN, and produce parallel streams of simulation output [5].

2.5.1 Akmaster

Akmaster is the global simulation controller, it runs, maintains parallel simulation engines, it provides global output analysis and assesses stopping conditions [5].

2.5.2 Akslave

Akslave is the process that runs on hosts, runs simulation engines that are coordinated by akmaster.

2.5.3 Akrun

Akrun is the user terminal interface to initiate simulations. It takes several arguments such as simulation name to be run, starting seed, number of simulation engines to use, output analysis method, initial transient method, relative precision and confidence level. Example can be seen in Figure 2.2.

Figure 2.2: Akaroa2 output

When akrun is invoked it contacts the akmaster, which provides an ID of the simulation and chooses a host (running akslave) for each simulation engine based on the requested number -n. Akmaster then tells akslave on that particular host to launch a simulation and provides the parameters, as well. Akmaster maintains the host name and port for duplex communication between akslave and itself. Simulation engine generates the data locally on each host and analysis of such data is also done locally by akslave. That means a need for local initial transient detection for each simulation engine. The simulation output analysis is done sequentially, meaning if a checkpoint was reached, akslave sends the local estimates $(\hat{\theta}(n) \text{ and } \sigma^2(\hat{\theta}))$ to the akmaster to be incorporated to the global estimate i.e [5]:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{N} n_i \hat{\mu}_i, \qquad (2.7)$$

$$\hat{\sigma}^2(\hat{\mu}) = \frac{1}{n^2} \sum_{i=1}^N n_i^2 \hat{\sigma}_i^2(\hat{\mu}_i), \qquad (2.8)$$

"where μ_i is the local estimate from the simulation engine i, $\hat{\sigma}_i^2$ is the local estimate of the variance of μ_i , n_i is the number of observations from engine i, N is the number of engines and $n = \sum_{i=1}^{N} n_i$ [5]". When the global estimates are calculated the analysis of the stopping condition, such as relative error (Equation 2.6), is performed. If they are reached, akmaster kills the simulation engines and sends the final estimates back to akrun to be presented to the user. The principle of function can be seen in Figure 2.3

Akaroa2 uses Combined Multiple Recursive Generator for the generation of random numbers, which will be introduced in Section 2.6. It also provides APIs for the user to implements its own simulation models.

Figure 2.3: Akaroa2 function [5]

2.5.4 Distributed Simulations

In this section we introduce the two approaches that are widely used in order to speed up the simulation runs. First, we introduce the Single Replication in Parallel scenario and after we will talk about Multiple Replications in Parallel scenario, a scenario that we use within this research.

Single Replication in Parallel

In Single Replication in Parallel (SRIP) scenario is the simulation model split up between a number of simulation engines (processors) or is split into independent sub-models. As mentioned in [23], SRIP does not provide a significant speed up as the level of distributiveness of such model is highly limited, and some models cannot be split up at all. Another problems include that if one replication fails, the whole simulation experiment fails. Therefore, it is not recommended to use such scenario to speed up simulation experiments.

Multiple Replications in Parallel

Pawlikowski has mentioned, in [23], that simulation run-length only depends on the time needed to collect the necessary number of observations. This has lead to the idea behind MRIP. In the MRIP scenario independent replications of a simulated model are run on different simulation engines. These engines would then produce statistically different, independent, streams of observations of such simulated model, in our case representing the steadystate mean. The observations are then submitted to one global analyser (Akmaster) which controls the simulation run and decides if such simulation has collected enough observations and the stopping condition has been satisfied, see Section 2.3. If the stopping condition has been satisfied, all the simulation engines are stopped at the same time, even if one engine might be still running a replication.

However, a problem arises here, if one simulation engine is much faster than the other ones a possibility exists that this simulation engine would perform all the work before the slower engines could even finish one replication. On the other hand, MRIP has shown that while used on similar CPUs the speed up is significant and can even improve the quality of used methods of output analysis [22]. In our research we have used MRIP with only one replication (single simulation engine) per model.

For more information please refer to [18].

2.6 Pseudo Random Number Generators

Simulating processes that include random components necessarily calls for use of random numbers that are drawn from a specified distribution. Before the incline of simulation experiments, random numbers were drawn by hand, dice rolling, or simple machines. However, they included many problems such as speed of producing numbers or need to save every random number to a memory for later use, such as debugging or reproduction of results. Therefore they cannot be used for computer based stochastic simulations. That lead to use of algorithmic random number generators, where the numbers are produced based on an formula (algorithm). One can see that such numbers are not random at all, but they only appear random, therefore we will talk from now on about pseudo random number generators (PRNGs). Section 7.1 in [13], outlines rules that every proper PRNG has to satisfy. The rules include that PRNG should produce numbers fast, the numbers have to appear distributed uniformly on U[0,1] and cannot be correlated with each other. The generated sequence has to be reproducible, PRNG has be be able to produce independent streams of random numbers, be easily implementable and efficient in time and memory. It also well known that algorithmic PRNGs have a limited period, where if the period passes the random numbers would start to repeat, this leads to another rule that such period should be long enough. Hellekalek gives a good overview of standards for good PRNGs in [11]. As can be seen from the introduced rules, it is not very easy to find a correct generator. Next section will introduce basic PRNGs that have been used widely for computer based stochastic simulations.

2.6.1 Linear Congruential Generators

Linear Congruential Generators (LCGs) have been and probably still are one of the most used PRNGs. The sequence of random numbers is is given by [13]:

$$Z_i = (aZ_{i-1} + c)(mod \ m), \tag{2.9}$$

$$u_n = \frac{Z_n}{m},\tag{2.10}$$

where m is the modulus, a is the multiplier, c is the increment and Z_0 is the starting point, or seed. As mentioned above, the sequence of $Z_1, Z_2, ..., Z_n$, is not random at all. So the selection of parameters has to be given a special attention. The integers have to satisfy 0 < m, a < m, c < m and $Z_0 < m$ [13]. It is quite clear that such sequence would eventually exhaust all possible random numbers, amount depends on parameter selection, and loop itself around and produce same random numbers. If parameters are selected properly it is expected that LCG will produce sequence of random numbers from 0 to m, called full period. The seed Z_0 is the only parameter that has to be remembered in order to reproduce same sequence of random numbers. The random number u_n would then be a independent and identically distributed in the range [0,1) [25].

Multiplicative LCG

Probably the most commonly used PRNG based on LCG is the multiplicative LCG (MLCG). The parameter c is here selected to be 0, c = 0. But, by carefully selecting the parameters a and m, a period of m - 1 can be achieved. It has been shown that m can be selected as 2^b , where b is the number of bits that the computer, or compiler, has available. Therefore on 32-bit computer $m = 2^{3}1$. However, this is not sufficient as it does not guarantee that such generator will produce a full period. In MLCG the parameter m is selected as the largest prime number less than 2^b and if ais the primitive element modulo m, that is the smallest integer $a^l - 1$, we can obtain a almost full period of m - 1, where each random number would repeat exactly once in period [13].

2.6.2 Combined Multiple Recursive Generator

As it can be seen above MLCG could produce only a relatively small amount of random numbers $(2^b - 1)$. That is solved by the multiple recursive generator (MRG) which is given as follows [25]:

$$Z_n = a_1 x_{n-1} + a_2 x_{n-2} + \dots + a_k x_{n-k} \pmod{m}, \tag{2.11}$$

$$u_n = \frac{Z_n}{m},\tag{2.12}$$

and can achieve up to period of $m^k - 1$. However, as [25] mentioned, one would like to keep coefficients of recurrence 3 small.

Solution to this problem was introduced in [15] by L'Ecuyer et al. They have introduced combined MRG, which combines a J amount of MRGs [25]:

$$Z_{j,n} = a_{j,1}x_{j,n-1} + a_{j,2}x_{j,n-2} + \dots + a_{j,k_j}x_{j,n-k_j} \mod m,$$
(2.13)

$$u_n = \left(\sum_{j=1}^J \frac{x_{j,n}}{m_j}\right) \pmod{1} \ (j = 1, 2, ..., J), \tag{2.14}$$

We will focus here on a MRG32k3a [15], as it the one implemented in Akaroa2. MCRG32k3a is defined by two MRGs each with three terms as follows [25]:

 $a_{11} = 0$ $a_{12} = 1403580$ $a_{13} = -810728$ $m_1 = 2^{32} - 209$ $a_{21} = 527612$ $a_{22} = 0$ $a_{23} = -1370589$ $m_2 = 2^{32} - 22853$

As mentioned in [25] by McNickle, this implementation performs well in statistical tests up to 45 dimensions. The main advantage here is that MRG32k3a achieves a period of 2^{191} with arbitrary seed and at least one non-zero element per MRG. The implementation in Akaroa2 takes the full period and splits it into 2^{127} streams of IID numbers. Each of those is then split into 2^{51} sub-streams of length 2^{76} .

More information on PRNGs can be found in [25], [13], [11] and CMRG can be found in [15].

Chapter 3

Methods of Output Analysis

Due to the random nature of the simulated processes and their often naturally autocorrelated (not independent) features, output data cannot be analysed using classical statistical methods. Secondly, an initial transient period is present, a period where the processes do not characterize steadystate. The initial observations have to be disregarded to reduce the final bias of steady-state estimates. It has also been shown in [17], that initial transient deletion is necessary in order to reduce the risk of simulation stopping prematurely.

Many methods to properly analyse the simulation output and deal with the problems with correlation have been proposed. Three "basic" methods are: independent replications (IRs), non-overlapping batch means (NBM) and spectral analysis (SA). Also we assume that observations $x_1, x_2, ..., x_n$ are from a covariance stationary process, steady-state mean and variance exist, so we can use the following methods.

3.1 Independent Replications

Independent replications have been widely used with fixed-sample size approach to simulation. This method sets up the sample size n prior of the run of the simulation. The sequence of n observations $x_1, x_2, ..., x_n$ can be then split between k independent replications, with m = n/k observations in each. From this a problem arises, where every replication requires to detect transient period at the beginning of each of the replications of the process and discard the observations from this period creating a lot of unnecessary overhead. If the initial sample size n is set up being to small then the estimations of mean will be highly autocorrelated resulting in difference between theoretical coverage $1-\alpha$ and the experimental coverage of the CIs. This is due to that if one increases number of k replications it would lead to smaller batch size m per replication, and therefore increasing the size of

CI for $\hat{\theta}$, not the actual value of $\hat{\theta}$ [14].

For further details please refer to in [20], [13], [14].

3.2 Batch Means Methods

Methods based on batch means split a single run of length n into k batches of size m. Which, if long enough, can be assumed to be independent from each other. The mean is then estimated per batch and contributes to the overall mean over the n observations. The batches can also arbitrary overlap resulting in decrease of the variance of the estimator.

There are methods developed for both fixed and sequential approach of simulation and the most important ones will be introduced in this section.

3.2.1 Non-overlapping batch means

Method of non-overlapping batch means (NBM), as proposed originally by Conway [2], is traditionally used with fixed sample size approach. As described above, the sample size is decided before the actual simulation run and the $n, x_1, x_2, ..., x_n$, observations are split into k batches of size m. The mean is constructed according to the Equation 2.1 and is, therefore, decided from the individual observations and is equivalent to calculating the mean per batch, see Equation 3.2. The variance, or quality measure of the point estimator, is estimated from all of the means over all batches see Equation 2.5, or can be estimated based on the individual batch means, see Equation 3.1.

As mentioned in [20] and [13], the main idea behind this approach is that observations that are separated more in time are less correlated. So if we set up the batch size to be long "enough" the batch means might seem as uncorrelated and normally distributed, which also flows from the Central Limit Theorem as mentioned in Section 2.3. However, this leads to the biggest problem of this method being how to decide if the batches are long "enough". The problem is that if the run length n is too "small" the means over individual batches can be highly correlated and the estimator in Equations 2.5 and 3.1 will be heavily biased. Both of these will negatively influence the size and quality of final CIs, therefore resulting in lower coverage than $1 - \alpha$. Second problem would be how to determine the length of the initial transient period and therefore from which observation can one start creating the batches, because all the observation in batches need to characterize the steady-state of a stochastic process. Transient detection methods will be discussed in the Chapter 4. Idea of batching in NBM is shown in Figure 3.1.

$$\hat{\sigma}^2 = \frac{\sum_{j=1}^{B} (\bar{X}_j - \hat{\theta}(n))^2}{b(b-1)},$$
(3.1)

where

$$\bar{X}_{j} = \frac{\sum_{i=(j-1)}^{jm} x_{n}}{m}$$
(3.2)

is the j-th mean of a batch.

im

Figure 3.1: NBM Batching

3.2.2 Sequential implementation of NBM

The sequential implementation of non-overlapping batch means, as described in [20], will be described in this section. For the sequential implementation of NBM one would need to specify two phases. First, a phase where the initial period of a process is detected and observations from such period are discarded. Second, a phase where the process is simulated and its steady-state performance parameter is analysed. The second phase needs the observations to be representing the steady-state of a process, which is achieved by using the phase one.

As was mentioned above, the observations collected during the simulation are usually highly autocorrelated, therefore the classical statistical methods cannot be used, as they assume independence of data. The main problem with classical NBM is that if the batch size is selected incorrectly, the overall quality of coverage of CI is affected, resulting in usually lower coverage than selected $1 - \alpha$. This is solved by this sequential method, the batch size m^* is selected sequentially here. The implementation in [20], does not keep the observations separately, but rather the means over batches are kept. These batches are then tested for autocorrelation. "A given batch size can be accepted as the batch size for approximately uncorrelated batch means if all L autocorrelation coefficients of lag k(k = 1, 2, ..., L), are statistically negligible at a given significance level β_k ; $0 < \beta_k < 1$ " [20]. Also it is not necessary to estimate autocorrelations coefficients over all means, it is usually enough to estimate only $0.1k_{bo}$ lags, where k_{bo} is the number of batch means used for autocorrelation test. This is given due to that with increasing lag, the autocorrelation coefficients are calculated from lower amount of data, and therefore negligible. The method uses a estimator referred to as "jackknife" for the autocorrelation estimation. This estimator is usually less biased than the ordinary estimators, i.e. [20]:

$$\hat{\hat{r}}(k,m) = 2\hat{r}(k,m) - \frac{\hat{r}'(k,m) + \hat{r}''(k,m)}{2},$$
(3.3)

where k is the lag coefficient and m is the batch size, " $\hat{r}'(k,m)$ and $\hat{r}''(k,m)$ are estimators over the first and second half of the analysed sequence of k_{bo} batch means" [20]. It is also recommended that $k_{bo} \geq 100$, size of batches m should not be less than 50 and that L should not be too large, just about $0.1k_{b0}$ as mentioned earlier.

The method holds two buffers, the "ReferenceSequence" is used for holding means over all the batches of size m_o , and "AnalysedSequence" used to hold k_{bo} number of batches of size $m_s = sm_o$, (s = 1, 2, ...), which is formed from the batch means kept in the reference sequence. The batch size $m^* = m_s$ if the batch size passed the autocorrelation test two consecutive times.

For more detailed explanation and implementation please refer to [20].

3.2.3 Overlapping Batch Means

Overlapping batch means (OBM), as originally proposed by Meketon and Schmeiser in [19], exploit the idea that if you create a new batch with each consecutive observation, you will have more observations in the final estimation of the mean and variance of the mean. However, as it can be seen it also suffers from greater correlation between the means. On the other hand, as was mentioned above, the batch size is more important than the independence between the individual batches. The article in [19] has also shown that the estimator used with OBM has variance 1/3 lower than the "classical" NBM estimator and that it will essentially have 1.5 times greater number of degrees of freedom, while keeping the bias of the estimator the same. The method was developed mainly for fixed sample size approach, where one could have more observations per batch than in the NBM and, therefore, save computational time. Idea of batching in OBM is shown in Figure 3.2.

Figure 3.2: OBM Batching

For more information please refer to [19] and [20].

3.2.4 Dynamic Non-Overlapping Batch Means

The method, as proposed by Yeh and Schmeiser in [30], does not require the run length to be set before the simulation run. Dynamic non-overlapping batch means (DNBM) creates batches on a same principle as NBM does, and therefore splits the sample of n observations into k smaller, independent, batches of size m. DNBM uses finite memory and manipulates the batch size dynamically during the actual simulation run. The methodology here is very similar to the one introduced in [20] for the Spectral Analysis method. The method shows good memory (O(1)) and computational requirements (O(N)).

The main idea is to create a vector, finite memory space, of size 2k(k = 1, 2, ..., 2k) where k is a positive integer, that will hold the observations. This vector constitutes of cells, batches of size m. DNBM holds the observations as sums and each new observation x_n is added to the sum. If the current batch (cell of a vector) becomes full the algorithm would move to the next batch, if any, and add the observation until this batch becomes full. When there is no more space in the memory i.e. all the batches are full, equal to the batch size m, DNBM would "collapse" the 2k batches in vector into k batches. Meaning the means from batches k + 1 up to 2k will be added to the batches 0 up to k and the batch size would be doubled $m = m \times 2$. Hence, half of the vector would essentially become available. The batch size m can be determined from n and k [30]:

$$m = 2^{\left\lceil \log_2 \frac{n}{k} \right\rceil - 1}.$$
(3.4)

Therefore, the batch size will always increase by the power of two. It is recommended to use between 10 to 30 batches i.e. k = 5 to 15 [30]. The method also introduced two estimators, one \hat{V}_{TBM} that would not consider a "partial batch", where partial batch is the last batch that has not been filled up at the current checkpoint, and would truncate all the observations from such batch. Second, \hat{V}_{PBM} , that would consider all the batches as they are. It has been shown in [30] that in terms of mean squared error (MSE), MSE will be introduced in Chapter 5, the \hat{V}_{PBM} shows overall lower MSE especially for small number of batches k the small partial batch helps to reduce the variance more significantly than it increases the squared bias. For higher number of batches the difference becomes negligible. However, this experiment was done only for few processes and the experimental quality of coverage was not assessed at all. Both estimators can be seen in following formulas:

$$\hat{V}_{TBM} = \frac{\frac{m}{n}}{b-1} \sum_{i=1}^{b} \left(\frac{A(i)}{m} - \hat{\theta}_{bm}\right)^2, \tag{3.5}$$

$$\hat{V}_{PBM} = \frac{\sum_{i=1}^{r_A - 1} \left(\left(\frac{A(i)}{m} - \hat{\theta}(n)\right) \right)^2 + \left(\frac{m_A}{m}\right) \left(\left(\frac{A(r_A)}{m_A} - \hat{\theta}(n)\right)^2 - \left(\frac{A(r_A)}{m_A} - 1\right) \left(\frac{A(r_A)}{m_A} - 1\right) \left(\frac{A(r_A)}{m_A} - 1\right) \right)^2}{(r_A - 1)(r_A - 1 + \frac{m_a}{m})}, \quad (3.6)$$

where A is the vector of size 2k, m is the current batch size, n is the sample size, $\hat{\theta}(n)$ is the overall sample mean, $\hat{\theta}_{bm}$ is the sample mean of truncated data, $b = \lfloor \frac{n}{m} \rfloor$ is the number of full batches, m_A is the batch size of a current batch pointed to by r_A . Idea of batching in DNBM is shown in Figure 3.3.

For detailed description please refer to [30].

Figure 3.3: Collapsing in DNBM

3.2.5 Dynamic Partial-Overlapping Batch Means

Dynamic partial-overlapping batch means (DPBM) were proposed originally in [27], [26] and [28] by Song. The main idea here is to collapse a vector of a certain size in the same way as in DNBM. But to use a special case of OBM called partial overlapping batch means (PBM), as can be found in [29]. The idea behind PBM is to shift the overlap and do not create a new batch with each new observation x_n as in OBM. The shift has been selected to be m/4 and it has been shown, see [27], that PBM estimator with m/4shift has only 3 % higher asymptotic relative variance than OBM see Table 3.1 while reducing the correlations between the batch means. To implement this idea in DPBM it is required to have 4 vectors of size 2k, where all the data will be stored. The idea is to collapse all the vectors when the first vector becomes full. The idea of collapsing the first vector is identical to the one of DNBM, however to create a 75 % overlap the observations have to be collapsed into second, third and fourth vector, as well. When the first vector becomes full for the first time the data are collapsed only into the first and second vector. Every other collapse the data are collapsed into all four of the vectors. After collapsing has occurred for all of the vectors it is necessary to save the observation x_n into all of them. For detailed algorithm see [27]. The idea of collapsing can be seen in Figure 3.4. The variance estimator is described as following [27]:

$$\hat{V}_{DPBM} = \frac{1}{d_b} \Big[\sum_{i=1}^{b_1} \Big(\frac{A_k(i)}{m} - \hat{\theta}(n) \Big)^2 \\ + \sum_{i=1}^{b_2} \Big(\frac{B_k(i)}{m} - \hat{\theta}(n) \Big)^2 \\ + \sum_{i=1}^{b_3} \Big(\frac{C_k(i)}{m} - \hat{\theta}(n) \Big)^2 \\ + \sum_{i=1}^{b_4} \Big(\frac{D_k(i)}{m} - \hat{\theta}(n) \Big)^2 \Big],$$
(3.7)

where b_i , i = 1, 2, 3, 4 are number of full batches in vector A to D [27]:

$$b_1 = r_1 - 1 + \left\lfloor \frac{m_1}{m} \right\rfloor, b_2 = r_2 - 1 + \left\lfloor \frac{m_2}{m} \right\rfloor, b_3 = r_3 - 1 + \left\lfloor \frac{m_3}{m} \right\rfloor, b_4 = r_4 - 1 + \left\lfloor \frac{m_4}{m} \right\rfloor, (3.8)$$

(3.8) $d_b = n((\frac{n}{m}) - 1), \ b = \left\lfloor \frac{(n-m+s)}{s} \right\rfloor$ and s = m/4. See [27] for proof. The batch size amounts to $m = 2^h$, where h is the number of collapses.

However, the DNBM and the original DPBM [27] do not reflect the correlation structure of the data as the batch size is selected only on a basis of n and k. To overcome this problem a mse-optimal DPBM (MSE-DPBM) estimator was proposed in [28]. The algorithm of MSE-DPBM would take a value of current estimated variance with batch size m, $(V)_D PBM(m)$, as

i	Shift s=m/i	Estimator Type	$\frac{\sigma^2(\hat{V}(m,s))}{\sigma^2(\hat{V}^O(m))}$	$\frac{bias(\hat{V}(m,s))}{bias(\hat{V}^O(m))}$
1	m	NBM	1.50	1
2	m/2	PBM	1.12	1
3	m/3	PBM	1.06	1
4	m/4	PBM	1.03	1
m	1	OBM	1.00	1

Table 3.1: Asymptotic bias and variance result [27]

a baseline to estimate the optimal batch size \hat{m}^* . It would then adjust the value of batch size, or memory size, accordingly to the value of \hat{m}^* to reflect the correlation of the data [28]. If the current batch size m is far greater than \hat{m}^* the algorithm increases the memory k, k = k + 1 and no collapsing occurs. The crucial step is therefore to estimate the \hat{m}^* and for sufficiently large m and n it is:

$$\hat{m}^* = (1.03n(\frac{\hat{\gamma}_1}{\hat{\gamma}_2})^2)^{\frac{1}{3}} + 1, \qquad (3.9)$$

where $\hat{\gamma}_0$ is the sum off all correlations:

$$\hat{\gamma}_0 = n\hat{V}_{DPBM}(m)/\hat{R}_0, \qquad (3.10)$$

 $\hat{\gamma}_1$ is the sum of all weighted correlations:

$$\hat{\gamma}_1 = nm[\hat{V}_{DPBM}(m) - \hat{V}_B(\frac{m}{2})]/\hat{R}_0,$$
(3.11)

and \hat{R}_0 is the sample variance:

$$\hat{R}_0 = n^{-1} \left(\sum_{i=1}^n x_i^2 - n\hat{\theta}^2\right).$$
(3.12)

 $\hat{V}_{DPBM}(m)$ is the current estimated variance Equation 3.7 and $\hat{V}_{DPBM}(m/2)$ is the previous estimated variance, or variance that was calculated before the batch size was doubled (collapsing) and equals to 50 % OBM estimator proposed in [26] i.e.:

$$\hat{V}_B(m/2) = \frac{1}{d_b} \left[\sum_{i=1}^{b'_A} \left(\frac{A'_{j-1}(i)}{m_{j-1}} - \hat{\theta}_n \right)^2 + \sum_{i=1}^{b'_B} \left(\frac{B'_{j-1}(i)}{m_{j-1}} - \hat{\theta}_n \right)^2 \right], \quad (3.13)$$

 m_{j-1} is the previous batch size at previous step j, or m/2, $d_b = n((\frac{n}{m_{j-1}})-1)$, $b = \lfloor \frac{(n-m+s)}{s} \rfloor$, and A'_{j-1}, B'_{j-1} are virtual vectors, constructed to represent a previous state of vectors, because the previous state of the four vectors is overwritten at step this step. See Equations (13)-(16) in [26].

More information can be found in [27], [26] and [28].

Figure 3.4: DPBM Collapsing [28]

3.2.6 Spectral Analysis

Assuming that the process has already passed its initial transient period and the observations characterize the steady-state of a process the Spectral Analysis (SA) can be used.

Spectral Analysis was initially proposed in [9] and modified for use under Akaroa2 [18] and [16]. From a covariance stationary 4.1 sequence of observation $x_1, x_2, ..., x_n$ assume that $\gamma(k)$ is the covariance function given by [9]:

$$\gamma(k) = E[(x(j) - \hat{\theta}(n)(x(j+k) - \gamma)], \qquad (3.14)$$

and $\sum_{k=-\infty}^{\infty} \|\gamma(k)\| < \infty$. So that the process has a spectral density p(f) and the functions $\gamma(k)$ and p(0) are, therefore, Fourier pairs [9]. It is well known that the variance can be estimated $\hat{\sigma}^2 = p(0)/n$, the spectral density at frequency zero divided by number of observations.

SA does not suffer from the problems with autocorrelated data. Original implementation by Heidelberger and Welch does plan for the method to be used in the sequential approach and also groups the collected observations into finite number of batches to save memory, rather than saving all the observations. It can be seen that the main problem here is how to estimate the p(0). "The variance is obtained as the value of the periodogram $\Pi(f)$ (of the analysed sequence of observations) at the frequency f = 0 [3]. As the peridogram, especially for low fs, is highly variable the periodogram is transformed into a logarithm of an averaged periodogram to achieve a smoother function. A regression fit to such logarithm of the averaged periodogram is applied to obtain the value of the periodogram at f(0). The polynomial degree of the regression fit is usually less than two, $d \leq 2$ using a fixed number, K, of the points of such periodogram $\Pi(f)$. In [9] authors show that to estimate the steady-state mean μ_x we should use d = 2 and K = 25 and the CI of such μ_x can be constructed using quantiles of the Student t distribution with degrees of freedom equal to 7 (df = 7) [3]. Various values for d and k have been tested in [8], but no significant change was achieved. For more detailed explanation please refer to [9], [20] and [3].

This method, as mentioned above, has been modified for use in Akaroa2 in [20] and later modified in [16]. In [20] the method takes two arguments, relative precision of the estimates and maximal simulation run length. Sequential approach using checkpoints, as described in Section 2.4.2, is used and selection of checkpoints is explained in detail in [20]. The method uses a finite memory and groups the observations into batches M, where the minimal number of batches is 100. A mean $\hat{\theta}(n)$ is then calculated per each of the batches and observations are, therefore, kept as their means to save memory. When M batches with batch size m are collected half of the batches, from middle to the end, are collapsed into the batches in front and doubling the batch size. It has been found in [16] that SA/HW performs very well in terms of quality of the CIs when the acceptable error is greater than 10 %. However, the quality lowers when a higher precision is necessary as the simulation can stop prematurely. The method in [16] swaps the polynomial used for the regression fit to the average of the periodogram points, which would equal to using a polynomial of degree 0.

Chapter 4

Initial Transient Detection

The purpose of this sections is to introduce initial transient period detection methods and steady-state processes that have been used within the experiments in this thesis.

4.1 Stationarity

As was said in Chapter 3 the methods of output analysis, and is important for our research, assume that the observations collected during the simulation of a stochastic process characterize the steady-state behaviour of a simulated process. And that the processes simulated are stationary [12]:

$$F_X(x;t+\tau) = F_X(x;t), \tag{4.1}$$

have constant mean, constant variance and the lag - h covariances depend only on the time interval h i.e. the process $\{X_i\}$ is covariance stationary when:

1. $E[X_i] = \mu_x$, 2. $\sigma^2[X_i] = E[X_i^2] - \mu_x^2$, 3. $Cov\{X_i, X_{i+h}\} = E[X_i X_{i+h}] - \mu_x^2 = R(h)$.

4.2 Initialization Detection

If one simulates a stochastic process, which involves an input of random numbers, it is well known that such process is in the beginning in its transient phase and its stochastic parameters vary in time. It is important to use a transient detection method to delete observations from such stage and use only those observations x_n that have been collected after the process passed this stage and is, therefore, stable. It can be said that the main reason
one would be using initial transient detection method is to find a truncation point, after which observations can be considered as representing the steadystate of a stochastic process. It was shown that including a initial transient detection method with fixed sample size approach can improve the quality of and estimator, meaning its bias will be lowered [20]. In [17] McNickle mentiones that with sequential approach this is not the issue, as one could run the simulation long enough to reduce the influence of initial observations. However, in [17] McNickle has also found that it is recommended to use a method of transient detection, to prevent simulation stopping prematurely.

4.2.1 Schruben's Test

First method that has been used in the experiment is based on Schruben's test of stationarity, as implemented by Pawlikowski in [20], and its main idea is to test, sequentially, if sufficient number of initial observations has been deleted and the process can be assumed to be in its steady-state, hence observations x_n used for the final estimation and analysis represent the steadystate parameters. The heuristic rule that "the initial transient period is over after n_0 observations if the time series $x_1, x_2, ..., x_{n_0}$ crosses the mean X_{n_0} k times "[20] is applied to get the first approximation of a truncation point n_0^* . \bar{X}_{n_0} is the mean estimate $\hat{\theta}(n)$, and k are selected to be equal to 25. Using this rule we get a sequence n_t of observations that can be tested for stationarity. As mentioned in [20] a problem arises that it is necessary to know the degrees of freedom for the steady-state estimator $\sigma^2(\theta(n))$ earlier than we know that the process is in its stationary phase. The paper mentions that one should only do the estimation over observations from subsequence n_v of currently testing sequence n_t . Taking $n_t \geq \gamma_v n_v$, where $\gamma_v \geq 2$. Schruben has selected the n_t to be at least $n_t = 200$, meaning 200 observations would be stored before stationarity testing. However, the initial period can be longer than n = 200, therefore Pawlikowski recommended in [20] that:

$$n_t = max(\gamma_v n_v, \gamma n_o^*), \tag{4.2}$$

"where γn_0^* is the smallest length of one step in sequential testing for stationarity for a given $n_0^*, \gamma > 0$ [20]". The method would discard n_0^* observations and after next n_t observations are collected it would calculate the $\sigma^2(\hat{\theta}(n))$ using one of the methods mentioned in Chapter 3. When the $\sigma^2(\hat{\theta}(n))$ is estimated the method can start testing the n_t sequence for stationarity. If the truncation point was assumed correctly, the process can be assumed to be in its steady state. If not more γn_0^* observations would be collected and whole process would be repeated until the length of initial period has been found, or limit for maximum number of observations used for the detection is reached. If the maximum number is reached, process can be regarded as not stable. However, it was shown in [20] that Schruben's test is rarely initiated after the mean \bar{X}_{n_0} is crossed 25 times and this point is declared by the end of initial transient period by the first Schruben's test. In our research we refer to this methods as "25 crossings".

For more information please refer to [20].

4.2.2 Method Of Cumulative Means

Second method used within the experiment is a transient detection method based on cumulative means and developed by Freeth in [6]. Cumulative mean is constructed from sequence of all observations x_n and produces a new sequence of such means [6]:

$$C_t = \frac{1}{t+1} \sum_{i=0}^t x_n, \tag{4.3}$$

 C_t is then a running mean of t + 1 observations at time t. Where the observations are expected to be realization of a system in its steady-state. However, as was shown before, if one runs the simulation for a long period of time, the effect of initial observations becomes negligible. That said it can be seen that C_t would eventually converge to the steady-state mean μ_x as t increases, from a graphical point of view C_t , the graph would become more and more flat for increasing t [6]. Hence, it can be seen that cumulative means can be used as a method for detecting the truncation point in sequential steady-state simulations. To allow automatic detection of the truncation point a forecasting method has to be used to decide if the plot of C_t has become sufficiently flat and horizontal.

Freeth has found that to detect the flatness of the plot of C_t a single exponential smoothing is to be used instead of double exponential smoothing. That has been found on a basis of preliminary testing, as it is not necessary to use forecasting using slopes as double exponential smoothing uses. It is also due to that if C_t converges to flatness single smoothing would be more precise and the bad accuracy while the system is not in its steady-state will be amplified, hence allowing for easier determination of the truncation point [6]. The smoothed time is represented by [6]:

$$s_t = \alpha C_t + (1 - \alpha) s_{t-1}, t \ge 1, \tag{4.4}$$

where $s_0 = C_0$ and α is the smoothing factor such that $0 < \alpha < 1$, as Freeth has found lower the α is the bigger the smoothing is. To forecast subsequent C_{t+1} the value of s_t is used. Then one step ahead error e_t forecasting is used to detect the truncation point. e_t is given by:

$$e_t = s_{t-1} - C_t, (4.5)$$

so then e_t would converge to zero as s_t converges to C_t . However, due to the randomness of the process, s_t and C_t could cross even within initial phase. A method for correctly detecting e_t has to be used.

Using absolute error of e_t is not sufficient enough as it could give underestimated value of truncation point. To overcome this, Freeth proposed a detection condition based on the sample standard deviation of the forecasting errors S_e :

$$E_t \le \gamma N S_e, \tag{4.6}$$

The stopping condition compares E_t with the variation in the observed data, $\gamma, \gamma > 0$, is a constant, all the observations within this window can be assumed to be characterizing the steady-state if such condition is met and the truncation point is then a point at the beginning of this sequence l = i - N + 1 [6]. It has been experimentally found that E_t should be calculated from sum of squared forecasting errors to reduce the influence of S_e being taken from non-stationary phase, which would artificially widen the value of E_t . E_t is then:

$$E_t = \sum_{i=0}^{N-1} e_{t-1}^2, t \ge N - 1, \tag{4.7}$$

The values of α and γ have been found experimentally to perform the best at 0.01 and 0.1 respectively.

Since we are dealing with steady-state simulations in this thesis we propose that Cumulative Means should be used as an initial transient detection method, as it produces much longer length of initial transient and is, therefore, safer than "25 crossings" method [6]. So that one can be safer in assuming that observations x_n used for the estimation of the steady-state mean are actually observations characterizing the steady-state behaviour of a stochastic process being simulated. On the other hand, as it is shown in [17], the selection of method used for the initial transient detection does not have a huge impact on the final steady-state estimates as the simulation runs long enough.

Analysis

Chapter 5

Coverage Analysis

As mentioned above, to be confident that simulation is producing the correct results, one needs to be sure that the model used for simulation is valid and representing correctly the real world system under study. Secondly, a correct pseudo random generator has to be used, PRNGs were be introduced in Section 2.6. Lastly, use a statistically correct method of output analysis. This thesis deals with the last problem i.e. how good is an estimator in terms of its coverage by CIs. We have been focusing on steady-state mean analysis of stochastic processes under sequential approach to simulation.

There are three common measurements used to assess the quality of an estimator [20]:

1. Bias of an estimator, is a measure of systematic error of measured parameter, steady-state mean in our case. Or difference between the estimated value to the true mean.

$$Bias[\hat{\theta}(n)] = E[\hat{\theta}(n) - \mu_x].$$
(5.1)

2. Variance of an estimator, is a squared deviation of the estimator from its mean value.

$$\sigma^{2}[\hat{\theta}(n)] = E[\{\hat{\theta}(n) - E[\hat{\theta}(n)]\}^{2}].$$
(5.2)

3. Mean squared error, is the difference between the estimator and what is estimated. MSE corresponds to the expected value of the squared error. The difference occurs due to the randomness or because the estimator is not correct in its assumptions, in our case does not address the autocorrelation of data correctly.

$$MSE[\hat{\theta}(n)] = Bias[\hat{\theta}(n)]^2 + \sigma^2[\hat{\theta}(n)].$$
(5.3)

The main problem with these measures is that if the estimator does not address the autocorrelation correctly (every estimator contains different assumptions), the MSE value will be affected depending on the quality of the method. Also, as it can be seen from the Equation 5.3 if variance grows and bias decreases, MSE remains low, but the final CIs produced might be bigger and unstable.

Therefore a different approach to the assessment of quality of an estimator has to be developed. Pawlikowski et al. in [22] proposed an experimental approach to the assessment of the quality of an estimator. The coverage of confidence intervals, as mentioned above, is defined as a relative frequency with which the final confidence interval contains the true value μ_x . If one sets up the theoretical confidence level to be $1 - \alpha$ it is also expected that if simulation is run 100 times, the CIs would cover the true mean $1 - \alpha$ times. However, this is not always true in practice. The coverage can be determined together with its CI [22]:

$$\left(c - z_{1-\frac{\alpha}{2}}\sqrt{\frac{c(1-c)}{n_c}}, c + z_{1-\frac{\alpha}{2}}\sqrt{\frac{c(1-c)}{n_c}}\right),$$
 (5.4)

where c is the estimated coverage of confidence intervals and n_c is the number of replicated coverage experiments. One would expect c to be very close to the theoretical level $1 - \alpha$. Pawlikowski in the article argues that, if sequential approach was used to produce one coverage experiment, the coverage analysis has to be done in sequential way as well. Three rules have been set up in [22]:

- 1. Coverage should be analysed sequentially, i.e. analysis of coverage should be stopped when relative precision (the relative half-width of confidence interval) of the estimated coverage satisfies a specified level.
- 2. An estimate of coverage has to be calculated from a representative sample of data, so the coverage analysis can start only after minimum number of "bad" confidence intervals have been recorded.
- 3. Results from simulation runs that are clearly too short should not be taken into account.

We have considered methods of MSE-DPBM [28] and SA/HW [16] for the coverage analysis, as SA/HW has been already shown to perform better in terms of coverage of confidence intervals to sequential method of NBM [20] in [22]. Method of MSE-DPBM has been selected on basis that it is believed to be superior to other batch means methods and is the latest one in evolution of estimator based on BM. Using experimental analysis of coverage of confidence intervals limits us to use of analytically tractable models only, because a true mean μ_x has to be known in order to assess if CI covers the μ_x or not. Following section will introduce the stochastic processes that have been used for the coverage analysis. We have focused solely on mean waiting time, θ_w , analysis of the queueing processes and mean value of autoregressive process. These processes have been selected on a basis of their autocorrelation functions, where queueing processes have non-fluctuating shape and autoregressive processes have fluctuating autocorrelation function and are used widely as reference models.

5.1 M/G/1

A M/G/1 process is described here only for description purposes of queueing processes. M/G/1 are queuing processes where the arrival times are Poisson distributed, service times are of general distribution and one server is present. Traffic intensity ρ is given by $\rho = \frac{\lambda}{\mu}$, where λ is arrival rate and μ is the service rate. As this experiment is dealing only with processes that are stable, condition $\rho < 1$ has to be satisfied. The service time has been set to $\mu = 10$ as most of the processes are already implemented in Akaroa2, specifically M/M/1, M/D/1 and M/H₂/1. The processes were initialized idle.

5.2 M/M/1

A M/M/1 process is a M/G/1 process with exponentially distributed service rates. The steady-state mean for mean waiting time, the time customer spends in the queue is given by [12]:

$$\theta_w = \frac{\rho}{\lambda(1-\rho)}.\tag{5.5}$$

5.3 M/D/1

A M/D/1 process is a M/G/1 process with deterministic service rates D(mu = 1/D). The steady-state mean for mean waiting time [12]:

$$\theta_w = \frac{1}{2\mu} \frac{\rho}{1-\rho}.$$
(5.6)

5.4 $M/H_2/1$

A $M/H_2/1$ processes have Erlang distributed, with shape parameter k=2, service rates. The steady-state mean for mean waiting time [12]:

$$\theta_w = \rho - \frac{\rho^2}{8(1-\rho)}.$$
 (5.7)

5.5 Autoregressive Process

An autoregressive process of order one, AR(1), have output generated by a formula [7]:

$$X_t = c + \phi X_{t-1} + \epsilon_t, \tag{5.8}$$

for a constant c and ϕ , which is the parameter of the autocorrelation model. The white noise ϵ_t is a Gaussian distributed with zero mean $E[\epsilon_t] = 0$ and constant variance $\sigma^2[\epsilon_t] = \sigma_{\epsilon}^2$. The mean is then calculated as following:

$$\mu = \frac{c}{1 - \phi}.\tag{5.9}$$

AR(1) was implemented for this thesis as following, c = 1, and ϵ_t was taken as N(0,1) random number. Parameter c was selected to be equal to one, because of the relative error calculation in Equation 2.6, to avoid division by zero.

5.6 Open Queueing Network

The open queuing network was implemented according to the figure 5.1.

Figure 5.1: Open Queueing network

After processing a random fraction of jobs p_1 , p_2 return to Disk 1 or Disk 2. A fraction p_3 leaves the system. The mean CPU service time is 6, the mean service time for each disk is $p_1 = p_2 = 0.4$, all distributions are negative exponential, and the source rate is set to give loads at the CPU ranging from 0.5 to 0.95 [17]. This model is referred to as QNet later in this thesis.

5.7 Implementation of Coverage Analysis

. Coverage analysis has been introduced in the previous section of this chapter. We use the rules as specified in [22] to evaluate the correctness of simulation output analysis methods (SOAM), such as SA/HW, DPBM, MSE-DPBM and Modified MSE-DPBM, in simulations of analytically tractable models. This allows us to compare the experimental, estimated, value to the true performance parameter of a model, in our case we are only considering steady-state mean μ_x . Coverage is the experimental confidence level of the final CIs produced by a given SOAM. Meaning the proportion of final experimental CIs that cover the true mean of a model, see 5.4. We are using a sequential approach to the coverage analysis, and such analysis is stopped when absolute error $\Delta_{z-\frac{1}{2}}$ is lower than 1 %. Since we expect the values to be very close to one, using theoretical confidence level of 95%, we can use the absolute error instead of relative error as in Equation 2.6 and be safe that the CIs are narrow and stable.

It is often not true that in practice that a method would cover the true mean μ_x at the expected confidence level $1 - \alpha = 95\%$, therefore we accept the SOAM as being correct if the experimental coverage is sufficiently close to the theoretical value. If the coverage is higher than expected we assume that the SOAM might be stopping the simulation too soon. If the coverage is lower the SOAM is most likely stopping the simulation too early.

For the coverage analysis we use the models described above. We use wide range of traffic intensities, ρ , for the queueing models (0.5, 0.6, ..., 0.95) and the same range for the AR(1)'s ϕ parameter. All the queueing models have been initialized empty with service rate $\mu = 10$. We have selected the memory size parameter of DPBM k, k = 15 and 50 for MSE-DPBM k = 15and for Modified MSE-DPBM k = 15.

Implementation of the rules as specified in [22]:

- Record 200 "bad" CIs, the CIs that do not cover the true mean of a simulated model.
- Compute the average length from all simulations \overline{L} and standard de-

viation $\sigma(\bar{L})$.

- Reject all simulation runs that are shorter than one standard deviation below the mean $L_{min} = \bar{L} \sigma(\bar{L})$.
- Compare estimated $\hat{\theta}$ to the true mean μ_x . Continue until stopping condition has been reached $\Delta_{z-\frac{1}{2}} < 1$, while still rejecting the too short simulations.

As the study is very intensive on time and computational resources a MySQL database is set up, where we keep all the results of each coverage experiment (single simulation experiment) separate. Block diagram of the coverage analysis can be see in Figure 5.2. Coding is done in Perl and can be seen in Appendix D.

Figure 5.2: Coverage Analysis

Coverage has been run for all the combinations as can be seen in the Table 5.1.

We have used 64bit Linux distribution with CPUs based on Intel architecture for the experiment. We use a single processor scenario of MRIP to assess the quality of methods.

Model	Analysis Method	Initial Transient	Load/ϕ	Confidence level
M/M/1	DPBM	Schruben	$0.5,0.6,,\!0.95$	0.95
M/M/1	DPBM	CumulativeMeans	$0.5, 0.6, \! 0.95$	0.95
M/M/1	SA/HW	Schruben	$0.5, 0.6,, \!0.95$	0.95
M/M/1	SA/HW	CumulativeMeans	$0.5, 0.6, \! 0.95$	0.95
$M/H_2/1$	DPBM	Schruben	$0.5,0.6,,\!0.95$	0.95
$M/H_2/1$	DPBM	CumulativeMeans	$0.5, 0.6 \dots , 0.95$	0.95
$M/H_2/1$	SA/HW	Schruben	$0.5,0.6,,\!0.95$	0.95
$M/H_2/1$	SA/HW	CumulativeMeans	$0.5, 0.6 \dots , 0.95$	0.95
QNet	DPBM	Schruben	$0.5,0.6,,\!0.95$	0.95
QNet	DPBM	CumulativeMeans	$0.5, 0.6, \! 0.95$	0.95
QNet	SA/HW	Schruben	$0.5, 0.6,, \!0.95$	0.95
QNet	SA/HW	CumulativeMeans	$0.5, 0.6, \! 0.95$	0.95
M/D/1	DPBM	Schruben	$0.5, 0.6,, \!0.95$	0.95
M/D/1	DPBM	CumulativeMeans	$0.5, 0.6, \! 0.95$	0.95
M/D/1	SA/HW	Schruben	$0.5,0.6,,\!0.95$	0.95
M/D/1	SA/HW	CumulativeMeans	$0.5, 0.6, \! 0.95$	0.95
AR(1)	DPBM	Schruben	$0.5,0.6,,\!0.95$	0.95
AR(1)	DPBM	CumulativeMeans	$0.5,\ 0.6 0.95$	0.95
AR(1)	SA/HW	Schruben	$0.5, 0.6,, \!0.95$	0.95
AR(1)	$\rm SA/HW$	CumulativeMeans	$0.5,\ 0.6 0.95$	0.95

 Table 5.1: Coverage Experiments

Experiment Design

Chapter 6

Experiment Design

In this chapter we introduce the experiment design and settings. We present the modifications of DPBM methods, this are done in order to be able to implement such methods as a component of Akaroa2.

6.1 Akaroa2 Simulation Controller

The methods of DPBM have to be modified for their inclusion as a component of Akaroa2. This functions are receive an observation, check if checkpoint was reached and send the estimated values $\hat{\theta}(n)$ and $\sigma^2(\hat{\theta})$. The method then runs on each of *akslave*'s simulation engines and performs the local estimation of parameters, these estimations are in our case: mean $\hat{\theta}$ and variance of the mean $\sigma^2(\hat{\theta})$. Methods have to register themselves as a available method to Akaroa2, see [4] or Appendix F. It is also necessary to specify checkpoint spacing, a point in time when estimates are sent to *akmaster* for analysis. Checkpoint spacing will be introduced in Section 6.2.1.

6.2 Output Analysis Methods

Four output analysis methods are selected for the analysis of their coverage as introduced in Chapter 5. Namely SA/HW as implemented in [16] by Pawlikowski et al., DPBM [27], MSE-DPBM [28], as implemented by Song, and a modified version of MSE-DPBM. All of the methods, except SA/HW which is already present in Akaroa2, are presented here in their modified form. The modifications include functions that are necessary in order for the methods to work as a component of Akaroa2.

6.2.1 Dynamic Partially-Overlapping Batch Means

Dynamic partially-overlapping batch means as implemented in [27] by Song, is selected for the experiment only as a reference method, and is not suitable for automated analysis in Akaroa2. Every method, to be considered automated, can not have batch size m or number of batches k fixed before the simulation run. Both need to be dynamically selected during the run-time of the simulation experiment. And as it flows from DPBM [27], the memory parameter k (number of batches) is fixed. The methods from Akaroa2, that are included are:

- CheckpointReached(), function to decide if checkpoint was reached.
- GetCheckpoint(Checkpoint & cp), if checkpoint is reached, estimates are send to Akaroa2's *akmaster*, to check if stopping condition was reached.
- ProcessObservation(real value), starts to process observation, if any, that comes from simulation engine. Value is the observation x_n .

We make changes to the algorithm that is implemented in [27], as it is inconsistent with implementation of MSE-DPBM [28]. The vector L(i) =1, 2, ..., 8k consists of four sub-vectors A, B, C, D. In implementation [27] the vectors are updated with new observation x_n every time a observations comes, on the other hand in [28] the new observation is saved into the vector B only after one, h > 0, collapsing has occurred, respectively to B, C and D after at least two collapses, h > 1, have occurred. As we have found experimentally this updating does not make any difference to the estimates $\hat{\theta}(n)$ and $\sigma^2 \theta$. Therefore, as a baseline the updating as in [28] is used for the implementation here. As we have coded the DPBM method first and implemented estimation of \hat{m}^* on top of that code implementation is as following for all the methods (DPBM, MSE-DPBM and modified MSE-DPBM):

- Memory parameter g is named k.
- Changed naming for $r_A = r_1$, $r_B = r_2$, $r_C = r_3$, $r_D = r_4$ and similarly for $m_A...m_D = m_1, ..., m_4$ to keep the naming conventions same for all the methods.
- The updating of B, C and D is done as explained above.
- The checkpoint spacing has been selected as follows: CheckpointReached() can return true iff collapsing has occurred h > 1 and new batch has been collected $m_1 = m$.
- Code implementation:

- -k = memorySize.
- -h =numberOfCollapsingOccured.
- -n = currentSampleSizeN.
- $-\hat{V}_{DPBM}(m) = \text{estimatorDPBM}.$
- -m = batchSize.

The algorithm as can be seen in Figure A.1:

- 1. Start and initialize variables, n = 1, h = 0, m = 1, L(i) = 0, i = (1, 2, ..., 8k), $m_j = 0$, $r_j = 0$, j = 1, 2, 3, 4.
- 2. Wait for observation x_n from Akaroa2 simulation engine and start processing it.
- 3. If current cell in vector A has room increase batch size $m \neq 1$ and go to step 7, else go to step 4.
- 4. Does vector A has room i.e. $r_1 < 2k$? If yes go to step 4.1, or go to step 4.2.
 - 4.1. Initialize $m_1 = 1$ and set $r_1 + = 1$ to point to the next cell. Go to step 6.
 - 4.2. If h = 0 go to 4.2.1, else go to 4.2.2.
 - 4.2.1. Collapse the vectors A and B and initialize values of m_1 , m_2 , r_1 , r_2
 - B(i) = A(2i) + A(2i+1), i = 1, ..., g-1; B(k) = A(2k).
 - A(i) = A(2i-1) + A(2i), i = 1, ..., g.
 - $m_1 = 1, m_2 = 2^h, r_1 = k + 1, r_2 = g.$
 - Go to step 5.
 - 4.2.2. Collapse the vectors to D, C, B, A and initialize values of $m_1, m_2, m_3, m_4, r_1, r_2, r_3, r_4$.
 - D(i) = B(2i) + B(2i+1), i = 1, ..., k-1; D(k) = B(2k).
 - C(i) = B(2i-1) + B(2i), i = 1, ..., k.
 - B(i) = A(2i) + A(2i+1), i = 1, ..., k-1; B(k) = A(2k).
 - A(i) = A(2i-1) + A(2i), i = 1, ..., k.
 - $m_1 = 1, m_2 = 2^h, m_3 = 2^k + 2^{k-1}, m_4 = 2^{k-1}.$
 - $r_1 = k + 1$, $r_2 = k$, $r_3 = k$, $r_4 = k$.
 - Go to step 5.
- 5. Update $h \neq 1$ and $m = 2^h$.
- 6. Initialize the sum stored in vector $A_1 = 0$.
- 7. Add the new observations x_n in the current cell in A, $A(r_1) += x_n$.

- 8. If number of collapsing h > 0 go to step 8.1, else go to step 9.
 - 8.1. If h = 1 go to step 8.2, else go to step 8.3.
 - 8.2. If cell $B(r_2)$ has room $(m_2 < m)$, set $m_2 += 1$, else set $m_2 = 1, r_2 += 1, B(r_2) = 0$. Update $B(r_2) += x_n$. Go to step 9.
 - 8.3. If cell $B(r_2)$ has room $(m_2 < m)$, set $m_2 += 1$, else set $m_2 = 1, r_2 += 1, B(r_2) = 0$. Update $B(r_2) += x_n$.
 - 8.4. If cell $C(r_3)$ has room $(m_3 < m)$, set $m_3 += 1$, else set $m_3 = 1, r_3 += 1, C(r_3) = 0$. Update $C(r_3) += x_n$.
 - 8.5. If cell $D(r_4)$ has room $(m_4 < m)$, set $m_4 += 1$, else set $m_4 = 1, r_4 += 1, D(r_4) = 0$. Update $D(r_4) += x_n$. Go to step 9.
- 9. Increase the sample size $n \neq 1$.
- 10. Call checkpointReached(), if checkpoint was reached go to step 11, else go to step 2.
- 11. Calculate $\hat{\theta}(n)$, $\sigma^2(\hat{\theta})$ and send these values to *akmaster*.
- 12. If stopping condition satisfied, stop simulation and present estimated results, else go to step 2.

Flowchart A.1 and C++ code of the method can be found in Appedix A.

6.2.2 MSE-DPBM

Optimal mean squared error DPBM provides the facility to dynamically change number of batches k and batch size m during the run-time of a simulation, as shown in Section 3.2.5. MSE-DPBM is implemented accordingly to [28] with changes as introduced in Section 6.2.1. The estimators for \hat{m}^* 3.9, sum of all correlations 3.10 and sum of all weighted correlations 3.11 assume that the sample size n and batch size m are large enough, see Section 3.1 in [28]. When the simulation starts the sample size and batch size are equal to n = 1 and $m = 2^h = 1$ respectively, where h is number of collapses. It can be seen that with first collapsing and calculation of \hat{m}^* the batch size and sample size are m = 2 and $n = m \times 2k$ respectively. Therefore if user selects the memory size to be 1 (k = 1), m and n are not "large enough" as m = 2 and n = 2. The estimation of $\hat{V}_{DPBM}(m)$ occurs every time the method for estimation \hat{m}^* is called. For implementation of this method we use the same methods from Akaroa2 as in DPBM section imp:dpbm. Additional variables that are included in MSE-DPBM:

- $\hat{V}_B(m/2) = \text{previousDPBM}.$
- $\hat{m}^* = \text{optimalBatchSize}.$

• Checkpoint spacing is implemented in the same way as in DPBM.

Algorithm for MSE-DPBM, as implemented in Akaroa2, follows:

- 1. Start and initialize variables, n = 1, h = 0, m = 1, L(i) = 0, i = (1, 2, ..., 8k), $m_j = 0$, $r_j = 0$, j = 1, 2, 3, 4.
- 2. Wait for observation x_n from Akaroa2 simulation engine and start processing it.
- 3. If current cell in vector A has room increase batch size $m \neq 1$ and go to step 7, else go to step 4.
- 4. Does vector A has room i.e. $r_1 < 2k$? If yes go to step 4.1, or go to step 4.2.
 - 4.1. Initialize $m_1 = 1$ and set $r_1 + = 1$ to point to the next cell. Go to step 6.
 - 4.2. If h = 0 go to 4.2.3, else go to 4.2.1.
 - 4.2.1. Compute \hat{m}^* , i.e. compute $\hat{V}_B(m/2)$ [3.13], $\hat{V}_{DPBM}(m)$ [3.7] and estimate $\hat{m}^* = (1.03n(\frac{\hat{\gamma}_1}{\hat{\gamma}_2})^2)^{\frac{1}{3}} + 1$ [3.9].
 - 4.2.2. If $m < \hat{m*}$ go to step 4.2.4, else increase memory $k \neq 1$ and go to step 4.
 - 4.2.3. Collapse the vectors A and B and initialize values of m_1 , m_2 , r_1 , r_2
 - B(i) = A(2i) + A(2i+1), i = 1, ..., g-1; B(k) = A(2k).
 - A(i) = A(2i-1) + A(2i), i = 1, ..., g.
 - $m_1 = 1, m_2 = 2^h, r_1 = k + 1, r_2 = g.$
 - Go to step 5.
 - 4.2.4. Collapse the vectors to D, C, B, A and initialize values of $m_1, m_2, m_3, m_4, r_1, r_2, r_3, r_4$.
 - D(i) = B(2i) + B(2i+1), i = 1, ..., k-1; D(k) = B(2k).
 - C(i) = B(2i-1) + B(2i), i = 1, ..., k.
 - B(i) = A(2i) + A(2i+1), i = 1, ..., k-1; B(k) = A(2k).
 - A(i) = A(2i-1) + A(2i), i = 1, ..., k.
 - $m_1 = 1, m_2 = 2^h, m_3 = 2^k + 2^{k-1}, m_4 = 2^{k-1}.$
 - $r_1 = k + 1$, $r_2 = k$, $r_3 = k$, $r_4 = k$.
 - Go to step 5.
- 5. Update $h \neq 1$ and $m = 2^h$.
- 6. Initialize the sum stored in vector $A_1 = 0$.
- 7. Add the new observations x_n in the current cell in A, $A(r_1) += x_n$.
- 8. If number of collapsing h > 0 go to step 8.1, else go to step 9.

- 8.1. If h = 1 go to step 8.2 else go to step 8.3.
- 8.2. If cell $B(r_2)$ has room $(m_2 < m)$, set $m_2 += 1$, else set $m_2 = 1, r_2 += 1, B(r_2) = 0$. Update $B(r_2) += x_n$. Go to step 9.
- 8.3. If cell $B(r_2)$ has room $(m_2 < m)$, set $m_2 += 1$, else set $m_2 = 1, r_2 += 1, B(r_2) = 0$. Update $B(r_2) += x_n$.
- 8.4. If cell $C(r_3)$ has room $(m_3 < m)$, set $m_3 += 1$, else set $m_3 = 1, r_3 += 1, C(r_3) = 0$. Update $C(r_3) += x_n$.
- 8.5. If cell $D(r_4)$ has room $(m_4 < m)$, set $m_4 += 1$, else set $m_4 = 1, r_4 += 1, D(r_4) = 0$. Update $D(r_4) += x_n$. Go to step 9.
- 9. Increase the sample size $n \neq 1$.
- 10. Call checkpointReached(), if checkpoint was reached go to step 11, else go to step 2.
- 11. Calculate $\hat{\theta}(n)$, $\sigma^2(\hat{\theta}(n))$ and send these values to akmaster.
- 12. If stopping condition satisfied, stop simulation and present estimated results, else go to step 2.

Flowchart B.1 and C++ code of the method can be found in Appedix B.

6.2.3 Modified MSE-DPBM

We have discussed the "large enough" problem in the Section 6.2.2. In this section we introduce the changes to the MSE-DPBM algorithm.

It seems unnecessary to calculate $\hat{V}_B(m/2)$ every time that vector A has become full to estimate the \hat{m}^* , especially at the beginning of the simulation when n and m are low. Our implementation does not use the estimation of $V_B(m/2)$ to estimate the optimal batch size, rather we save the value of current $V_{DPBM}(m)$ every time that estimation of \hat{m}^* occurs, when we come to the next estimation the value of $V_{DPBM}(m)$ is available and can be used as $V_B(m/2)$, we call this as $V_{DPBM}(m/2)$. In addition to that we introduce a waiting period, a period when no estimation of \hat{m}^* occurs. This period is present until the batch size is greater than 64, m > 64. In this period we just collapse the vectors accordingly and compute $V_{DPBM}(m)$ to be used in the first estimation of \hat{m}^* as $V_B(m/2)$. The value of m > 64was selected on the basis that if memory size k = 1 is selected, we would have at least 128 observations available for the calculation of CI, see Section 2.3 for the discussion of normal distribution. It has been shown in [28] that $V_{DPBM}(m/2)$ and $V_B(m/2)$ are asymptotically equal even though $V_B(m/2)$ is only 50 % OBM compared to 75 % OBM of $V_{DPBM}(m/2)$. The algorithm is presented next:

Algorithm for modified version of MSE-DPBM:

- 1. Start and initialize variables, n = 1, h = 0, m = 1, L(i) = 0, i = (1, 2, ..., 8k), $m_j = 0$, $r_j = 0$, j = 1, 2, 3, 4.
- 2. Wait for observation x_n from Akaroa2 simulation engine and start processing it.
- 3. If current cell in vector A has room increase batch size $m \neq 1$ and go to step 7, else go to next step.
- 4. Does vector A has room i.e. $r_1 < 2k$? If yes go to step 4.1, or go to step 4.2.
 - 4.1. Initialize $m_1 = 1$ and set $r_1 + = 1$ to point to the next cell. Go to step 6.
 - 4.2. If h = 0 go to 4.2.4, else go to 4.2.1.
 - 4.2.1. If m > 64 go to next step, else go to 4.2.5.
 - 4.2.2. Compute \hat{m}^* , i.e. use previous $\hat{V}_{DPBM}(m/2)$ and $\hat{V}_{DPBM}(m)$ [3.7] and estimate $\hat{m}^* = (1.03n(\frac{\hat{\gamma}_1}{\hat{\gamma}_2})^2)^{\frac{1}{3}} + 1$ [3.9].
 - 4.2.3. If $m < \hat{m}^*$ go to step 4.2.5, else increase memory $k \neq 1$ and go to step 4.
 - 4.2.4. Collapse the vectors A and B and initialize values of m_1 , m_2 , r_1 , r_2
 - B(i) = A(2i) + A(2i+1), i = 1, ..., g-1; B(k) = A(2k).
 - A(i) = A(2i-1) + A(2i), i = 1, ..., g.
 - $m_1 = 1, m_2 = 2^h, r_1 = k + 1, r_2 = g.$
 - Go to step 5.
 - 4.2.5. Collapse the vectors to D, C, B, A and initialize values of $m_1, m_2, m_3, m_4, r_1, r_2, r_3, r_4$.
 - D(i) = B(2i) + B(2i+1), i = 1, ..., k-1; D(k) = B(2k).
 - C(i) = B(2i-1) + B(2i), i = 1, ..., k.
 - B(i) = A(2i) + A(2i+1), i = 1, ..., k-1; B(k) = A(2k).
 - A(i) = A(2i-1) + A(2i), i = 1, ..., k.
 - $m_1 = 1, m_2 = 2^h, m_3 = 2^k + 2^{k-1}, m_4 = 2^{k-1}.$
 - $r_1 = k + 1$, $r_2 = k$, $r_3 = k$, $r_4 = k$.
 - Go to step 5.
- 5. Update $h \neq 1$ and $m = 2^h$.
- 6. Initialize the sum stored in vector $A_1 = 0$.
- 7. Add the new observations x_n in the current cell in A, $A(r_1) += x_n$.
- 8. If number of collapsing h > 0 go to step 8.1, else go to step 9.
 - 8.1. If h = 1 go to step 8.2 else go to step 8.3.

- 8.2. If cell $B(r_2)$ has room $(m_2 < m)$, set $m_2 += 1$, else set $m_2 = 1, r_2 += 1, B(r_2) = 0$. Update $B(r_2) += x_n$. Go to step 9.
- 8.3. If cell $B(r_2)$ has room $(m_2 < m)$, set $m_2 += 1$, else set $m_2 = 1, r_2 += 1, B(r_2) = 0$. Update $B(r_2) += x_n$.
- 8.4. If cell $C(r_3)$ has room $(m_3 < m)$, set $m_3 += 1$, else set $m_3 = 1, r_3 += 1, C(r_3) = 0$. Update $C(r_3) += x_n$.
- 8.5. If cell $D(r_4)$ has room $(m_4 < m)$, set $m_4 += 1$, else set $m_4 = 1, r_4 += 1, D(r_4) = 0$. Update $D(r_4) += x_n$.
- 8.6. If $m \leq 64$ save $\hat{V}_{DPBM}(m/2) = V_{DPBM}(m)$, and compute new $\hat{V}_{DPBM}(m)$, else go to step 9.
- 9. Increase the sample size $n \neq 1$.
- 10. Call checkpointReached(), if checkpoint was reached go to step 11, else go to step 2.
- 11. Calculate $\hat{\theta}(n)$, $\sigma^2(\hat{\theta}(n))$ and send these values to akmaster.
- 12. If stopping condition satisfied, stop simulation and present estimated results, else go to step 2.

See Section MSE-DPBM in Appendix C for the C++ code and flowchart of this implementation.

Results

Chapter 7

Results

In this chapter we present results of the conducted experiments. First, we introduce an experiment that tests the experimental average run length, number of observation per independent coverage simulation, compared to the theoretical average number of observations that are necessary to produce CIs with confidence level $1 - \alpha = 0.95$. Second experiment will introduce the coverage analysis of all the models, we first test the DPBM modification and select the one performing the best. Then we compare this method to SA/HW and decide if one performs better than the other. In the third experiment we compare the memory requirements of MSE-DPBM and Mod. MSE-DPBM and show the requirements for SA/HW as a reference, as well. Next section of Experiment 3 shows the average number of runs per simulation model and method of output analysis, the comparison is done to show the computational efficiency of such methods. In every experiment we compare the two initial transient detection methods, 25 crossings and Cumulative Means. This comparison is only done for a reference purposes, as it was said in Section 4.2.2 we recommend using Cumulative Means as a method of initial transient detection, as it detects longer transient periods and is, therefore, safer to use [6].

7.1 Experiment 1: Average Run Length

In this experiment we are assessing the average run length L of single simulation run, or number of observation, that has been collected during a coverage analysis experiment of selected models under various loads. We compare these experimental results to the theoretical results presented in Table 7 in [17]. McNickle has calculated the theoretical average number of observations, that is necessary to collect in order to obtain experimental confidence level of 0.90 and 0.95 respectively. We are doing the analysis for our implementation of DPBM, MSE-DPBM, Modified MSE-DPBM and SA/HW and decide if these methods are usable for coverage analysis under Akaroa2. The analysis is done for values of load $\rho, \rho = 0.5, 0.6, \dots 0.9$, as these are present for comparison in [17]. The selected models for the comparison are M/M/1, M/D/1 and M/H₂/1, models that have been theoretically evaluated by McNickle. Experiment results are going to tell us if used method is suitable for using for coverage analysis and for analysing the output of stochastic steady-state simulations. We have plotted the average number, average run length, of observations necessary to construct a CI of 0.95 confidence level on the x-axis, the y-axis is the number of observations, or length. As errors bars we have used the standard deviation of the length $\sigma(\bar{L})$. Refer to Tables E.2, E.3 and E.4 for exact results.

Figure 7.1: M/M/1's average run length per simulation using 25 crossings rule

Figure 7.2: M/M/1's average run length per simulation using Cumulative Means

Figure 7.3: M/D/1's average run length per simulation using 25 crossings rule

Figure 7.4: M/D/1's average run length per simulation using Cumulative Means

Figure 7.5: $\rm M/H_2/1's$ average run length per simulation using 25 crossings rule

Figure 7.6: $M/H_2/1$'s average run length per simulation using Cumulative Means

From the results you can see that all the SOAMs are stopping, in average, the simulation too early. Therefore, we are expecting the experimental coverage to be lower than the preset theoretical level $1 - \alpha = 0.95$. On the other hand, the number of observations per simulation and model/load combination seems to be sufficiently close to the theoretical value and the DPBM variations can be used for the coverage analysis. It can be seen that SA/HW and Mod. MSE-DPBM are performing better in this experiment and especially while simulating $M/H_2/1$ model the difference is quite significant. The confidence intervals overlap for this experiment, therefore refer to Tables E.2, E.3 and E.4 for exact results if you are interested more in the actual values of $\sigma(\bar{L})$.

Comparing the 25 crossings rule and Cumulative Means method, we can see that they both do not affect the average simulation run length and are equivalent.

7.2 Experiment 2: Coverage Analysis

This section introduces the results of experimental coverage analysis, as set up in Section 5.7, for all of the SOAMs and models as described in Table 5.1. In all the graphs we have plotted the performance of DPBM variants and SA/HW over range of correlation coefficient $\phi = 0.5, 0.6, ..., 0.95$ for the AR(1) process and traffic intensity $\rho = 0.5, 0.6, ..., 0.95$ for the queueing processes. As error bars we have selected the absolute error $\Delta_{z-\frac{1}{2}}$, this is true unless otherwise stated.

7.2.1 AR(1)

Figure 7.7: AR(1)'s coverage, using variants of DPBM and 25 crossings rule

Figure 7.8: AR(1)'s coverage, using variants of DPBM and Cumulative Means

From the results in Figures 7.7 and 7.8 it can be seen that both DPBM methods and MSE-DPBM method perform very poorly for higher value of the correlation coefficient $\phi = 0.8, 0.9, 0.95$. The MSE-DPBM has very similar performance to DPBM (k = 15) and the two lines overlap. We assume that the problem is in the estimation of optimal batch size \hat{m}^* .

The Mod. MSE-DPBM performs better than other DPBM variants and is selected for comparison with SA/HW.

Figure 7.9: AR(1)'s coverage, SA/HW vs. Mod. MSE-DPBM using 25 crossings rule

Figure 7.10: AR(1)'s coverage, SA/HW vs. Mod. MSE-DPBM using Cumulative Means

From the Figures 7.9 and 7.10 we conclude that SA/HW performs better for higher values of the autocorrelation coefficient ϕ , where our main attention lies. The overestimation of CIs at $\phi = 0.95$ of SA/HW is lower than the underestimation of Mod. MSE-DPBM, therefore, we recommend using SA/HW based on the its quality of coverage by CI. On the other hand, both methods sufficiently good and usable for the analysis of AR(1).

Figure 7.11: AR(1)'s run length using 25 crossings rule

Figure 7.12: AR(1)'s run length using Cumulative Means

Comparing the average run-length from Figures 7.11 and 7.12 we can see that SA/HW and DPBM variants required, in average, similar number of observations per one simulation experiment of coverage analysis. However, we can see that SA/HW requires more observations at $\phi = 0.9$. All the DPBM variants require around 2000 to 4500 observations and SA/HW requires little bit over 150000. Please note that the error bars here are the standard deviations of the average length.

We don't see any significant difference between using 25 crossings rule and Cumulative Means methods of initial transition detection, however the it can be seen from Table E.1 that by using Cumulative Means required in average less observations than 25 crossings rule. For detailed results see Table E.1.

7.2.2 M/M/1

Figure 7.13: M/M/1's coverage, using variants of DPBM and 25 crossings rule

Figure 7.14: M/M/1's coverage, using variants of DPBM and Cumulative Means

From Figures 7.13 and 7.14 we can see that Mod. MSE-DPBM performs the best out of the DPBM variants. The method of DPBM k = 50 performs sufficiently well, however as mentioned in Section 6.2.1 the method cannot be used for as an automated component of Akaroa2. We select the Mod. MSE-DPBM to be compared with SA/HW as it performs the best and especially for higher traffic intensities $\rho = 0.9$ and 0.95 the performance is almost optimal.

Figure 7.15: M/M/1's coverage, SA/HW vs. Mod. MSE-DPBM using 25 crossings rule

Figure 7.16: M/M/1's coverage, SA/HW vs. Mod. MSE-DPBM using Cumulative Means

From the Figures 7.15 and 7.16 we see that Mod. MSE-DPBM performs better for the whole range of traffic intensities $\rho = 0.5, ..., 0.95$. Run length per simulation was compared in Experiment 1, please see Section 7.1. However, method of SA/HW is still a suitable method.

Comparing the 25 crossings rule with Cumulative Means, we can see from Table E.2 that simulations with 25 crossings rule and SA/HW required longer independent simulations in the lower ranges of $\rho = 0.5, 0.6, 0.7$. The difference in average number of observations for DPBM variants is insignificant. However, using 25 crossings rule the coverage is closer to the required level of 0.95.

For detailed results see Table E.2.

7.2.3 M/D/1

Figure 7.17: M/D/1's coverage, using variants of DPBM and 25 crossings rule

Figure 7.18: M/D/1's coverage, using variants of DPBM and Cumulative Means

From Figures 7.17 and 7.18 we can see that Mod. MSE-DPBM performs the best for higher loads of ρ but poorly for lower loads of ρ . However, as our main focus lies in the higher loads, where the correlations are higher, we select the Mod. MSE-DPBM for the comparison with SA/HW. The DPBM k = 15 performs very good in this scenario, however it cannot be used as an automated method under Akaroa2 6.2.1.

Figure 7.19: M/D/1's coverage, SA/HW vs. Mod. MSE-DPBM using 25 crossings rule

Figure 7.20: M/D/1's coverage, SA/HW vs. Mod. MSE-DPBM using Cumulative Means

Comparing the SA/HW and Mod. MSE-DPBM, see Figures 7.19 and 7.20, we can conclude that Mod. MSE-DPBM performs better overall than SA/HW. Both SA/HW and Mod. MSE-DPBM, while using Cumulative

Means, perform better for higher values of the traffic intensity ρ . Both methods perform sufficiently well for usage as an output analysis method of steady-state simulations. The average run lengths were compared in the Experiment 1 7.1.

Comparing the 25 crossings rule and Cumulative Means methods of initial transient detection we can see that both methods do not affect the quality of coverage highly, both methods here are, therefore, suitable.

$7.2.4 M/H_2/1$

Figure 7.21: $\rm M/\rm H_2/\rm 1's$ coverage, using variants of DPBM and 25 crossings rule

Figure 7.22: $M/H_2/1$'s coverage, using variants of DPBM and Cumulative Means

From the Figures 7.21 and 7.22 we can see that Mod. MSE-DPBM performs the best out of the DPBM variants. And is very close to the theoretical preset confidence level of $1 - \alpha = 0.95$ for all the range of traffic intensities ρ . Therefore we select the Mod. MSE-DPBM to compare with SA/HW. All the other DPBM variants under-perform for the higher loads, especially for $\rho = 0.9$ and 0.95. However, MSE-DPBM method here is usable. DPBM with k = 15 and k = 50 are sufficiently good, but cannot be used as an automated method.

Figure 7.23: M/H₂/1's coverage, SA/HW vs. Mod. MSE-DPBM using 25 crossings rule

Figure 7.24: M/H_2/1's coverage, SA/HW vs. Mod. MSE-DPBM using Cumulative Means

The Figure 7.23 and 7.24 show that Mod. MSE-DPBM performs better than SA/HW for the whole range of traffic intensities, where SA/HW approaches experimental coverage of 0.93 and 0.92 for 25 crossings rule and Cumulative means respectively. The Mod. MSE-DPBM keeps its experimental coverage very close to the value of 0.95. Here we can conluded that SA/HW and Mod. MSE-DPBM are both usable for simulation output analysis of stochastic steady-state simulation. The run lengths were compared in the Experiment 1 7.1.

Again we can see that while using the 25 crossings rule method of initial transient detection the experimental coverage is slightly better than while using Cumulative Means. For more details please refer to Table E.4.

7.2.5 Open Queueing Network

Figure 7.25: QNet's coverage, using variants of DPBM and 25 crossings rule

Figure 7.26: QNet's coverage, using variants of DPBM Cumulative Means

From the Figures 7.25 and 7.26 we can see that Mod. MSE-DPBM performs worse than all the other variants of DPBM. We, therefore, select the MSE-DPBM for the comparison to SA/HW. However, all the variants of DPBM perform sufficiently good, even Mod. MSE-DPBM's experimental coverage of $\tilde{0}.915$ for $\rho = 0.95$ is still acceptable.

Figure 7.27: QNet's coverage, SA/HW vs. Mod. MSE-DPBM using 25 crossings rule

Figure 7.28: QNet's coverage, SA/HW vs. Mod. MSE-DPBM using Cumulative Means

The Figures 7.27 and 7.28 show that both methods of MSE-DPBM and SA/HW perform sufficiently good and can be used for stochastic steady-state simulations, where MSE-DPBM shows slightly better performance than SA/HW for our scenario.

Figure 7.29: QNet Run length using 25 crossings rule

Figure 7.30: QNet Run length using Cumulative Means

The Figures 7.29 and 7.30 show that SA/HW and MSE-DPBM have longer average of number of observations per simulation. Which would make us think that these two methods would perform better in means of their coverage. This has shown true in the figures above.

Comparing the results from Figures 7.27 and 7.28 we can see that using Cumulative Means produces better experimental coverage. For more results please refer to Table E.5.

7.3 Experiment 3: Memory Requirements

In this experiment we show the memory requirements of MSE-DPBM, Mod. MSE-DPBM and SA/HW. We do not consider both DPBM versions for this experiment. The values are here for reference purposes only, as DPBM methods and SA/HW are not directly comparable. The methods based on batch means work better with more observations per batch as the observations x_n in a batch become more independent and the independence is more important than a correlation between batches, see Section 3.2.3. SA/HW uses batches just to save memory as it stores only the sums of the observations x_n 3.2.6. The checkpoint spacing for DPBM based methods is different than the one for SA/HW. The batch size m and number of batches k are shown here. The optimal batch size $\hat{m^*}$ is not shown in the graphs in order to keep them clean and will be discussed separately for each model, for results of $\hat{m^*}$ please refer to Table E.6. For all the models, the optimal batch size $\hat{m^*}$ $\hat{m^*}$ the $\hat{m^*}$ increases and until m reaches to it again, the number of batches is increasing.

$7.3.1 \quad AR(1)$

Figure 7.31: Average batch sizes recorded during the coverage experiment of AR(1) model

Figure 7.32: Average number of batches recorded during the coverage experiment

From the Figures 7.31 and 7.32 we see that SA/HW requires more and bigger batches in average than MSE-DPBM and Mod. MSE-DPBM. This is consistent with the results of coverage analysis, where SA/HW performed considerably better than DPBM methods, except the Mod. MSE-DPBM. Using method of Cumulative Means for the transient detection seems to require more observations per batch than 25 crossings rule, while keeping the number of batches essentially the same. From this experiment we conclude that using Mod. MSE-DPBM, out of the DPBM variants, with 25 crossings rule is the best option. SA/HW requires much bigger number of observations to produce essentially equal coverage as Mod. MSE-DPBM.

7.3.2 M/M/1

Figure 7.33: Average batch sizes recorded during the coverage experiment of M/M/1 model

Figure 7.34: Average number of batches recorded during the coverage experiment of M/M/1 model

The Figures 7.33 and 7.34 show that Mod. MSE-DPBM requires lower amount of observations than MSE-DPBM, while keeping the number of batches essentially the same. This is consistent with the results of the coverage analysis experiment. However, using Cumulative Means here seems to require less observations to produce the final CIs. We recommend using either SA/HW with both methods of initial transient detection. Mod. MSE-DPBM with 25 crossings rule can be used instead of SA/HW, where SA/HW requires negligibly more observations, in average.

7.3.3 M/D/1

Figure 7.35: Average batch sizes recorded during the coverage experiment of $\rm M/D/1~model$

Figure 7.36: Average number of batches recorded during the coverage experiment of $\rm M/D/1~model$

Figures 7.35 and 7.36 show same behaviour as the M/M/1 model.

$7.3.4 M/H_2/1$

Figure 7.37: Average batch sizes recorded during the coverage experiment of $M/H_2/1$ model

Figure 7.38: Average number of batches recorded during the coverage experiment of $M/H_2/1$ model

Figures 7.37 and 7.38 show same behaviour as the M/M/1 and M/D/1 model, except that Mod. MSE-DPBM with Cumulative Means requires on average more batches than all of the other DPBM implementations, while

keeping the batch size equal to the one with using 25 crossings rule. We recommend using Mod. MSE-DPBM with 25 crossings rule or SA/HW as has been shown in coverage analysis experiment 7.2.

7.3.5 Queueing Network

Figure 7.39: Average batch sizes recorded during the coverage experiment of queueing network model

Figure 7.40: Average number of batches recorded during the coverage experiment of queueing network model

Figures 7.39 and 7.40 we can see that using Cumulative Means or 25 crossings rule as a method of initial transient detection is equally good. However, as we have seen in Experiment 2 7.2 MSE-DPBM performs the best in terms of coverage analysis, but from the results here we can see that it requires more observations than Mod. MSE-DPBM, therefore we recommend using the Mod. MSE-DPBM, as its experimental coverage is almost equal to the one of MSE-DPBM. As in the previous experiments, SA/HW is recommended to use, as well.

7.4 Average Number of Runs

In this experiment we show the number of runs that that are required to produce the final experimental coverage per each model. We compare the 25 crossings rule and Cumulative Means methods of initial transient detection, as well.

From the Figure 7.41 we can see that Mod. MSE-DPBM needed the least amount of runs to produce the final coverage results. Besides that SA/HW required equal number of runs up until $\phi = 0.95$, where it almost doubled the amount of Mod. MSE-DPBM. MSE-DPBM produced high number of runs, which did not cover the true mean in more than half cases 7.2. Using Cumulative Means reduces the number of runs highly, especially for the lower levels of ϕ . At the higher level of $\phi, \phi = 0.9, 0.95$ the two methods produces essentially the same number of runs.

For models of M/M/1 (Figure 7.42), M/D/1 (Figure 7.43) and M/H₂/1 (Figure 7.44) the method of Cumulative Means shows better performance, as by using this method of initial transient we can see the coverage analysis required significantly less independent runs. SA/HW required less runs for the whole range of traffic intensities ρ than both of the MSE-DPBM methods. Mod. MSE-DPBM required the most independent coverage experiments for all three models, however produced the best final coverage 7.2.

For the queueing network model, using the cumulative means method seem to require more independent runs for each method. The method of SA/HW here requires significantly more runs than the MSE-DPBM methods.

Figure 7.41: The number of runs required for the coverage experiment of AR(1)

Figure 7.42: The number of runs required for the coverage experiment of $\rm M/M/1$

Figure 7.43: The number of runs required for the coverage experiment of $\rm M/D/1$

Figure 7.44: The number of runs required for the coverage experiment of $\rm M/H_2/1$

Figure 7.45: The number of runs required for the coverage experiment of queueing network

For more results accurate please refer to Tables E.1, E.2, E.3, E.4 and E.5

Chapter 8

Conclusions

From the research experiments we conclude that, first, the methods of DPBM and MSE-DPBM are implementable as components of Akaroa2 and can be, possibly, used as output analysis methods of sequential steady-state simulations. Secondly, the method of MSE-DPBM can be modified in order to perform better than MSE-DPBM in terms of experimental coverage analysis. The results of experimental coverage analysis show that DPBM and MSE-DPBM cannot be used in sequential stochastic steady-state simulations, as they perform badly for auto-regressive model and their coverage drops to 0.47 at $\phi = 0.95$ value of correlation coefficient of such process, however perform sufficiently well for the other 4 models (queueing models). On top of that, DPBM cannot be used as an automated method as its number of batches is fixed a priory of the simulation run. The Modified MSE-DPBM performs better than the other DPBM variants and also slightly better in terms of sequential experimental coverage analysis than SA/HW using a single processor scenario of MRIP. However, as it was shown in [22], introducing more simulations engines SA/HW improves in terms of coverage, where the batch means method does not. If we use multiple processor scenario of MRIP, as low as 4 independent replications of a simulation at one time, we inject an artificial independence for to SA/HW method, which by its nature works with correlated data and such independence improves its coverage quality. Where for batch means methods, which assume independence in their nature, introducing more simulation engines does not improve their performance.

We conclude that both methods, Mod. MSE-DPBM and SA/HW, are sufficiently good to be used for sequential stochastic steady-state simulations. But, we recommend to use the method of SA/HW as it requires, in average, less independent simulation runs to produce the final confidence intervals for coverage analysis. Therefore, is more stable method than Mod. MSE-DPBM, which produces more short "rejected" runs. We also compare the two methods of initial transient detection, namely 25 crossings rule and Cumulative Means. The results do not differ much and the results confirm the results found in [6] by Freeth. As we focus only on steady-state analysis of such processes we propose to use the method of Cumulative Means, as it gives much longer length of initial transient and is, therefore, safer to use for steady-state analysis. We also conclude that a method of detecting the length of the initial transient does not have much influence on the coverage or the run-length of a simulation. That also flows from the results shown by McNickle in [17], where it was shown that for longer simulations the truncation of observations does not have much influence on the final estimated values, only prevents the simulation of stopping too early.

From our results we can conclude that one should use SA/HW as implemented in Akaroa2 [16].

8.1 Answers to Research Questions

In this section we present the answers to our research questions, that have been asked in the Introduction section.

1 - Are DPBM and MSE-DPBM implementable as a tool for steady-state simulation under Akaroa2?

Yes, they are with few minor modifications. These include functions of Akaroa2 such as CheckpointReached(), GetCheckpoint(Checkpoint &cp) and ProcessObservation(real value). By including these methods and minor modifications to the algorithm of the methods the implementation as a component of Akaroa2 is possible. Checkpoint spacing has to be introduced to a artificial value. We have decided to send values to akmaster for analysis of stopping condition every time that full batch has been recorded after collapsing has occurred at least once.

For detailed results please refer to Sections 6.2.1 and 6.2.2.

2 - Can MSE-DPBM be improved as a method of simulation output analysis?

Yes, with few modifications. We have decided not to include the estimation of previous variance $\hat{V}_B(m/2)$ every time that estimation of optimal batch size \hat{m}^* occurs. Rather we save current value of $\hat{V}_D PBM(m)$, that can be used later for the estimation as $\hat{V}_B(m/2)$ and computational time can be saved. Also we have included a waiting period, as the formulas for the estimation of optimal batch size assume that n and m are large enough, to start estimation only after minimal number of observations has been collected, m > 64.

Please refer to Section 6.2.3 for details.

3 - Which of the variants of DPBM perform the best in terms of coverage analysis?

The Modified MSE-DPBM method performs better than the MSE-DPBM in 4 out of 5 experiment scenarios for coverage analysis. MSE-DPBM is better only at scenario simulating the open queueing network.

4 - Are the DPBM variants accurate as an automated data analysis method in steady-state simulations?

No, not all of them. The DPBM methods cannot be used as an automated methods, due to their fixed memory. MSE-DPBM is accurate for the queueing models, but performs badly for AR(1) model. Modified MSE-DPBM is accurate for all of our tested scenarios. Please refer to Section 7.2.

5 - Does a variant of DPBM perform better than Spectral Analysis in terms of coverage analysis?

No. The Modified MSE-DBPM performs better for the single processor MRIP scenario, where SA/HW performs almost equally. By introducing the multiple processor scenario of MRIP we assume that the methods would be performing essentially equal. Mod. MSE-DPBM, however, shows less stability as more runs were rejected as "too short" than while using SA/HW. Please refer to Section 7.2 and 7.3.

6 - Is Schruben's test better than Cumulative Means as a method of initial transient detection?

No, using the 25 crossings rule (please refer to Section 4.2.1 method of initial transient showed that, for 4 out of 5 (AR(1), M/M/1, M/D/1, M/H₂/1) of our reference models, it reduces the difference between theoretical confidence level $1 - \alpha$ and the experimental coverage. Using Cumulative Means, however, shows reduction in the amount of independent simulation runs for 4 out of 5 of models, especially for higher values of ρ and ϕ where the correlations are strong.

However, as we focus on steady-state analysis we recommend using method of Cumulative Means as it shows better performance in the most complex of our simulated models, the open queueing network. Therefore, user can be safer that the initial transient has passed when the estimation phase starts.

8.2 Future Work

In future we would like to analyse the experimental coverage of a method developed by Alexopoulos et al. called "A sequential procedure for estimating the steady-state mean using standardized time series" [1]. The authors claim the methods is simpler than methods of batch means and can produce comparable quality of CIs.

Secondly, we would like to analyse why SA/HW required as many runs for $\phi = 0.90$ of AR(1) process, refer to Figures 7.11 and 7.11.

Thirdly, we would like perform coverage analysis under multiprocessor scenario of MRIP.

Bibliography

- C. Alexopoulos, D. Goldsman, Peng Tang, and J.R. Wilson. A sequential procedure for estimating the steady-state mean using standardized time series. In *Simulation Conference (WSC)*, 2013 Winter, pages 613– 622, Dec 2013.
- [2] Richard W Conway. Some tactical problems in digital simulation. Management Science, 10(1):47–61, 1963.
- [3] G Ewing, D McNickle, and K Pawlikowski. Spectral analysis for confidence interval estimation under multiple replications in parallel. In Proceedings of the 14th European Simulation Symposium, Dresden, pages 52–61, 2002.
- [4] G Ewing and K Pawlikowski. Akaroa ii version 2.4. 2 user's manual. Technical report, Department of Computer Science, University of Canterbury, 1997.
- [5] Greg Ewing, Krzysztof Pawlikowski, and Don McNickle. Akaroa-2: Exploiting network computing by distributing stochastic simulation. SCSI Press, 1999.
- [6] Adam Freeth. Honours Report: A Sequential Steady-State Detection Method for Quantitative Discrete-Event Simulation. Department of Computer Science and Software Engineering, University of Canterbury, Christchurch, New Zealand, 2012.
- [7] James Douglas Hamilton. *Time series analysis*, volume 2. Princeton university press Princeton, 1994.
- [8] Philip Heidelberger and Peter D Welch. Adaptive spectral methods for simulation output analysis. *IBM Journal of Research and Development*, 25(6):860–876, 1981.
- [9] Philip Heidelberger and Peter D Welch. A spectral method for confidence interval generation and run length control in simulations. Communications of the ACM, 24(4):233-245, 1981.

- [10] Philip Heidelberger and Peter D. Welch. Simulation run length control in the presence of an initial transient. *Operations Research*, 31(6):1109– 1144, 1983.
- [11] Peter Hellekalek. Good random number generators are (not so) easy to find. Mathematics and Computers in Simulation, 46(5):485–505, 1998.
- [12] Leonard Kleinrock. Queueing systems, volume I: Theory. Wiley Interscience, 1975.
- [13] Averill M. Law. Simulation Modeling & Analysis 4th Edition. McGraw-Hill Science, New York, 2006.
- [14] Averill M. Law and W. David Kelton. Confidence intervals for steadystate simulations: I. a survey of fixed sample size procedures. Operations Research, 32(6):1221–1239, 1984.
- [15] Pierre L'Ecuyer. Combined multiple recursive random number generators. Operations Research, 44(5):816–822, 1996.
- [16] Don McNickle, Gregory Ewing, and Krzysztof Pawlikowski. Refining spectral analysis for confidence interval estimation in sequential simulation. *Proceedings of the ESS, Budapest*, pages 99–103, 2004.
- [17] Don McNickle, Gregory C. Ewing, and Krzysztof Pawlikowski. Some effects of transient deletion on sequential steady-state simulation. Simulation Modelling Practice and Theory, 18(2):177–189, 2010.
- [18] Don McNickle, Krzysztof Pawlikowski, and Greg Ewing. Akaroa2: A controller of discrete-event simulation which exploits the distributed computing resources of networks. In *Proceedings 24th European Conference on Modelling and Simulation (ECMS 2010)*, pages 104–109, 2010.
- [19] Marc S Meketon and Bruce Schmeiser. Overlapping batch means: Something for nothing? In Proceedings of the 16th conference on Winter simulation, pages 226–230. IEEE Press, 1984.
- [20] Krzysztof Pawlikowski. Steady-state simulation of queueing processes: survey of problems and solutions. *ACM Computing Surveys (CSUR)*, 22(2):123–170, 1990.
- [21] Krzysztof Pawlikowski, H-DJ Jeong, and J-SR Lee. On credibility of simulation studies of telecommunication networks. *Communications Magazine*, *IEEE*, 40(1):132–139, 2002.
- [22] Krzysztof Pawlikowski, Donald C McNickle, and Gregory Ewing. Coverage of confidence intervals in sequential steady-state simulation. Simulation Practice and Theory, 6(3):255–267, 1998.

- [23] Krzysztof Pawlikowski, Victor WC Yau, and Don McNickle. Distributed stochastic discrete-event simulation in parallel time streams. In *Proceedings of the 26th conference on Winter simulation*, pages 723– 730. Society for Computer Simulation International, 1994.
- [24] Joseph William Schmidt and Robert Edward Taylor. Simulation and analysis of industrial systems. RD Irwin, 1970.
- [25] Marcus Schoo, Krzysztof Pawlikowski, and Donald C McNickle. A survey and empirical comparison of modern pseudo-random number generators for distributed stochastic simulations. Technical report, Department of Computer Science and Software Development, University of Canterbury, 2005.
- [26] Wheyming T Song and Mingchang Chih. Extended dynamic partialoverlapping batch means estimators for steady-state simulations. *European Journal of Operational Research*, 203(3):640–651, 2010.
- [27] Wheyming Tina Song. A finite-memory algorithm for estimating the variance of the sample mean. *IIE Transactions*, 39(7):703–711, 2007.
- [28] Wheyming Tina Song and Mingchang Chih. Run length not required: Optimal-mse dynamic batch means estimators for steady-state simulations. European Journal of Operational Research, 229(1):114–123, 2013.
- [29] Peter D Welch. On the relationship between batch means, overlapping means and spectral estimation. In *Proceedings of the 19th conference* on Winter simulation, pages 320–323. ACM, 1987.
- [30] Yingchieh Yeh and Bruce Schmeiser. Simulation output analysis via dynamic batch means. In *Proceedings of the 32nd conference on Winter simulation*, pages 637–645. Society for Computer Simulation International, 2000.

Appendices

Appendix A

DPBM

```
/* Modification of DPBM as implemented in Song 2010 */
 1
\mathbf{2}
3 #include <iostream>
 4 #include <stdio.h>
 5 #include <stdlib.h>
 6 #include <vector>
 7
   #include <cmath>
8
9 //include the header file
10 #include "dpbm_variance_estimator.H"
11 #include "environment.H"
12 #include "checkpoint.H"
13 #include "akaroa/ak_message.H"
14
15 int checkpointPointer = 0;
16
   DefineVarianceEstimatorType("DPBM", DynamicBMVarianceEstimator)
17
18
19
   DynamicBMVarianceEstimator::DynamicBMVarianceEstimator(Environment *env,
        long trans){
20
        InitializeMethodVariables();
21
        InitializeMethodVectors();
22 }
23
24
   DynamicBMVarianceEstimator::~DynamicBMVarianceEstimator(){
25
     //destructor
   }
26
27
28
   void DynamicBMVarianceEstimator::
29
    ProcessObservation(real value)
30
    {
        StartProcessingObservation(value);
31
  }
32
33
34
    boolean DynamicBMVarianceEstimator::ReachedCheckpoint(){
        if((checkpointPointer == 1) && (m1 == batchSize)){
35
36
            ComputeEstimatorDPBM();
```


Figure A.1: DPBM Algorithm as implemented in Akaroa2

37 return true; 38 } else {

```
39
            return false;
40
        }
41
42 }
43
44 boolean DynamicBMVarianceEstimator::GetCheckpoint(Checkpoint &cp){
        cp.df = 0;
45
46
        cp.mean = mean;
47
        cp.variance = estimatorDPBM;
48
        return true;
49 }
50
51
   void DynamicBMVarianceEstimator::InitializeMethodVariables(){
52
        currentSampleSizeN = 1;
53
        numberOfCollapsesOccured = 0;
54
        batchSize = pow(2, numberOfCollapsesOccured);
        m1 = 0, m2 = 0, m3 = 0, m4 = 0;
55
56
        r1 = 0, r2 = 0, r3 = 0, r4 = 0;
57
        memorySize = 15;
58
        return;
59 }
60
61
    void DynamicBMVarianceEstimator::InitializeMethodVectors(){
62
        for(int i = 0; i < (2*memorySize); i++){</pre>
63
            observationVectorA.push_back(0.00);
64
            observationVectorB.push_back(0.00);
65
            observationVectorC.push_back(0.00);
66
            observationVectorD.push_back(0.00);
67
        }
68
        return;
69 }
70
71 void DynamicBMVarianceEstimator::StartProcessingObservation(real value){
72
        if(m1 < batchSize){</pre>
73
            m1 += 1;
            AddObservation(value);
74
75
            EndObservation(value);
76
            return;
77
        } else {
78
            m1 = 1;
79
            VectorHasRoom(value);
80
            return;
81
        }
82
   }
83
84
    void DynamicBMVarianceEstimator::VectorHasRoom(real value){
85
        if(r1 < ((2*memorySize)-1)){</pre>
86
            IncreasePointer();
87
            SetCurrentCell();
88
            AddObservation(value);
89
            EndObservation(value);
90
            return;
91
        } else {
92
            if(numberOfCollapsesOccured == 0){
```

```
93
                 CollapseVectorB();
 94
                 CollapseVectorA();
 95
                 InitializeData();
96
                 UpdateKandM();
                 SetCurrentCell();
97
98
                 AddObservation(value);
99
                 EndObservation(value);
100
                 return;
101
             } else {
102
                 CollapseVectorD();
103
                 CollapseVectorC();
104
                 CollapseVectorB();
105
                 CollapseVectorA();
106
                 checkpointPointer = 1;
107
                 InitializeData();
108
                 UpdateKandM();
109
                 SetCurrentCell();
110
                 AddObservation(value);
111
                 EndObservation(value);
112
                 return;
113
             }
114
         }
115
    }
116
117
     void DynamicBMVarianceEstimator::InitializeData(){
118
         if(numberOfCollapsesOccured == 0){
119
             m1 = 1;
120
             m2 = pow(2, numberOfCollapsesOccured);
             r1 = memorySize;
121
             r2 = memorySize - 1;
122
123
             return;
124
         } else {
125
             m1 = 1;
126
             m2 = pow(2, numberOfCollapsesOccured);
127
             m3 = pow(2, numberOfCollapsesOccured) + pow(2, (
                 numberOfCollapsesOccured -1));
128
             m4 = pow(2, (numberOfCollapsesOccured - 1));
129
             r1 = memorySize;
130
             r2 = memorySize - 1;
131
             r3 = memorySize - 1;
132
             r4 = memorySize - 1;
133
             return;
134
         }
135 }
136
137
     void DynamicBMVarianceEstimator::UpdateKandM(){
         numberOfCollapsesOccured += 1;
138
139
         batchSize = pow(2,numberOfCollapsesOccured);
140
         return;
141 }
142
143 void DynamicBMVarianceEstimator::SetCurrentCell(){
144
         observationVectorA[r1] = 0;
145
         return;
```

```
146 }
147
148
    void DynamicBMVarianceEstimator::CollapseVectorD(){
149
         for(int i = 1; i <= (memorySize-1); i++){</pre>
             observationVectorD[i-1] = observationVectorB[(2*i)-1] +
150
                 observationVectorB[2*i];
151
         }
152
         observationVectorD[memorySize-1] = observationVectorB[(2*memorySize)-1];
153
         m4 = m2;
154
         return;
155 }
156
157
    void DynamicBMVarianceEstimator::CollapseVectorC(){
158
         for(int i = 1; i <= (memorySize);i++){</pre>
159
             observationVectorC[i-1] = (observationVectorB[(2*i)-2] +
                 observationVectorB[(2*i)-1]);
160
         }
161
         m3 = m2 * pow(2, numberOfCollapsesOccured);
162
         return:
163 }
164
165
     void DynamicBMVarianceEstimator::CollapseVectorB(){
166
         for(int i = 1; i <= (memorySize-1); i++){</pre>
167
             observationVectorB[i-1] = observationVectorA[(2*i)-1] +
                 observationVectorA[2*i];
168
         }
169
         observationVectorB[memorySize-1] = observationVectorA[(2*memorySize)-1];
170
         return;
171 }
172
173
    void DynamicBMVarianceEstimator::CollapseVectorA(){
         for(int i = 1; i <= (memorySize);i++){</pre>
174
175
             observationVectorA[i-1] = (observationVectorA[(2*i)-2] +
                 observationVectorA[(2*i)-1]);
176
         }
177
         return;
178 }
179
180 void DynamicBMVarianceEstimator::IncreasePointer(){
181
         m1 = 1;
182
         r1 += 1;
183
         return;
184
    }
185
186
     void DynamicBMVarianceEstimator::EndObservation(real value){
187
         if(numberOfCollapsesOccured == 1 && numberOfCollapsesOccured > 0){
188
             UpdateB(value);
189
         }else if(numberOfCollapsesOccured > 1){
190
             UpdateD(value);
191
             UpdateC(value);
192
             UpdateB(value);
193
         }
194
         currentSampleSizeN += 1;
195
         return;
```

```
196 }
197
198 void DynamicBMVarianceEstimator::UpdateB(real value){
199
         if(m2 < batchSize){</pre>
200
             m2 += 1;
201
         } else {
202
             m2 = 1;
203
             r2 += 1;
204
             observationVectorB[r2] = 0;
205
         }
206
         observationVectorB[r2] += value;
207
         return;
208 }
209
210 void DynamicBMVarianceEstimator::UpdateC(real value){
211
         if(m3 < batchSize){</pre>
212
             m3 += 1;
         } else {
213
214
             m3 = 1;
215
             r3 += 1;
216
             observationVectorC[r3] = 0;
217
         }
218
         observationVectorC[r3] += value;
219
         return;
220 }
221
222 void DynamicBMVarianceEstimator::UpdateD(real value){
223
         if(m4 < batchSize){</pre>
224
             m4 += 1;
225
         } else {
226
             m4 = 1;
227
             r4 += 1;
228
             observationVectorD[r4] = 0;
229
         }
230
         observationVectorD[r4] += value;
231
         return;
232 }
233
234 void DynamicBMVarianceEstimator::AddObservation(real value){
235
         observationVectorA[r1] += value;
236
         return;
237 }
238
239 void DynamicBMVarianceEstimator::ComputeMean(int b1){
         mean = 0;
240
241
         for(int i = 0; i < b1; i++){</pre>
242
             mean += (observationVectorA[i]);
243
         }
244
         mean = (mean/double(currentSampleSizeN));
245
         return;
246 }
247
248 void DynamicBMVarianceEstimator::ComputeEstimatorDPBM(){
249
         int b1 = int(r1 + floor(double(m1/batchSize)));
```

```
250
         int b2 = int(r2 + floor(double(m2/batchSize)));
251
         int b3 = int(r3 + floor(double(m3/batchSize)));
252
         int b4 = int(r4 + floor(double(m4/batchSize)));
253
         ComputeMean(b1);
254
         estimatorDPBM = 0;
255
         double s = double(batchSize/4);
256
         int b = int(floor(double((currentSampleSizeN-batchSize+s)/s)));
257
         double db = double(b*(double((currentSampleSizeN/batchSize)-1)));
258
         real sumA = 0, sumB = 0, sumC = 0, sumD = 0, calculation = 0;
259
         for(int i = 0; i < b1; i++){</pre>
260
              calculation = pow(double((observationVectorA[i]/double(batchSize))-
                  mean),2);
261
              sumA += calculation;
262
              calculation = 0;
263
         }
264
         for(int i = 0; i < b2; i++){</pre>
265
              calculation = pow(double((observationVectorB[i]/double(batchSize))-
                  mean),2);
              sumB += calculation;
266
267
              calculation = 0;
268
         }
269
         for(int i = 0; i < b3; i++){</pre>
270
              calculation = pow(double((observationVectorC[i]/double(batchSize))-
                  mean),2);
271
              sumC += calculation;
272
              calculation = 0;
273
         }
274
         for(int i = 0; i < b4; i++){</pre>
275
              calculation = pow(double((observationVectorD[i]/double(batchSize))-
                  mean),2);
276
              sumD += calculation;
277
              calculation = 0;
         }
278
279
         estimatorDPBM = double((1/db)*double(sumA + sumB + sumC + sumD));
280
         sumA = 0, sumB = 0, sumC = 0, sumD = 0;
281
         return;
282 }
283
284 /* Debug tool */
285 void DynamicBMVarianceEstimator::PrintValuesInVectors(){
286
         for(int i = 0; i < observationVectorA.size(); i++){</pre>
287
              fprintf(stderr,"value_in_A[\%d]:_{\sqcup}\%f_{\sqcup}\n", i, observationVectorA[i]);
288
         }
289
         for(int i = 0; i < observationVectorB.size(); i++){</pre>
290
              fprintf(stderr,"value_in_B[%d]:_u%f_i, i,observationVectorB[i]);
291
         }
292
         for(int i = 0; i < observationVectorC.size(); i++){</pre>
293
              fprintf(stderr,"value_{in_{\cup}}C[\%d]:_{\cup}\%f_{\cup}\n", i,observationVectorC[i]);
294
         }
295
         for(int i = 0; i < observationVectorD.size(); i++){</pre>
296
              fprintf(stderr,"value\_in\_D[\%d]:\_\%f_{\_}\n", i,observationVectorD[i]);
297
         }
298
         return;
299 }
```

Appendix B

MSE-DPBM

```
1 /* Variance estimator based on DPBM by Song */
 \mathbf{2}
 3 #include <iostream>
 4 #include <stdio.h>
 5 #include <stdlib.h>
 6 #include <vector>
 7
   #include <cmath>
 8
9 //include the header file
10 #include "dpbm_variance_estimator.H"
11 #include "environment.H"
12 #include "checkpoint.H"
13 #include "akaroa/ak_message.H"
14 #include "akaroa.H"
15
16 int checkpointPointer = 0;
17
18 DefineVarianceEstimatorType("DPBM", DynamicBMVarianceEstimator)
19
20 DynamicBMVarianceEstimator::DynamicBMVarianceEstimator(Environment *env,
        long trans){
21
        InitializeMethodVariables();
22
        InitializeMethodVectors();
23 }
24
25 DynamicBMVarianceEstimator:: "DynamicBMVarianceEstimator(){
      //destructor
26
   }
27
28
29 void DynamicBMVarianceEstimator::
30 ProcessObservation(real value)
31
    {
32
        StartProcessingObservation(value);
33 }
34
35
   boolean DynamicBMVarianceEstimator::ReachedCheckpoint(){
        if((checkpointPointer == 1) && (m1 == batchSize)){
36
```


Figure B.1: MSE-DPBM Algorithm as implemented in Akaroa2

37 ComputeEstimatorDPBM(); 38 return true;

```
39
        } else {
40
            return false;
41
        }
42
        return false;
43 }
44
45 boolean DynamicBMVarianceEstimator::GetCheckpoint(Checkpoint &cp){
46
        cp.df = 0;
47
        cp.mean = mean;
48
        cp.variance = estimatorDPBM;
49
        return true;
50 }
51
52 void DynamicBMVarianceEstimator::InitializeMethodVariables(){
53
        currentSampleSizeN = 1;
54
        numberOfCollapsesOccured = 0;
        batchSize = pow(2, numberOfCollapsesOccured);
55
56
        m1 = 0, m2 = 0, m3 = 0, m4 = 0;
57
        r1 = 0, r2 = 0, r3 = 0, r4 = 0;
58
        memorySize = 15;
59
        estimatorDPBM = 0;
60
        previousDPBM = 0;
61
        optimalBatchSize = 0;
62
        previousMemorySize = 0;
63
        return;
64 }
65
66
    void DynamicBMVarianceEstimator::InitializeMethodVectors(){
67
        for(int i = previousMemorySize; i < (2*memorySize); i++){</pre>
68
            observationVectorA.push_back(0.00);
69
            observationVectorB.push_back(0.00);
70
            observationVectorC.push_back(0.00);
71
            observationVectorD.push_back(0.00);
72
        }
73
        return;
74 }
75
76 void DynamicBMVarianceEstimator::StartProcessingObservation(real value){
77
        if(m1 < batchSize){</pre>
78
            m1 += 1;
79
            AddObservation(value);
80
            EndObservation(value);
81
            return;
82
        } else {
83
            VectorHasRoom(value);
84
            return;
        }
85
86 }
87
88 void DynamicBMVarianceEstimator::VectorHasRoom(real value){
89
        if(r1 < ((2*memorySize)-1)){</pre>
90
            IncreasePointer();
91
            SetCurrentCell();
92
            AddObservation(value);
```

93	<pre>EndObservation(value);</pre>
94	return;
95	} else {
96	<pre>if(numberOfCollapsesOccured == 0){</pre>
97	CollapseVectorB();
98	CollapseVectorA();
99	<pre>InitializeData();</pre>
100	UpdateKandM();
101	SetCurrentCell();
102	AddObservation(value):
103	EndObservation(value):
104	return:
105	} else {
106	ComputeOntimalBatchSize():
107	checkpointPointer = 1
107	if (batchSizo < optimalBatchSizo)
100	(collengeVectorD();
110	CollapseVectorD();
110	CollapseVector();
111	CollapsevectorB();
112	CollapsevectorA();
113	<pre>InitializeData();</pre>
114	UpdateKandM();
115	SetCurrentCell();
116	AddObservation(value);
117	<pre>EndObservation(value);</pre>
118	return;
119	} else {
120	<pre>previousMemorySize = 2*memorySize;</pre>
121	<pre>memorySize += 1;</pre>
122	<pre>InitializeMethodVectors();</pre>
123	<pre>VectorHasRoom(value);</pre>
124	}
125	}
126	}
127	}
128	
129	<pre>void DynamicBMVarianceEstimator::InitializeData(){</pre>
130	if(numberOfCollapsesOccured == 0){
131	m1 = 1;
132	m2 = pow(2, numberOfCollapsesOccured);
133	r1 = memorySize:
134	$r^2 = memorySize - 1$
135	return.
136	$\beta $ also β
137	m1 = 1
128	$m_1 = 1$, $m_2 = n_2 m_2 (2 - n_1) m_2 m_2 (2 - n_2) m_2$
120	mz = pow(2, number of Collarses Occurred),
109	<pre>numberOfCollapsesOccured - 1));</pre>
140	<pre>m4 = pow(2, (numberOfCollapsesOccured - 1));</pre>
141	r1 = memorySize;
142	r2 = memorySize - 1;
143	r3 = memorySize - 1;
144	r4 = memorySize - 1;
145	return;

```
146
         }
147
    }
148
149 void DynamicBMVarianceEstimator::UpdateKandM(){
150
         numberOfCollapsesOccured += 1;
151
         batchSize = pow(2,numberOfCollapsesOccured);
152
         return;
153 }
154
155 void DynamicBMVarianceEstimator::SetCurrentCell(){
156
         observationVectorA[r1] = 0;
157
         return;
158
    }
159
160 void DynamicBMVarianceEstimator::CollapseVectorD(){
161
         for(int i = 1; i <= (memorySize-1); i++){</pre>
162
             observationVectorD[i-1] = observationVectorB[(2*i)-1] +
                 observationVectorB[2*i];
163
         }
164
         observationVectorD[memorySize-1] = observationVectorB[(2*memorySize)-1];
165
         m4 = m2;
166
         return;
167
    }
168
169
     void DynamicBMVarianceEstimator::CollapseVectorC(){
170
         for(int i = 1; i <= (memorySize);i++){</pre>
171
             observationVectorC[i-1] = (observationVectorB[(2*i)-2] +
                 observationVectorB[(2*i)-1]);
172
         }
173
         m3 = m2 * pow(2, numberOfCollapsesOccured);
174
         return:
175 }
176
177
     void DynamicBMVarianceEstimator::CollapseVectorB(){
178
         for(int i = 1; i <= (memorySize-1); i++){</pre>
179
             observationVectorB[i-1] = observationVectorA[(2*i)-1] +
                 observationVectorA[2*i];
180
         }
181
         observationVectorB[memorySize-1] = observationVectorA[(2*memorySize)-1];
182
         return;
183 }
184
     void DynamicBMVarianceEstimator::CollapseVectorA(){
185
186
         for(int i = 1; i <= (memorySize);i++){</pre>
187
             observationVectorA[i-1] = (observationVectorA[(2*i)-2] +
                 observationVectorA[(2*i)-1]);
         }
188
189
         return;
190 }
191
192 void DynamicBMVarianceEstimator::IncreasePointer(){
193
         m1 = 1;
194
         r1 += 1;
195
         return;
```

```
196 }
197
198 void DynamicBMVarianceEstimator::EndObservation(real value){
199
         if(numberOfCollapsesOccured == 1){
200
             UpdateB(value);
201
         }else if(numberOfCollapsesOccured > 1){
202
             UpdateD(value);
203
             UpdateC(value);
204
             UpdateB(value);
205
         }
206
         currentSampleSizeN += 1;
207
         return;
208 }
209
210 void DynamicBMVarianceEstimator::UpdateB(real value){
211
         if(m2 < batchSize){</pre>
             m2 += 1;
212
         } else {
213
214
             m2 = 1;
215
             r2 += 1;
216
             observationVectorB[r2] = 0;
217
         }
218
         observationVectorB[r2] += value;
219
         return;
220 }
221
222 void DynamicBMVarianceEstimator::UpdateC(real value){
223
         if(m3 < batchSize){</pre>
224
             m3 += 1;
225
         } else {
226
             m3 = 1;
227
             r3 += 1;
228
             observationVectorC[r3] = 0;
229
         }
         observationVectorC[r3] += value;
230
231
         return;
232 }
233
234 void DynamicBMVarianceEstimator::UpdateD(real value){
235
         if(m4 < batchSize){</pre>
236
             m4 += 1;
237
         } else {
238
             m4 = 1;
239
             r4 += 1;
240
             observationVectorD[r4] = 0;
241
         }
242
         observationVectorD[r4] += value;
243
         return;
244 }
245
246 void DynamicBMVarianceEstimator::AddObservation(real value){
247
         observationVectorA[r1] += value;
248
         return;
249 }
```
```
250
251
    void DynamicBMVarianceEstimator::ComputeOptimalBatchSize(){
252
         ComputeEstimatorDPBM();
253
         ComputeVirtualA();
254
         ComputeVirtualB();
255
         ComputeEstimatorBDPBM();
256
         real gamma0 = ((double(currentSampleSizeN)*estimatorBDPBM)/
             sampleVariance);
257
         real gamma1 = (double(((double(currentSampleSizeN)*double(batchSize))*(
             estimatorDPBM-estimatorBDPBM)))/sampleVariance);
258
         optimalBatchSize = cbrt((1.12*double(currentSampleSizeN))*(pow(double(
             gamma1/gamma0),2)))+1;
259
         return;
260 }
261
262 void DynamicBMVarianceEstimator::ComputeMean(int b1){
263
         mean = 0;
264
         for(int i = 0; i < b1; i++){</pre>
265
             mean += (observationVectorA[i]);
266
         }
267
         mean = (mean/double(currentSampleSizeN));
268
         real sum = 0, calculation = 0;
269
         //sample variance
270
         for(int i = 0; i < b1; i++){</pre>
271
             calculation = pow(observationVectorA[i]-mean, 2);
272
             sum += calculation;
273
             calculation = 0;
274
         }
275
         sampleVariance = (sum / double(currentSampleSizeN));
276
         return;
277 }
278
279 void DynamicBMVarianceEstimator::ComputeEstimatorDPBM(){
280
         int b1 = int(r1 + floor(double(m1/batchSize)));
281
         int b2 = int(r2 + floor(double(m2/batchSize)));
282
         int b3 = int(r3 + floor(double(m3/batchSize)));
283
         int b4 = int(r4 + floor(double(m4/batchSize)));
284
         ComputeMean(b1);
285
         estimatorDPBM = 0;
286
         double s = floor(double(batchSize/4));
287
         int b = int(floor(double((currentSampleSizeN-batchSize+s)/s)));
288
         double db = double(b*(double((currentSampleSizeN/batchSize)-1)));
         real sumA = 0, sumB = 0, sumC = 0, sumD = 0, calculation = 0;
289
290
         for(int i = 0; i < b1; i++){</pre>
291
             calculation = pow(double((observationVectorA[i]/double(batchSize))-
                 mean),2);
292
             sumA += calculation;
293
             calculation = 0;
294
         }
295
         for(int i = 0; i < b2; i++){</pre>
296
             calculation = pow(double((observationVectorB[i]/double(batchSize))-
                 mean).2):
297
             sumB += calculation;
298
             calculation = 0;
```

```
299
         }
300
         for(int i = 0; i < b3; i++){</pre>
301
             calculation = pow(double((observationVectorC[i]/double(batchSize))-
                  mean),2);
302
             sumC += calculation;
303
             calculation = 0;
304
         }
305
         for(int i = 0; i < b4; i++){</pre>
306
             calculation = pow(double((observationVectorD[i]/double(batchSize))-
                  mean),2);
307
             sumD += calculation;
308
             calculation = 0;
309
         }
310
         estimatorDPBM = double((1/db)*double(sumA + sumB + sumC + sumD));
311
         sumA = 0, sumB = 0, sumC = 0, sumD = 0;
312
         return;
313 }
314
315 void DynamicBMVarianceEstimator::ComputeVirtualA(){
316
         vectorBDPBM1.reserve(4*memorySize);
317
         real sumA = 0, sumB = 0;
318
         for(int i = 1; i <= ceil(double(currentSampleSizeN)/double(batchSize));</pre>
              i++){
319
             for(int k = (i-1); k < r1; k++){</pre>
320
                  sumA += observationVectorA[k];
321
             }
322
             for(int k = (i-1); k <= r2; k++){</pre>
323
                  sumB += observationVectorB[k];
324
             }
325
             vectorBDPBM1[(2*i)-2] = sumA-sumB;
326
             sumA = 0;
327
             sumB = 0;
328
         }
329
         for(int i = 1; i <= floor((double(currentSampleSizeN)/double(batchSize))</pre>
              +0.5);i++){
330
             vectorBDPBM1[(2*i)-1] = observationVectorA[i-1] - vectorBDPBM1[(2*i)
                  -2];
         }
331
332
         return;
333 }
334
335 void DynamicBMVarianceEstimator::ComputeVirtualB(){
336
         vectorBDPBM2.reserve(4*memorySize);
337
         real sumA = 0, sumB = 0;
338
         for(int i = 1; i <= ceil((double(currentSampleSizeN)-(double(batchSize)</pre>
              /4))/double(batchSize)) ; i++){
339
             for(int k = (i-1); k <= r3; k++){</pre>
340
                  sumA += observationVectorC[k];
341
             }
342
             for(int k = (i-1); k <= r4; k++){</pre>
343
                  sumB += observationVectorD[k];
344
             }
345
             vectorBDPBM2[(2*i)-2] = sumA-sumB;
346
             sumA = 0;
```

```
347
             sumB = 0;
348
         }
349
         for(int i = 1; i <= floor(((double(currentSampleSizeN)-(double(batchSize</pre>
              )/4))/double(batchSize))+0.5);i++){
350
             vectorBDPBM2[(2*i)-1] = observationVectorC[i-1] - vectorBDPBM2[(2*i)
                  -2];
351
         }
352
         return;
353
    }
354
355
     void DynamicBMVarianceEstimator::ComputeEstimatorBDPBM(){
356
         estimatorBDPBM = 0;
357
         int previousBatchSize = batchSize / 2;
358
         double s = (double(previousBatchSize)/2);
359
         int b = floor((double(currentSampleSizeN)-double(previousBatchSize)+s)/s
             );
360
         double db = b*((double(currentSampleSizeN)/double(previousBatchSize))-1)
             ;
         double sumA = 0, sumB = 0, calculation = 0;
361
362
         int bA = floor(double(currentSampleSizeN)/double(previousBatchSize));
363
         int bB = floor((double(currentSampleSizeN)-(double(previousBatchSize)/2)
              )/double(previousBatchSize));
364
         //sleep(1);
365
         for(int i = 1; i <= bA; i++){</pre>
366
             calculation = pow((((vectorBDPBM1[i-1])/double(previousBatchSize))-
                  mean),2);
367
             sumA += calculation;
368
             calculation = 0;
369
         }
370
         for(int i = 1; i <= bB; i++){</pre>
371
             calculation = pow((((vectorBDPBM2[i-1])/double(previousBatchSize))-
                  mean),2);
372
             sumB += calculation;
373
             calculation = 0;
374
         }
         estimatorBDPBM = (1/db)*(sumA + sumB);
375
376
         sumA = 0;
         sumB = 0;
377
378
         return;
379 }
380
381
     void DynamicBMVarianceEstimator::PrintValuesInVectors(){
382
         for(int i = 0; i < observationVectorA.size(); i++){</pre>
383
             fprintf(stderr,"value_in_A[%d]:_\%f_\n", i,observationVectorA[i]);
384
         }
385
         for(int i = 0; i < observationVectorB.size(); i++){</pre>
386
             fprintf(stderr,"value_in_B[%d]:_u%f_i, i,observationVectorB[i]);
387
         }
388
         for(int i = 0; i < observationVectorC.size(); i++){</pre>
389
             fprintf(stderr,"value_in_C[%d]:_u%f_l,n", i,observationVectorC[i]);
390
         }
391
         for(int i = 0; i < observationVectorD.size(); i++){</pre>
392
             fprintf(stderr,"value_in_D[%d]:_U%f_l, i,observationVectorD[i]);
393
         3
```

394 return; 395 }

Appendix C

1

Modified MSE-DPBM

```
/* Modified MSE-DPBM */
 2
 3 #include <iostream>
 4 #include <stdio.h>
 5 #include <stdlib.h>
 6 #include <vector>
 7
   #include <cmath>
 8
9 //include the header file
10 #include "dpbm_variance_estimator.H"
11 #include "environment.H"
12 #include "checkpoint.H"
13 #include "akaroa/ak_message.H"
14 #include "akaroa.H"
15
16 int checkpointPointer = 0, newBatch = 0;
17
18 DefineVarianceEstimatorType("DPBM", DynamicBMVarianceEstimator)
19
20 DynamicBMVarianceEstimator::DynamicBMVarianceEstimator(Environment *env,
        long trans){
21
        InitializeMethodVariables();
22
        InitializeMethodVectors();
23 }
24
25 DynamicBMVarianceEstimator:: "DynamicBMVarianceEstimator(){
      //destructor
26
   }
27
28
29 void DynamicBMVarianceEstimator::
30 ProcessObservation(real value)
31
    {
32
        StartProcessingObservation(value);
33 }
34
35
    boolean DynamicBMVarianceEstimator::ReachedCheckpoint(){
        if((checkpointPointer == 1) && (m1 == batchSize)){
36
```


Figure C.1: Modified MSE-DPBM Algorithm as implemented in Akaroa2

```
37
            pointerToDPBM = 1;
38
            ComputeEstimatorDPBM();
39
            return true;
40
        } else {
41
            return false;
        }
42
43
        return false;
44 }
45
46 boolean DynamicBMVarianceEstimator::GetCheckpoint(Checkpoint &cp){
47
        cp.df = 0;
48
        cp.mean = mean;
49
        cp.variance = submitDPBM;
50
        return true;
51 }
52
53 void DynamicBMVarianceEstimator::InitializeMethodVariables(){
54
        currentSampleSizeN = 1;
55
        numberOfCollapsesOccured = 0;
56
        batchSize = pow(2, numberOfCollapsesOccured);
        m1 = 0, m2 = 0, m3 = 0, m4 = 0;
57
58
        r1 = 0, r2 = 0, r3 = 0, r4 = 0;
59
        memorySize = 15;
60
        estimatorDPBM = 0;
61
        previousDPBM = 0;
        optimalBatchSize = 0;
62
63
        previousMemorySize = 0;
64
        return;
65 }
66
67
   void DynamicBMVarianceEstimator::InitializeMethodVectors(){
68
        for(int i = previousMemorySize; i < (2*memorySize); i++){</pre>
69
            observationVectorA.push_back(0.00);
70
            observationVectorB.push_back(0.00);
71
            observationVectorC.push_back(0.00);
72
            observationVectorD.push_back(0.00);
        }
73
74
        return;
75 }
76
77
   void DynamicBMVarianceEstimator::StartProcessingObservation(real value){
78
        if(m1 < batchSize){</pre>
79
            m1 += 1;
80
            AddObservation(value);
81
            EndObservation(value);
82
            return;
83
        } else {
            VectorHasRoom(value);
84
85
            return;
86
        }
87 }
88
89
   void DynamicBMVarianceEstimator::VectorHasRoom(real value){
90
        if(r1 < ((2*memorySize)-1)){</pre>
```

91	<pre>IncreasePointer();</pre>
92	<pre>SetCurrentCell();</pre>
93	AddObservation(value);
94	<pre>EndObservation(value);</pre>
95	return;
96	} else {
97	if(numberOfCollapsesOccured == 0){
98	CollapseVectorB():
99	CollapseVectorA():
100	InitializeData():
101	<pre>InditionalineData();</pre>
102	SetCurrentCell():
102	AddObservation(value):
104	EndObservation(value);
105	roturn.
106	leturn,
107	jeise (if(batchSigo < 65) {
107	$\frac{CollongeVectorD()}{CollongeVectorD()}$
100	CollapseVectorD();
109	CollapsevectorC();
110	CollapsevectorB();
111	CollapseVectorA();
112	<pre>InitializeData();</pre>
113	UpdateKandM();
114	SetCurrentCell();
115	AddObservation(value);
116	<pre>EndObservation(value);</pre>
117	<pre>previousDPBM = estimatorDPBM;</pre>
118	ComputeEstimatorDPBM();
119	return;
120	} else {
121	ComputeOptimalBatchSize();
122	<pre>checkpointPointer = 1;</pre>
123	<pre>if(batchSize < optimalBatchSize){</pre>
124	CollapseVectorD();
125	CollapseVectorC();
126	CollapseVectorB();
127	CollapseVectorA();
128	<pre>InitializeData();</pre>
129	<pre>UpdateKandM();</pre>
130	SetCurrentCell();
131	<pre>AddObservation(value);</pre>
132	<pre>EndObservation(value);</pre>
133	return;
134	} else {
135	<pre>previousMemorySize = 2*memorySize;</pre>
136	<pre>memorySize += 1;</pre>
137	<pre>InitializeMethodVectors();</pre>
138	<pre>VectorHasRoom(value);</pre>
139	}
140	}
141	
142	}
143	}
144	}

```
145
146
     void DynamicBMVarianceEstimator::InitializeData(){
147
         if(numberOfCollapsesOccured == 0){
148
             m1 = 1;
149
             m2 = pow(2, numberOfCollapsesOccured);
150
             r1 = memorySize;
151
             r2 = memorySize - 1;
152
             return;
         } else {
153
154
             m1 = 1;
             m2 = pow(2, numberOfCollapsesOccured);
155
156
             m3 = pow(2, numberOfCollapsesOccured) + pow(2, (
                 numberOfCollapsesOccured - 1));
157
             m4 = pow(2, (numberOfCollapsesOccured - 1));
158
             r1 = memorySize;
159
             r2 = memorySize - 1;
160
             r3 = memorySize - 1;
161
             r4 = memorySize - 1;
162
             return;
163
         }
164
    }
165
166
     void DynamicBMVarianceEstimator::UpdateKandM(){
167
         numberOfCollapsesOccured += 1;
168
         batchSize = pow(2,numberOfCollapsesOccured);
169
         return;
170 }
171
172 void DynamicBMVarianceEstimator::SetCurrentCell(){
173
         observationVectorA[r1] = 0;
174
         return;
175 }
176
177
     void DynamicBMVarianceEstimator::CollapseVectorD(){
178
         for(int i = 1; i <= (memorySize-1); i++){</pre>
179
             observationVectorD[i-1] = observationVectorB[(2*i)-1] +
                 observationVectorB[2*i];
180
         }
181
         observationVectorD[memorySize-1] = observationVectorB[(2*memorySize)-1];
182
         m4 = m2;
183
         return;
184 }
185
186
   void DynamicBMVarianceEstimator::CollapseVectorC(){
187
         for(int i = 1; i <= (memorySize);i++){</pre>
             observationVectorC[i-1] = (observationVectorB[(2*i)-2] +
188
                 observationVectorB[(2*i)-1]);
189
         }
190
         m3 = m2 * pow(2, numberOfCollapsesOccured);
191
         return;
192 }
193
194
    void DynamicBMVarianceEstimator::CollapseVectorB(){
195
         for(int i = 1; i <= (memorySize-1); i++){</pre>
```

```
196
             observationVectorB[i-1] = observationVectorA[(2*i)-1] +
                 observationVectorA[2*i];
197
         }
198
         observationVectorB[memorySize-1] = observationVectorA[(2*memorySize)-1];
199
         return;
200 }
201
202 void DynamicBMVarianceEstimator::CollapseVectorA(){
203
         for(int i = 1; i <= (memorySize);i++){</pre>
             observationVectorA[i-1] = (observationVectorA[(2*i)-2] +
204
                 observationVectorA[(2*i)-1]);
205
         }
206
         return;
207 }
208
209 void DynamicBMVarianceEstimator::IncreasePointer(){
210
         m1 = 1;
211
         r1 += 1;
212
         return;
213 }
214
215 void DynamicBMVarianceEstimator::EndObservation(real value){
216
         if(numberOfCollapsesOccured == 1){
217
             UpdateB(value);
218
         }else if(numberOfCollapsesOccured > 1){
219
             UpdateD(value);
220
             UpdateC(value);
221
             UpdateB(value);
222
         }
223
         currentSampleSizeN += 1;
224
         return;
225 }
226
227 void DynamicBMVarianceEstimator::UpdateB(real value){
228
         if(m2 < batchSize){</pre>
229
            m2 += 1;
230
         } else {
231
             m2 = 1;
232
             r2 += 1;
233
             observationVectorB[r2] = 0;
234
         }
235
         observationVectorB[r2] += value;
236
         return;
237 }
238
239 void DynamicBMVarianceEstimator::UpdateC(real value){
         if(m3 < batchSize){</pre>
240
241
             m3 += 1;
242
         } else {
243
             m3 = 1;
244
             r3 += 1;
245
             observationVectorC[r3] = 0;
246
         }
247
         observationVectorC[r3] += value;
```

```
248
         return:
249 }
250
251 void DynamicBMVarianceEstimator::UpdateD(real value){
252
         if(m4 < batchSize){</pre>
253
            m4 += 1;
254
         } else {
255
             m4 = 1;
256
             r4 += 1;
257
             observationVectorD[r4] = 0;
258
         }
259
         observationVectorD[r4] += value;
260
         return;
261 }
262
263 void DynamicBMVarianceEstimator::AddObservation(real value){
264
         observationVectorA[r1] += value;
265
         return:
266 }
267
268
    void DynamicBMVarianceEstimator::ComputeOptimalBatchSize(){
269
         previousDPBM = estimatorDPBM;
270
         ComputeEstimatorDPBM();
271
         real gamma0 = ((double(currentSampleSizeN)*estimatorDPBM)/sampleVariance
             );
272
         real gamma1 = (double(((double(currentSampleSizeN)*double(batchSize))*(
             estimatorDPBM-previousDPBM)))/sampleVariance);
273
         optimalBatchSize = cbrt((1.03*double(currentSampleSizeN))*(pow(double(
             gamma1/gamma0),2)))+1;
274
         return;
275 }
276
277 void DynamicBMVarianceEstimator::ComputeMean(int b1){
278
         mean = 0;
279
         for(int i = 0; i < b1; i++){</pre>
             mean += (observationVectorA[i]);
280
         }
281
282
         mean = (mean/double(currentSampleSizeN));
283
         real sum = 0, calculation = 0;
284
         for(int i = 0; i < b1; i++){</pre>
285
             calculation = pow(observationVectorA[i]-mean, 2);
286
             sum += calculation;
287
             calculation = 0;
288
         }
289
         sampleVariance = (sum / double(currentSampleSizeN));
290
         return;
291 }
292
293 void DynamicBMVarianceEstimator::ComputeEstimatorDPBM(){
294
         if(pointerToDPBM == 1){
295
             int b1 = int(r1 + floor(double(m1/batchSize)));
296
             int b2 = int(r2 + floor(double(m2/batchSize)));
297
             int b3 = int(r3 + floor(double(m3/batchSize)));
298
             int b4 = int(r4 + floor(double(m4/batchSize)));
```

```
299
             ComputeMean(b1);
300
             double s = double(batchSize/4);
301
             int b = int(floor(double((currentSampleSizeN-batchSize+s)/s)));
302
             double db = double(b*(double((currentSampleSizeN/batchSize)-1)));
303
             real sumA = 0, sumB = 0, sumC = 0, sumD = 0, calculation = 0;
304
             for(int i = 0; i < b1; i++){</pre>
305
                 calculation = pow(double((observationVectorA[i]/double(batchSize
                      ))-mean),2);
306
                 sumA += calculation;
307
                 calculation = 0;
308
             }
309
             for(int i = 0; i < b2; i++){</pre>
310
                 calculation = pow(double((observationVectorB[i]/double(batchSize
                      ))-mean),2);
311
                 sumB += calculation;
312
                 calculation = 0;
313
             }
314
             for(int i = 0; i < b3; i++){</pre>
315
                 calculation = pow(double((observationVectorC[i]/double(batchSize
                      ))-mean),2);
316
                 sumC += calculation;
317
                 calculation = 0;
             }
318
319
             for(int i = 0; i < b4; i++){</pre>
320
                 calculation = pow(double((observationVectorD[i]/double(batchSize
                      ))-mean),2);
321
                 sumD += calculation;
322
                 calculation = 0;
323
             }
324
             submitDPBM = double((1/db)*double(sumA + sumB + sumC + sumD));
325
             sumA = 0, sumB = 0, sumC = 0, sumD = 0;
326
             pointerToDPBM = 0;
327
             return;
         } else {
328
329
             int b1 = int(r1 + floor(double(m1/batchSize)));
330
             int b2 = int(r2 + floor(double(m2/batchSize)));
331
             int b3 = int(r3 + floor(double(m3/batchSize)));
332
             int b4 = int(r4 + floor(double(m4/batchSize)));
333
             ComputeMean(b1);
334
             estimatorDPBM = 0;
335
             double s = double(batchSize/4);
336
             int b = int(floor(double((currentSampleSizeN-batchSize+s)/s)));
             double db = double(b*(double((currentSampleSizeN/batchSize)-1)));
337
338
             real sumA = 0, sumB = 0, sumC = 0, sumD = 0, calculation = 0;
339
             for(int i = 0; i < b1; i++){</pre>
340
                 calculation = pow(double((observationVectorA[i]/double(batchSize
                      ))-mean),2);
341
                 sumA += calculation;
342
                 calculation = 0;
343
             }
344
             for(int i = 0; i < b2; i++){</pre>
345
                 calculation = pow(double((observationVectorB[i]/double(batchSize
                      ))-mean),2);
346
                 sumB += calculation;
```

```
347
                 calculation = 0;
348
             }
349
             for(int i = 0; i < b3; i++){</pre>
350
                 calculation = pow(double((observationVectorC[i]/double(batchSize
                     ))-mean),2);
351
                 sumC += calculation;
352
                 calculation = 0;
353
             }
354
             for(int i = 0; i < b4; i++){</pre>
355
                 calculation = pow(double((observationVectorD[i]/double(batchSize
                     ))-mean),2);
356
                 sumD += calculation;
357
                 calculation = 0;
358
             }
359
             estimatorDPBM = double((1/db)*double(sumA + sumB + sumC + sumD));
360
             sumA = 0, sumB = 0, sumC = 0, sumD = 0;
361
             return;
362
         }
363 }
364
365
     void DynamicBMVarianceEstimator::PrintValuesInVectors(){
366
         for(int i = 0; i < observationVectorA.size(); i++){</pre>
367
             fprintf(stderr,"value_in_A[%d]:_\%f_\n", i,observationVectorA[i]);
368
         }
369
         for(int i = 0; i < observationVectorB.size(); i++){</pre>
370
             fprintf(stderr,"value_in_B[%d]:_u%f_i, i,observationVectorB[i]);
371
         }
372
         for(int i = 0; i < observationVectorC.size(); i++){</pre>
373
             fprintf(stderr,"value_in_C[%d]:__%f__\n", i,observationVectorC[i]);
374
         }
375
         for(int i = 0; i < observationVectorD.size(); i++){</pre>
376
             fprintf(stderr,"value_in_D[%d]:__%f_(n", i,observationVectorD[i]);
377
         }
378
         return;
379 }
```

Appendix D

Coverage Analysis

```
1 #!/usr/bin/perl
2 use warnings;
3 use strict;
4 use DBI;
5 use POSIX qw(strftime);
6
   | = 0;
 7
 8
    our ($model, $load, $method, $transMethod, $seed, $theoreticalMean,
        $currentTable, $mean, $standardDeviation, $lMin, $deltaCoverage);
9 our ($HOST, $MYSQLPORT, $DATABASE, $USERNAME, $PASSWD, $dbh);
10 our ($badCI, $totalCI);
11 our ($badLength, $goodLength) = 0;
12 our ($goodLBadCi, $goodLGoodCi, $goodLenghtTotal, $coverage);
13
14 require "db.conf";
15
16 sub InitializeVariables {
17
            $model = $ARGV[0];
18
            \ = ARGV[1];
19
            $method = $ARGV[2];
            $transMethod = $ARGV[3];
20
            $seed = "128:0";
21
22
            GetTheoreticalMean();
23
           return;
24 }
25
26 sub GetTheoreticalMean{
27
            $theoreticalMean = '$model $load -t';
28
            return;
29
   }
30
31
    sub CreateDatabase{
32
            my $date = strftime "%m%d%Y", localtime;
33
            my @dbLoad = split(/\./,$load);
            $currentTable = "0_".$method."_".$model."_".$dbLoad[0].$dbLoad[1]."_
34
                ".$date."_".$transMethod;
35
            #print $currentTable."\n";
```

```
36
              my $createTableQuery = $dbh->prepare("CREATE, TABLE, IF, NOT, EXISTS,
                   currentTable_{\sqcup}(
37 \_\_\_\_\_\_\_\_\_\_\_id`\_bigint\_primary\_key\_auto\_increment,
38 \quad \_\_\_'estimate'\_real\_signed\_NOT\_NULL,
39 \quad \text{ind} \text{'delta'ufloat} unsigned \text{NOT} \text{NULL},
40 \quad \texttt{Lic}`\texttt{confidence'lfloat} \texttt{unsigned} \texttt{NOT} \texttt{UNULL},
41 \_\_\_'totalObs'\_bigint\_unsigned\_NOT\_NULL,
42 \_\_\_``transObs`\_int\_unsigned\_NOT\_NULL,
43 \quad {\rm and'seed'}_{\rm L} {\rm text}_{\rm L} {\rm NOT}_{\rm L} {\rm NULL}\,,
44 \_\_\_'BoolCI'\_int\_NOT_\_NULL,
45 \square 'BoolLength'\squareint\squareNOT\squareNULL
46 )_ENGINE=InnoDB_DEFAULT_CHARSET=utf8_COLLATE=utf8_czech_ci;");
47
              $createTableQuery->execute();
48
              $createTableQuery->finish();
49
              return;
50 }
51
52 sub ConnectToDatabase{
53
    $dbh = DBI->connect("dbi:mysql:$DATABASE:$HOST:$MYSQLPORT",
54
                                $USERNAME,
55
                                 $PASSWD,
56
                                 { 'PrintError' => 1, 'RaiseError' => 1 }
57
                                 ) or die $DBI::errstr;
58
                                 return;
59
    }
60
61
    sub SaveIntoDatabase{
62
              my ($estimate, $delta, $conf, $totalObs, $transObs, $pointerCI,
                   $pointerLenght) = @_;
63
              my $insertQuery = $dbh->prepare("INSERT_INTO_$currentTable_(estimate
                   ,delta,confidence,totalObs,
    \_\_\_\_\_\_transObs,\_seed,\_BoolCI,\_BoolLength)\_values_\_(?,\_?,\_?,\_?,\_?,\_?,\_?,\_?)"
64
         );
65
              $insertQuery->execute($estimate, $delta, $conf, $totalObs, $transObs
                   , $seed, $pointerCI, $pointerLenght);
66
              $insertQuery->finish();
67
              return;
68 }
69
70
    sub FirstRun{
71
              badCI = 0:
72
              while($badCI < 200){</pre>
73
                       my $output = 'akrun -n 1 -s -r $seed -D AnalysisMethod=
                            $method -D TransientMethod=$transMethod $model $load';
74
                       #print $output."\n";
75
                       my $regEx = "([+-]?\\d*\\.\\d+)(?![-+0-9\\.]).*?([+-]?\\d
                            *\\.\\d+)(?![-+0-9\\.]).*?([+-]?\\d*\\.\\d+)
                            (?![-+0-9\\.]).*?(\\d+).*?(\\d+)";
76
                       $output = m/$regEx/is;
77
                       my $estimate = $1;
78
                       my $delta = $2;
79
                       my conf = 33;
80
                       my $totalObs = $4;
81
                       my $transObs = $5;
```

82	if(!defined(\$delta)){
83	<pre>my \$regEx = "(\\d+)(\\s+)(\\d+).*?([+-]?\\d*\\.\\d+)</pre>
	(?![-+0-9\\.]).*?([+-]?\\d*\\.\\d+)
	(?![-+0-9\\.]).*?(\\d+).*?(\\d+)";
84	<pre>\$output = m/\$regEx/is;</pre>
85	<pre>\$estimate = \$3:</pre>
86	\$delta = \$4:
87	\$conf = \$5:
88	\$totalObs = $$6$.
89	\$transObs = $$7$.
90	۶۰۲ and bob ۹۲,
01	if((\$theoreticalMean >= (\$ectimate - \$delta)) kk (
51	$\frac{((\psi)(\psi)(\psi)(\psi)(\psi)(\psi)(\psi))}{(\psi)(\psi)(\psi)(\psi)(\psi)(\psi)(\psi)(\psi)} = \frac{(\psi)(\psi)(\psi)(\psi)(\psi)(\psi)(\psi)}{(\psi)(\psi)(\psi)(\psi)(\psi)(\psi)}$
	ψ theoreticalMean $\langle - (\psi$ estimate, ψ derta/)) (#15 covered
0.2	Dy the Ci
92	Saveintobatabase(\$estimate, \$deita, \$coni, \$totatobs
0.9	, \$transubs, 1, 0);
93	} else { #1s not covered by the Cl
94	SbadCL +=1;
95	SaveIntoDatabase(\$estimate, \$delta, \$conf, \$totalUbs
	, \$transUbs, 0, 0);
96	}
97	<pre>\$output = m/RandomNumberState: (\d.*)/;</pre>
98	\$seed = \$1;
99	<pre>\$totalCI += 1; #keeps the total number of runs, will need to</pre>
	be recalculated after some runs are rejected (not long
	enuf)
100	}
101	CalculateStandardDeviation();
102	RejectShortRuns();
103	return;
104	}
105	
106	<pre>sub RejectShortRuns{</pre>
107	<pre>my \$selectQuery = \$dbh->prepare("SELECT_+_FROM_\$currentTable");</pre>
108	<pre>\$selectQuery->execute();</pre>
109	my Crow;
110	<pre>while (@row = \$selectQuery->fetchrow_array())</pre>
111	{
112	if(\$row[4] < \$1Min){
113	my $\sup = \frac{1}{2} = \frac{1}{2}$
	\$currentTable_SET_BoolLength_=,?,WHERE_(id_=,?)
	");
114	<pre>\$updateQuerv->execute('0',\$row[0]);</pre>
115	<pre>\$updateQuerv->finish():</pre>
116	#print "update.id.=.\$row[0].with.lenght:.\$row[4]
110	ی از با با میں
117	\$hadLength $+= 1$
118	} else {
110	$m_{\rm W} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
113	my wapartequery - when $repare($ or $DATE_{\Box}$ repare (id - 2)
	m). Acartenciantenseineootrenkeun-D:DMueven(100-D;)
190	$\frac{1}{2}$
120 191	¢updateQuery=>€xecute(`1`,\$IOW[0]); \$undatoOuery=>finich();
141 199	<pre>pupualequery→1111Sn(); #unint lundets id = fract[0] with largets for [4] ></pre>
144	"+prine updatelian_lotow[0][mitulitenSur:Dolom[4][5]

		\$1Min \n":
123		\$goodLength $+= 1:$
124		}
125		}
126		\$selectQuerv->finish():
127		<pre>#print "now we have good: \$countGood and bad: \$countBad and total:</pre>
		<pre>\$totalCI_\n";</pre>
128		return;
129	}	
130		
131	sub Cal	culateStandardDeviation{
132		<pre>my \$selectQuery = \$dbh->prepare("SELECT_*_FROM_\$currentTable");</pre>
133		<pre>\$selectQuery->execute();</pre>
134		my Crow;
135		mean = 0;
136		my \$sum = 0;
137		my \$count = 0;
138		while (@row = \$selectQuery->fetchrow_array())
139		{
140		mean += row[4];
141		<pre>\$count++;</pre>
142		}
143		<pre>\$selectQuery -> finish();</pre>
144		<pre>\$mean = \$mean/\$count;</pre>
145		#print "Mean_is:」\$mean_\n";
146		<pre>\$selectQuery->execute();</pre>
147		while (@row = \$selectQuery->fetchrow_array())
148		
149		sum += ((srow[4] - smean)**2);
150		#print "\$sumu=u\$row[4]u-u\$meanusquareau \n"; ک
150		$\int \Phi_{a+a+b+d} = A_{a+a+b+a+a+a+b+a+a+a+b+a+a+a+b+a+a+b+a+a+a+b+a$
152		φ standardDeviation = Sqrt((1/(φ totator-1))*(φ sum)), φ Min = φ moon = φ standardDoviation:
154		<pre>wind = wind wind wind a standard eviation, www.windows.action.com www.windows.action.com www.windows.action.com www.windows.action.com window</pre>
104		model' 'load' 'analysisMethod' 'transientMethod' '
		standardDeviation ('mean') values (??????)").
155		<pre>\$insertOuerv-Severate(\$model \$load "0 " \$method \$transMethod</pre>
100		\$standardDeviation \$mean):
156		<pre>\$insertQuerv->finish():</pre>
157		<pre>#print "ST: \$standardDeviation and mean: \$mean and equals to:".</pre>
		\$1Min."\n":
158		<pre>\$selectQuery -> finish();</pre>
159		return;
160	}	
161		
162	sub Fir	stCheckpoint{
163		#get 200 of good lenght, but not covering the mean and calculate
		coverage
164		<pre>my \$goodLengthBadCi = 0;</pre>
165		<pre>my \$selectQuery = \$dbh->prepare("SELECT_*_FROM_\$currentTable");</pre>
166		<pre>\$selectQuery->execute();</pre>
167		my @row;
168		my \$count;
169		while (@row = \$selectQuery->fetchrow_array())

170	{
171	if((\$row[7] == 0) && (\$row[8] == 1)){
172	<pre>\$goodLengthBadCi +=1 ;</pre>
173	}
174	}
175	$mv \ snumOfBuns = 0:$
176	while $(\$ g \circ d I = ng th BadCi < 200)$
177	$mu \text{($600 \text{ about } 1 = 0$)}$
170	$\frac{1}{100000} = 0;$
170	$\frac{1}{2} \left(\frac{1}{2}\right) \left(\frac{1}{2$
179	<pre>\$output = 'akrun -n 1 -s -r \$seed -D AnalysisMethod= \$method -D TransientMethod=\$transMethod \$model \$load';</pre>
180	<pre>\$numOfRuns += 1;</pre>
181	} else {
182	print "Bun, length, achieved, did, not, record, 200, bad
102	CI_with_good_length,_exiting/n";
183	exit;
184	}
185	<pre>#print \$output."\n";</pre>
186	#parse the output of simulation
187	$mv \ \$regEx = "([+-]? \ d* \ (?![-+0-9 \]).*?([+-]? \ d* \ d* \).$
	(+b// //*h//?[-+])?* ([//e-0+-]!?)(+b// //*
	(2 [-+(-2)] + 2()/d+) + 2()/d+) + 2()/d+)
188	$s_{\text{output}} = \frac{m}{8} regFv/is$
180	$\varphi_{\text{output}} = m, \varphi_{\text{otegLX}}$
109	$my \varphiestimate = \varphi_1,$
190	$my \ \text{sdelta} = \ \text{s2};$
191	$my \ \text{$coni} = \ \text{$3};$
192	my \$totalUbs = \$4;
193	my \$transObs = \$5;
194	if(!defined(\$delta)){
195	<pre>my \$regEx = "(\\d+)(\\s+)(\\d+).*?([+-]?\\d*\\.\\d+)</pre>
	(?![-+0-9\\.]).*?([+-]?\\d*\\.\\d+)
	(?![-+0-9\\.]).*?(\\d+).*?(\\d+)";
196	<pre>\$output = m/\$regEx/is;</pre>
197	<pre>\$estimate = \$3;</pre>
198	\$delta = \$4;
199	<pre>\$conf = \$5;</pre>
200	<pre>\$totalObs = \$6;</pre>
201	transObs = \$7;
202	}
203	if(stotalObs > slMin)
204	if((\$theoreticalMean >= (\$estimate - \$delta)) $&$ (
-01	<pre>\$theoreticalMean <= (\$estimate+\$delta))){ #is</pre>
205	covered by the Cl
205	SaveIntoDatabase(\$estimate, \$delta, \$conf,
	<pre>\$totalObs, \$transObs, 1, 1);</pre>
206	<pre>} else { #is not covered by the CI</pre>
207	<pre>\$goodLengthBadCi += 1;</pre>
208	SaveIntoDatabase(\$estimate, \$delta, \$conf,
	<pre>\$totalObs, \$transObs, 0, 1);</pre>
209	}
210	<pre>} else {</pre>
211	<pre>\$badLength += 1;</pre>
212	}

```
213
                     $output = m/RandomNumberState: (\d.*)/;
214
                     seed = $1;
215
             }
216
             CalculateDeltaOfCoverage();
217
             return;
218 }
219
220 sub CalculateDeltaOfCoverage {
221
             my $selectQuery = $dbh->prepare("SELECT_*_FROM_$currentTable");
222
             $selectQuery->execute();
223
             my @row;
224
             my z = 1.96;
225
             ($goodLBadCi, $goodLGoodCi, $goodLenghtTotal) = 0;
226
             while (@row = $selectQuery->fetchrow_array())
227
             {
228
                     if(($row[7] == 0) && ($row[8] == 1)){
229
                             $goodLBadCi +=1;
230
                             $goodLenghtTotal +=1;
231
                     } elsif(($row[7] == 1) && ($row[8] == 1)){
                             $goodLGoodCi += 1;
232
233
                             $goodLenghtTotal +=1;
234
                     }
235
             }
236
             $selectQuery->finish();
237
             $coverage = $goodLGoodCi / $goodLenghtTotal;
238
             if($goodLenghtTotal > 99){
239
                     z = 1.96;
240
             } else {
241
                     print "need_to_use_student_t_distro_n";
242
                     z = 1.96;
243
             }
244
             $deltaCoverage = $z * sqrt(($coverage * (1- $coverage))/(
                 $goodLenghtTotal));
245
             #print "good_=_$goodLGoodCi,_total_=$goodLenghtTotal,_coverage_=
                 $coverage,_delta_coverage_$deltaCoverage_\n";
246
             \texttt{#print "delta_of_coverage_is:_".$deltaCoverage."\n";}
247
             return;
248 }
249
250
     sub SequentialAnalysis{
251
             while($deltaCoverage > 0.01) {
252
                     my $output = 'akrun -n 1 -s -r $seed -D AnalysisMethod=
                         $method -D TransientMethod=$transMethod $model $load';
253
                     #parse the output of simulation
                     my $regEx = "([+-]?\\d*\\.\\d+)(?![-+0-9\\.]).*?([+-]?\\d
254
                         *\\.\\d+)(?![-+0-9\\.]).*?([+-]?\\d*\\.\\d+)
                          (?![-+0-9\\.]).*?(\\d+).*?(\\d+)";
                     $output = m/$regEx/is;
255
256
                     my $estimate = $1;
257
                     my $delta = $2;
258
                     my conf = 33;
259
                     my $totalObs = $4;
260
                     my $transObs = $5;
261
                     if(!defined($delta)){
```

262	<pre>my \$regEx = "(\\d+)(\\s+)(\\d+).*?([+-]?\\d*\\.\\d+)</pre>
	(?![-+0-9\\.]).*?([+-]?\\d*\\.\\d+)
	(?![-+0-9\\.]).*?(\\d+).*?(\\d+)";
263	<pre>\$output = m/\$regEx/is;</pre>
264	<pre>\$estimate = \$3;</pre>
265	\$delta = \$4;
266	\$conf = \$5;
267	<pre>\$totalObs = \$6:</pre>
268	<pre>\$transObs = \$7:</pre>
269	}
270	if(\$totalObs > \$1Min){
271	if((\$theoreticalMean >= (\$estimate - \$delta)) && (
	<pre>\$theoreticalMean <= (\$estimate+\$delta))){ #is</pre>
	covered by the CI
272	$\#$ print "adding_good_CI_and_good_Length_\n";
273	SaveIntoDatabase(\$estimate, \$delta, \$conf,
	<pre>\$totalObs, \$transObs, 1, 1);</pre>
274	} else { #is not covered by the CI
275	#print "Adding Bad CI and good Length \n":
276	SaveIntoDatabase(\$estimate, \$delta, \$conf.
	<pre>\$totalObs. \$transObs. 0. 1);</pre>
277	}
278	CalculateDeltaOfCoverage():
279	} else {
280	\$badLength += 1:
281	}
282	<pre>\$output = m/RandomNumberState: (\d.*)/;</pre>
283	\$seed = \$1:
284	}
285	
	rejectedRuns', =, ?, ., 'totalRuns', =, ?, ., 'goodRuns', =, ?, ., 'badRuns', =
286	WHERE (('model', =, ?, AND, 'load', =, ?, AND, 'analysisMethod', =, ?, AND, '
	transientMethod $(1=1)$);
287	<pre>\$updateQuery->execute(\$badLength, \$goodLenghtTotal, \$goodLGoodCi,</pre>
	<pre>\$goodLBadCi, \$coverage, \$deltaCoverage, \$model, \$load, "O_".</pre>
	<pre>\$method, \$transMethod);</pre>
288	<pre>\$updateQuery->finish();</pre>
289	return;
290	}
291	
292	#main function
293	if(@ARGV == 4){
294	<pre>InitializeVariables();</pre>
295	ConnectToDatabase();
296	CreateDatabase();
297	<pre>FirstRun();</pre>
298	<pre>FirstCheckpoint();</pre>
299	<pre>SequentialAnalysis();</pre>
300	<pre>\$dbh->disconnect();</pre>
301	exit;
302	} else {
303	$\texttt{print "bad}_{\sqcup}\texttt{syntax}_{\sqcup}\texttt{use}_{\sqcup}-_\texttt{perl}_{\sqcup}\texttt{source.pl}_{\sqcup}\texttt{model}>_{\sqcup}\texttt{sload}>_{\sqcup}\texttt{smodel}>_{\sqcup}\texttt{succ}_{L}$
	$output_analysis>_\n";$

304 exit; 305 }

Appendix E

Tables of Results per Model

120

Model	Load	SOAM	Transient M.	Short Runs	No. Runs	No. Bad CIs	Coverage	$\Delta_{z\frac{1}{2}}$	$\sigma(\bar{L})$	Ē
AR(1)	0.5	SA/HW	Schruben	675	3795	200	0.947	0.00711	3219.231	8170.585
AR(1)	0.5	SA/HW	CumulativeMeans	417	2699	200	0.926	0.00988	2983.592	6516.655
AR(1)	0.6	SA/HW	Schruben	608	3570	200	0.944	0.00754	4893.289	12033.640
AR(1)	0.6	SA/HW	CumulativeMeans	441	2751	200	0.927	0.00970	4602.059	10053.165
AR(1)	0.7	SA/HW	Schruben	448	2956	200	0.932	0.00905	8747.356	20262.207
AR(1)	0.7	SA/HW	CumulativeMeans	398	2667	200	0.925	0.01000	8318.180	17715.235
AR(1)	0.8	SA/HW	Schruben	566	3378	200	0.941	0.00796	18767.171	42372.108
AR(1)	0.8	SA/HW	CumulativeMeans	503	3033	200	0.934	0.00883	18483.988	39431.204
AR(1)	0.9	SA/HW	Schruben	474	3036	200	0.934	0.00882	72681.411	155621.993
AR(1)	0.9	SA/HW	CumulativeMeans	452	2679	202	0.925	0.01000	72567.916	153933.573
AR(1)	0.95	SA/HW	CumulativeMeans	1072	5934	200	0.966	0.00459	1008.319	3231.425
AR(1)	0.95	SA/HW	Schruben	1214	5819	200	0.966	0.00468	1143.345	3982.917
AR(1)	0.5	DPBM(k=50)	Schruben	584	3744	200	0.947	0.00720	243.942	1691.676

AR(1)	0.5	DPBM(k=50)	CumulativeMeans	666	3751	200	0.947	0.00719	240.757	1476.700
AR(1)	0.6	DPBM(k=50)	CumulativeMeans	599	3337	200	0.940	0.00805	235.852	1439.838
AR(1)	0.6	DPBM(k=50)	Schruben	538	3327	200	0.940	0.00808	242.533	1641.858
AR(1)	0.7	DPBM(k=50)	CumulativeMeans	595	2751	200	0.927	0.00970	216.761	1379.789
AR(1)	0.7	DPBM(k=50)	Schruben	432	2876	200	0.930	0.00930	255.833	1550.156
AR(1)	0.8	DPBM(k=50)	CumulativeMeans	156	5070	793	0.844	0.01000	156.161	1257.436
AR(1)	0.8	DPBM(k=50)	Schruben	726	3968	464	0.883	0.01000	349.033	1224.055
AR(1)	0.9	DPBM(k=50)	Schruben	704	9303	3828	0.589	0.01000	131.881	671.772
AR(1)	0.9	DPBM(k=50)	CumulativeMeans	1356	9228	3700	0.599	0.01000	38.465	1217.382
AR(1)	0.95	DPBM(k=50)	Schruben	586	9366	5421	0.421	0.01000	152.794	733.048
AR(1)	0.95	DPBM(k=50)	CumulativeMeans	1591	9468	5298	0.440	0.01000	45.812	1306.443
AR(1)	0.5	DPBM(k=15)	CumulativeMeans	807	3598	200	0.944	0.00749	404.457	1557.418
AR(1)	0.5	DPBM(k=15)	Schruben	797	3869	200	0.948	0.00698	414.672	1772.412
AR(1)	0.6	DPBM(k=15)	CumulativeMeans	855	3660	200	0.945	0.00736	400.568	1564.869
AR(1)	0.6	DPBM(k=15)	Schruben	695	3722	200	0.946	0.00724	416.280	1759.768
AR(1)	0.7	DPBM(k=15)	CumulativeMeans	816	3442	200	0.942	0.00782	394.017	1568.150
AR(1)	0.7	DPBM(k=15)	Schruben	571	3365	200	0.941	0.00799	423.858	1748.707
AR(1)	0.8	DPBM(k=15)	CumulativeMeans	705	3075	200	0.935	0.00872	390.444	1571.668
AR(1)	0.8	DPBM(k=15)	Schruben	504	3107	200	0.936	0.00863	434.167	1717.864
AR(1)	0.9	DPBM(k=15)	Schruben	1007	3610	379	0.895	0.01000	575.205	1366.529
AR(1)	0.9	DPBM(k=15)	CumulativeMeans	2	5861	1101	0.812	0.01000	314.575	1440.952
AR(1)	0.95	DPBM(k=15)	Schruben	1	9431	5350	0.433	0.01000	367.471	736.742
AR(1)	0.95	DPBM(k=15)	CumulativeMeans	86	9490	5264	0.445	0.01000	105.005	1324.826
AR(1)	0.5	MSE-DPBM	CumulativeMeans	839	3632	200	0.945	0.00742	402.417	1555.782
AR(1)	0.5	MSE-DPBM	Schruben	801	3865	200	0.948	0.00698	414.725	1772.796
AR(1)	0.6	MSE-DPBM	CumulativeMeans	853	3662	200	0.945	0.00736	400.543	1564.893
AR(1)	0.6	MSE-DPBM	Schruben	693	3738	200	0.946	0.00721	416.130	1760.648
AR(1)	0.7	MSE-DPBM	CumulativeMeans	814	3444	200	0.942	0.00781	393.882	1568.276
AR(1)	0.7	MSE-DPBM	Schruben	571	3365	200	0.941	0.00799	423.839	1748.730
$\overline{AR(1)}$	0.8	MSE-DPBM	CumulativeMeans	705	3075	200	0.935	0.00872	390.444	1571.668

											A
AR(1)	0.8	MSE-DPBM	Schruben	504	3107	200	0.936	0.00863	434.125	1717.915] P
AR(1)	0.9	MSE-DPBM	Schruben	1007	3610	379	0.895	0.01000	575.205	1366.529	E
AR(1)	0.9	MSE-DPBM	CumulativeMeans	2	5861	1101	0.812	0.01000	314.575	1440.952	18
AR(1)	0.95	MSE-DPBM	Schruben	1	9431	5350	0.433	0.01000	367.471	736.742	18
AR(1)	0.95	MSE-DPBM	CumulativeMeans	86	9490	5264	0.445	0.01000	105.005	1324.826	12
AR(1)	0.5	Mod. MSE-DPBM	CumulativeMeans	747	2686	200	0.926	0.00993	44.182	4150.951	1.
AR(1)	0.5	Mod. MSE-DPBM	Schruben	108	3264	200	0.939	0.00823	23.447	4367.735	18
AR(1)	0.6	Mod. MSE-DPBM	CumulativeMeans	729	3039	200	0.934	0.00882	46.350	4169.857	18
AR(1)	0.6	Mod. MSE-DPBM	Schruben	132	3143	200	0.936	0.00853	26.415	4376.474	1 Ĕ
AR(1)	0.7	Mod. MSE-DPBM	CumulativeMeans	471	2987	200	0.933	0.00896	44.146	4199.055	15
AR(1)	0.7	Mod. MSE-DPBM	Schruben	173	3079	200	0.935	0.00871	30.011	4389.873	lc
AR(1)	0.8	Mod. MSE-DPBM	Schruben	254	2906	200	0.931	0.00920	36.606	4414.145	Ē
AR(1)	0.8	Mod. MSE-DPBM	CumulativeMeans	348	2835	200	0.929	0.00943	39.056	4240.387] 돈
AR(1)	0.9	Mod. MSE-DPBM	Schruben	305	2673	201	0.925	0.01000	66.061	4477.811	15
AR(1)	0.9	Mod. MSE-DPBM	CumulativeMeans	335	2725	200	0.927	0.00979	42.040	4309.595	12
AR(1)	0.95	Mod. MSE-DPBM	CumulativeMeans	391	2766	200	0.928	0.00965	53.902	4398.186	11
AR(1)	0.95	Mod. MSE-DPBM	Schruben	189	2741	200	0.927	0.00974	156.266	4619.314	15
			Ì	Table E.1: AF	R(1) Results T	able				•	E
											R
											M

											IC
ſ	Model	Load	SOAM	Transient M.	Short Runs	No. Runs	No. Bad CIs	Coverage	$\Delta_{z\frac{1}{2}}$	$\sigma(\bar{L})$	ΓĒ L
[M/M/1	0.5	SA/HW	Schruben	647	4006	200	0.950	0.00674	7208.586	16168.487
ſ	M/M/1	0.5	SA/HW	CumulativeMeans	441	2936	200	0.932	0.00911	6984.198	13166.879
[M/M/1	0.6	SA/HW	Schruben	580	3493	200	0.943	0.00770	12616.678	27014.707
ſ	M/M/1	0.6	SA/HW	CumulativeMeans	373	2757	200	0.927	0.00968	12635.658	23166.342
ſ	M/M/1	0.7	SA/HW	Schruben	477	2976	200	0.933	0.00900	24943.584	51868.517
[M/M/1	0.7	SA/HW	CumulativeMeans	434	2797	221	0.921	0.01000	24395.357	45923.890
ſ	M/M/1	0.8	SA/HW	Schruben	423	2760	215	0.922	0.01000	63237.041	125773.314
[M/M/1	0.8	SA/HW	CumulativeMeans	498	2909	240	0.917	0.01000	63400.331	121014.30

										A
M/M/1	0.9	SA/HW	Schruben	418	2981	200	0.933	0.00898	291112.111	535423.103
M/M/1	0.9	SA/HW	CumulativeMeans	414	2857	200	0.930	0.00936	286357.789	526884.095
M/M/1	0.95	SA/HW	Schruben	405	2748	213	0.922	0.01000	1200026.279	2184140.66
M/M/1	0.95	SA/HW	CumulativeMeans	410	2851	230	0.919	0.01000	1208585.396	2188953.118
M/M/1	0.5	DPBM(k=50)	Schruben	725	4564	200	0.956	0.00594	3293.983	13188.417
M/M/1	0.5	DPBM(k=50)	CumulativeMeans	732	4672	200	0.957	0.00580	3330.873	12889.818
M/M/1	0.6	DPBM(k=50)	Schruben	775	4758	200	0.958	0.00570	5831.210	22970.244
M/M/1	0.6	DPBM(k=50)	CumulativeMeans	870	5177	200	0.961	0.00525	5850.914	22628.886
M/M/1	0.7	DPBM(k=50)	Schruben	688	4029	200	0.950	0.00671	11787.731	45475.396
M/M/1	0.7	DPBM(k=50)	CumulativeMeans	749	4354	200	0.954	0.00622	11685.815	45002.962
M/M/1	0.8	DPBM(k=50)	Schruben	617	3744	200	0.947	0.00720	31141.474	114391.61
M/M/1	0.8	DPBM(k=50)	CumulativeMeans	615	3661	200	0.945	0.00736	31064.851	113756.91F
M/M/1	0.9	DPBM(k=50)	CumulativeMeans	437	3790	200	0.947	0.00712	155804.302	497605.70
M/M/1	0.9	DPBM(k=50)	Schruben	479	4009	200	0.950	0.00674	151417.284	502411.505
M/M/1	0.95	DPBM(k=50)	CumulativeMeans	563	2685	200	0.926	0.00993	957499.138	1772073.00
M/M/1	0.95	DPBM(k=50)	Schruben	386	2874	200	0.930	0.00930	870420.577	1888071.570
M/M/1	0.5	DPBM(k=15)	CumulativeMeans	633	3742	200	0.947	0.00721	4434.984	13131.513
M/M/1	0.5	DPBM(k=15)	Schruben	704	4024	200	0.950	0.00671	4429.561	13404.649
M/M/1	0.6	DPBM(k=15)	CumulativeMeans	497	3403	200	0.941	0.00790	7839.570	22987.054P
M/M/1	0.6	DPBM(k=15)	Schruben	547	3818	200	0.948	0.00707	7766.950	23334.03
M/M/1	0.7	DPBM(k=15)	Schruben	442	3452	200	0.942	0.00779	15658.312	46622.59Q
M/M/1	0.7	DPBM(k=15)	CumulativeMeans	425	3317	200	0.940	0.00810	15797.079	46339.172 H
M/M/1	0.8	DPBM(k=15)	CumulativeMeans	531	3003	200	0.933	0.00892	40200.264	116946.390
M/M/1	0.8	DPBM(k=15)	Schruben	554	3128	200	0.936	0.00857	40463.876	117964.435
M/M/1	0.9	DPBM(k=15)	CumulativeMeans	466	2983	200	0.933	0.00898	221249.102	484340.515
M/M/1	0.9	DPBM(k=15)	Schruben	576	3528	200	0.943	0.00763	193101.902	511076.351
M/M/1	0.95	DPBM(k=15)	CumulativeMeans	1046	2920	242	0.917	0.01000	1132624.203	1582889.674
M/M/1	0.95	DPBM(k=15)	Schruben	437	2821	225	0.920	0.01000	973657.420	1873689.061
M/M/1	0.5	MSE-DPBM	CumulativeMeans	839	4021	200	0.950	0.00672	4409.576	13130.874
M/M/1	0.5	MSE-DPBM	Schruben	700	3947	200	0.949	0.00684	4414.412	13407.614
										8

										A
M/M/1	0.6	MSE-DPBM	CumulativeMeans	535	3669	200	0.945	0.00735	7817.855	23009.636
M/M/1	0.6	MSE-DPBM	Schruben	562	3894	200	0.949	0.00693	7703.258	23331.484
M/M/1	0.7	MSE-DPBM	Schruben	517	3478	200	0.942	0.00774	15402.717	46621.981
M/M/1	0.7	MSE-DPBM	CumulativeMeans	528	3509	200	0.943	0.00767	15553.193	46342.798
M/M/1	0.8	MSE-DPBM	CumulativeMeans	539	3138	200	0.936	0.00855	39680.113	116769.455
M/M/1	0.8	MSE-DPBM	Schruben	526	3139	200	0.936	0.00854	39836.457	117710.300
M/M/1	0.9	MSE-DPBM	CumulativeMeans	363	2817	200	0.929	0.00948	219474.191	484102.308
M/M/1	0.9	MSE-DPBM	Schruben	574	3579	200	0.944	0.00753	190757.628	511137.64
M/M/1	0.95	MSE-DPBM	CumulativeMeans	1044	2915	241	0.917	0.01000	1121150.102	1578783.920
M/M/1	0.95	MSE-DPBM	Schruben	429	2729	210	0.923	0.01000	966762.428	1869275.37
M/M/1	0.5	Mod. MSE-DPBM	CumulativeMeans	808	3866	200	0.948	0.00698	4256.167	13017.297
M/M/1	0.5	Mod. MSE-DPBM	Schruben	857	4267	200	0.953	0.00634	4231.421	13274.664
M/M/1	0.6	Mod. MSE-DPBM	CumulativeMeans	507	3496	200	0.943	0.00770	7344.981	22682.353P
M/M/1	0.6	Mod. MSE-DPBM	Schruben	658	4112	200	0.951	0.00657	7253.206	23041.541
M/M/1	0.7	Mod. MSE-DPBM	Schruben	490	3366	200	0.941	0.00799	14545.610	45840.963
M/M/1	0.7	Mod. MSE-DPBM	CumulativeMeans	500	3453	200	0.942	0.00779	14652.814	45672.610
M/M/1	0.8	Mod. MSE-DPBM	CumulativeMeans	604	3260	200	0.939	0.00824	36977.622	115407.0862
M/M/1	0.8	Mod. MSE-DPBM	Schruben	621	3346	200	0.940	0.00803	36945.963	116074.83
M/M/1	0.9	Mod. MSE-DPBM	CumulativeMeans	715	4096	200	0.951	0.00660	161335.373	510614.78
M/M/1	0.9	Mod. MSE-DPBM	Schruben	724	4138	200	0.952	0.00653	160673.174	510767.00
M/M/1	0.95	Mod. MSE-DPBM	Schruben	516	3645	200	0.945	0.00739	674549.187	2091911.29
M/M/1	0.95	Mod. MSE-DPBM	CumulativeMeans	510	3687	200	0.946	0.00731	678515.146	2108415.18
				Table E.2: M/	M/1 Results	Table				H

Table	E.2:	Μ	/M	/1	Results	Table

Model	Load	SOAM	Transient M.	Short Runs	No. Runs	No. Bad CIs	Coverage	$\Delta_{z\frac{1}{2}}$	$\sigma(\bar{L})$	Ē
M/D/1	0.5	SA/HW	Schruben	650	3631	200	0.945	0.00742	1486.006	3508.210
M/D/1	0.5	SA/HW	CumulativeMeans	464	3172	288	0.909	0.01000	1262.804	1973.141
M/D/1	0.6	SA/HW	Schruben	488	3688	200	0.946	0.00731	3167.599	6561.700

										A
M/D/1	0.6	SA/HW	CumulativeMeans	445	3103	275	0.911	0.01000	2894.693	4546.648
M/D/1	0.7	SA/HW	Schruben	400	2855	200	0.930	0.00936	7255.593	14458.083
M/D/1	0.7	SA/HW	CumulativeMeans	375	3000	256	0.915	0.01000	6918.226	11361.186
M/D/1	0.8	SA/HW	Schruben	447	2990	200	0.933	0.00896	21049.368	41184.397
M/D/1	0.8	SA/HW	CumulativeMeans	366	2698	205	0.924	0.01000	20609.424	36071.729
M/D/1	0.9	SA/HW	Schruben	406	2698	200	0.926	0.00989	111401.877	213543.009
M/D/1	0.9	SA/HW	CumulativeMeans	438	2768	200	0.928	0.00965	111922.580	208702.591
M/D/1	0.95	SA/HW	Schruben	448	3035	200	0.934	0.00883	525311.870	994545.019
M/D/1	0.95	SA/HW	CumulativeMeans	422	2860	200	0.930	0.00935	526499.593	984025.428
M/D/1	0.5	DPBM(k=50)	Schruben	523	3138	200	0.936	0.00855	792.459	1918.795
M/D/1	0.5	DPBM(k=50)	CumulativeMeans	1073	4154	200	0.952	0.00651	721.699	1723.519
M/D/1	0.6	DPBM(k=50)	CumulativeMeans	632	3765	200	0.947	0.00716	1630.169	4015.720
M/D/1	0.6	DPBM(k=50)	Schruben	565	3561	200	0.944	0.00756	1621.651	4280.669
M/D/1	0.7	DPBM(k=50)	CumulativeMeans	609	3864	200	0.948	0.00699	3865.489	10470.801
M/D/1	0.7	DPBM(k=50)	Schruben	703	4225	200	0.953	0.00640	3799.760	10771.656
M/D/1	0.8	DPBM(k=50)	CumulativeMeans	829	5030	200	0.960	0.00540	11295.408	34572.847
M/D/1	0.8	DPBM(k=50)	Schruben	858	4975	200	0.960	0.00546	11256.344	34973.221
M/D/1	0.9	DPBM(k=50)	CumulativeMeans	627	4227	200	0.953	0.00640	60107.185	194673.975
M/D/1	0.9	DPBM(k=50)	Schruben	689	4304	200	0.954	0.00629	58640.098	197600.655
M/D/1	0.95	DPBM(k=50)	CumulativeMeans	402	3029	200	0.934	0.00884	379242.871	854543.868
M/D/1	0.95	DPBM(k=50)	Schruben	322	3256	200	0.939	0.00825	346136.258	887291.218
M/D/1	0.5	DPBM(k=15)	Schruben	421	2679	202	0.925	0.01000	913.979	2083.976
M/D/1	0.5	DPBM(k=15)	CumulativeMeans	656	3326	200	0.940	0.00808	870.456	1870.811
M/D/1	0.6	DPBM(k=15)	CumulativeMeans	562	3163	200	0.937	0.00848	1928.953	4275.320
M/D/1	0.6	DPBM(k=15)	Schruben	520	3164	200	0.937	0.00848	1941.673	4543.456
M/D/1	0.7	DPBM(k=15)	CumulativeMeans	401	2809	200	0.929	0.00951	4708.362	10955.683
M/D/1	0.7	DPBM(k=15)	Schruben	441	2976	200	0.933	0.00900	4667.201	11242.866
M/D/1	0.8	DPBM(k=15)	Schruben	683	3817	200	0.948	0.00707	13771.218	36106.431
M/D/1	0.8	DPBM(k=15)	CumulativeMeans	636	3554	200	0.944	0.00758	13832.280	35514.696
M/D/1	0.9	DPBM(k=15)	CumulativeMeans	396	3058	200	0.935	0.00876	79711.431	194515.089
										C T

										A
M/D/1	0.9	DPBM(k=15)	Schruben	484	3373	200	0.941	0.00797	75303.398	201841.318
M/D/1	0.95	DPBM(k=15)	CumulativeMeans	632	2915	241	0.917	0.01000	483124.939	789174.818
M/D/1	0.95	DPBM(k=15)	Schruben	345	2866	200	0.930	0.00933	401747.787	906234.555
M/D/1	0.5	MSE-DPBM	Schruben	421	2679	202	0.925	0.01000	913.979	2083.976
M/D/1	0.5	MSE-DPBM	CumulativeMeans	656	3326	200	0.940	0.00808	870.485	1870.917
M/D/1	0.6	MSE-DPBM	CumulativeMeans	561	3164	200	0.937	0.00848	1928.434	4278.186
M/D/1	0.6	MSE-DPBM	Schruben	523	3172	200	0.937	0.00846	1937.244	4542.505
M/D/1	0.7	MSE-DPBM	CumulativeMeans	403	2827	200	0.929	0.00945	4710.115	10967.461
M/D/1	0.7	MSE-DPBM	Schruben	444	3020	200	0.934	0.00887	4663.016	11230.304
M/D/1	0.8	MSE-DPBM	CumulativeMeans	627	3531	200	0.943	0.00762	13755.733	35532.354
M/D/1	0.8	MSE-DPBM	Schruben	666	3760	200	0.947	0.00717	13750.568	36074.302
M/D/1	0.9	MSE-DPBM	CumulativeMeans	392	3016	200	0.934	0.00888	80038.832	195303.320
M/D/1	0.9	MSE-DPBM	Schruben	508	3536	200	0.943	0.00761	74750.247	202021.853 🔁
M/D/1	0.95	MSE-DPBM	CumulativeMeans	601	2839	228	0.920	0.01000	477897.638	788486.261
M/D/1	0.95	MSE-DPBM	Schruben	354	2975	200	0.933	0.00900	397839.569	903085.391
M/D/1	0.5	Mod. MSE-DPBM	CumulativeMeans	0	2983	253	0.915	0.01000	220.794	4126.707
M/D/1	0.5	Mod. MSE-DPBM	Schruben	0	2920	242	0.917	0.01000	221.257	4408.905
M/D/1	0.6	Mod. MSE-DPBM	CumulativeMeans	0	3156	285	0.910	0.01000	1498.751	5050.176 F
M/D/1	0.6	Mod. MSE-DPBM	Schruben	0	2955	248	0.916	0.01000	1461.769	5332.624 🎘
M/D/1	0.7	Mod. MSE-DPBM	CumulativeMeans	382	2837	200	0.930	0.00942	4557.025	10929.803 😫
M/D/1	0.7	Mod. MSE-DPBM	Schruben	520	3314	200	0.940	0.00811	4443.292	11238.517 🍳
M/D/1	0.8	Mod. MSE-DPBM	Schruben	689	4029	200	0.950	0.00671	13141.179	35571.430 F
M/D/1	0.8	Mod. MSE-DPBM	CumulativeMeans	709	3995	200	0.950	0.00676	13226.494	35170.016
M/D/1	0.9	Mod. MSE-DPBM	Schruben	842	4122	200	0.951	0.00656	66837.778	200173.155
M/D/1	0.9	Mod. MSE-DPBM	CumulativeMeans	887	4395	200	0.954	0.00616	67403.132	199315.195
M/D/1	0.95	Mod. MSE-DPBM	CumulativeMeans	686	3821	200	0.948	0.00706	304427.570	938234.761
M/D/1	0.95	Mod. MSE-DPBM	Schruben	615	3611	200	0.945	0.00746	306503.560	943886.910

Table E.3: M/D/1 Results Table

126

Model	Load	SOAM	Transient M.	Short Runs	No. Runs	No. Bad CIs	Coverage	$\Delta_{z\frac{1}{2}}$	$\sigma(L)$	
$M/H_{2}/1$	0.5	SA/HW	Schruben	452	2997	200	0.933	0.00893	57674.039	123912.1
$M/H_{2}/1$	0.5	SA/HW	CumulativeMeans	476	2885	200	0.931	0.00927	57175.554	122893.460
$M/H_{2}/1$	0.6	SA/HW	Schruben	418	2835	200	0.929	0.00943	87043.047	181578.97
$M/H_{2}/1$	0.6	SA/HW	CumulativeMeans	432	2720	200	0.926	0.00981	86317.419	182308.578
$M/H_{2}/1$	0.7	SA/HW	Schruben	417	2731	200	0.927	0.00977	149843.794	301715.945
$M/H_{2}/1$	0.7	SA/HW	CumulativeMeans	412	2766	200	0.928	0.00965	151528.966	305956.04
$M/H_{2}/1$	0.8	SA/HW	Schruben	388	2834	200	0.929	0.00943	312137.848	605675.19
$M/H_{2}/1$	0.8	SA/HW	CumulativeMeans	423	3006	200	0.933	0.00891	310540.479	612048.825
$M/H_{2}/1$	0.9	SA/HW	CumulativeMeans	479	3072	200	0.935	0.00872	1053390.608	2067673.8
$M/H_{2}/1$	0.9	SA/HW	Schruben	474	3034	200	0.934	0.00883	1060370.904	2059401.100
$M/H_{2}/1$	0.95	SA/HW	CumulativeMeans	407	2736	211	0.923	0.01000	4079278.549	7715059.357
$M/H_{2}/1$	0.95	SA/HW	Schruben	422	2757	200	0.927	0.00968	4031780.527	7711850.0
$M/H_{2}/1$	0.5	DPBM(k=50)	CumulativeMeans	691	4248	200	0.953	0.00637	22913.856	119351.330
$M/H_{2}/1$	0.5	DPBM(k=50)	Schruben	736	4436	200	0.955	0.00611	22762.455	119298.166
$M/H_{2}/1$	0.6	DPBM(k=50)	CumulativeMeans	756	4450	200	0.955	0.00609	36942.403	176712.28
$M/H_{2}/1$	0.6	DPBM(k=50)	Schruben	645	4082	200	0.951	0.00662	36773.776	176470.692
$M/H_{2}/1$	0.7	DPBM(k=50)	CumulativeMeans	747	3906	200	0.949	0.00691	62344.172	290181.68
$M/H_{2}/1$	0.7	DPBM(k=50)	Schruben	814	4131	200	0.952	0.00655	62800.599	289690.302
$M/H_{2}/1$	0.8	DPBM(k=50)	Schruben	658	4488	200	0.955	0.00604	137660.641	572127.24
$M/H_{2}/1$	0.8	DPBM(k=50)	CumulativeMeans	848	4536	200	0.956	0.00597	128089.001	578954.61 E
$M/H_{2}/1$	0.9	DPBM(k=50)	Schruben	311	3062	200	0.935	0.00875	727465.175	1834404.8
$M/H_{2}/1$	0.9	DPBM(k=50)	CumulativeMeans	292	3487	200	0.943	0.00772	602332.617	1928061.858
$M/H_{2}/1$	0.95	DPBM(k=50)	Schruben	795	2794	200	0.928	0.00956	3443150.693	5756450.401
$M/H_2/1$	0.95	DPBM(k=50)	CumulativeMeans	755	2949	200	0.932	0.00907	3299919.784	6028409.636
$M/H_2/1$	0.5	DPBM(k=15)	Schruben	626	3573	200	0.944	0.00754	34424.218	119374.135
$M/H_{2}/1$	0.5	DPBM(k=15)	CumulativeMeans	633	3621	200	0.945	0.00744	34284.229	119404.664
$M/H_{2}/1$	0.6	DPBM(k=15)	CumulativeMeans	474	3485	200	0.943	0.00772	51824.921	177562.611
$M/H_2/1$	0.6	DPBM(k=15)	Schruben	492	3561	200	0.944	0.00756	51577.711	177009.109
$M/H_{2}/1$	0.7	DPBM(k=15)	Schruben	590	3639	200	0.945	0.00740	91350.152	294166.985

A

										A
$M/H_{2}/1$	0.7	DPBM(k=15)	CumulativeMeans	559	3483	200	0.943	0.00773	90000.330	295151.194
$M/H_{2}/1$	0.8	DPBM(k=15)	Schruben	572	3985	200	0.950	0.00678	189633.769	579184.33
$M/H_{2}/1$	0.8	DPBM(k=15)	CumulativeMeans	601	3832	200	0.948	0.00704	181690.503	585626.484
$M/H_{2}/1$	0.9	DPBM(k=15)	Schruben	373	2716	200	0.926	0.00982	879138.899	1815273.9
$M/H_{2}/1$	0.9	DPBM(k=15)	CumulativeMeans	399	3002	200	0.933	0.00892	805121.742	1902458.539
$M/H_{2}/1$	0.95	DPBM(k=15)	Schruben	912	2892	237	0.918	0.01000	3845532.033	5788191.605
$M/H_{2}/1$	0.95	DPBM(k=15)	CumulativeMeans	846	2897	238	0.918	0.01000	3769066.259	6013705.553
$M/H_{2}/1$	0.5	MSE-DPBM	Schruben	598	3535	200	0.943	0.00762	33506.748	119182.97
$M/H_{2}/1$	0.5	MSE-DPBM	CumulativeMeans	592	3540	200	0.944	0.00761	33242.296	119161.48
$M/H_{2}/1$	0.6	MSE-DPBM	CumulativeMeans	492	3584	200	0.944	0.00752	50584.745	177731.09
$M/H_{2}/1$	0.6	MSE-DPBM	Schruben	515	3745	200	0.947	0.00720	49834.664	176970.053
$M/H_{2}/1$	0.7	MSE-DPBM	Schruben	570	3572	200	0.944	0.00754	88976.751	293612.6371
$M/H_{2}/1$	0.7	MSE-DPBM	CumulativeMeans	636	3406	200	0.941	0.00790	88059.564	294792.34
$M/H_{2}/1$	0.8	MSE-DPBM	CumulativeMeans	596	3837	200	0.948	0.00703	178609.463	585953.65
$M/H_{2}/1$	0.8	MSE-DPBM	Schruben	694	4093	200	0.951	0.00660	185337.936	581580.049
$M/H_{2}/1$	0.9	MSE-DPBM	Schruben	384	2818	200	0.929	0.00948	870720.886	1806992.249
$M/H_{2}/1$	0.9	MSE-DPBM	CumulativeMeans	309	2869	200	0.930	0.00932	795247.946	1895587.158
$M/H_{2}/1$	0.95	MSE-DPBM	Schruben	861	2717	208	0.923	0.01000	3806777.815	5786733.224
$M/H_{2}/1$	0.95	MSE-DPBM	CumulativeMeans	813	2803	222	0.921	0.01000	3727494.191	6012581.196
$M/H_{2}/1$	0.5	Mod. MSE-DPBM	Schruben	661	3664	200	0.945	0.00736	30720.824	118061.25
$M/H_{2}/1$	0.5	Mod. MSE-DPBM	CumulativeMeans	656	3732	200	0.946	0.00723	30544.433	118893.50
$M/H_{2}/1$	0.6	Mod. MSE-DPBM	Schruben	479	3781	200	0.947	0.00713	46094.609	175255.10
$M/H_{2}/1$	0.6	Mod. MSE-DPBM	CumulativeMeans	438	3516	200	0.943	0.00766	45926.235	175854.039
$M/H_{2}/1$	0.7	Mod. MSE-DPBM	Schruben	556	3568	200	0.944	0.00755	79815.794	290849.409
$M/H_{2}/1$	0.7	Mod. MSE-DPBM	CumulativeMeans	528	3429	200	0.942	0.00784	78827.742	290876.727
$M/H_{2}/1$	0.8	Mod. MSE-DPBM	CumulativeMeans	722	4142	200	0.952	0.00653	153530.095	581265.281
$M/H_{2}/1$	0.8	Mod. MSE-DPBM	Schruben	648	4144	200	0.952	0.00653	156278.842	580833.611
$M/H_{2}/1$	0.9	Mod. MSE-DPBM	Schruben	702	4174	200	0.952	0.00648	548093.616	1980632.137
$M/H_{2}/1$	0.9	Mod. MSE-DPBM	CumulativeMeans	708	4367	200	0.954	0.00620	542823.044	1985828.711
M/H ₂ /1	0.95	Mod. MSE-DPBM	CumulativeMeans	500	3529	200	0.943	0.00763	2226171.426	7115973.6 26
<i>.</i>	1	1	· · · · ·							<u>~~</u>

/ /										Al
$M/H_{2}/1$	0.95	Mod. MSE-DPBM	Schruben	509	3549	200	0.944	0.00759	2237366.458	7151828.159
				Table E.4: N	I/H ₂ /1 Resu	lts Table				ENDIX I
Model	Load	SOAM	Transient M.	Short Runs	No. Runs	No. Bad CIs	Coverage	$\Delta_{z\frac{1}{2}}$	$\sigma(\bar{L})$	L ¹
QNet	0.5	SA/HW	Schruben	508	3225	200	0.938	0.00832	5381.268	12504.138
QNet	0.5	SA/HW	CumulativeMeans	224	5266	350	0.934	0.00673	9179.315	17442.026
QNet	0.6	SA/HW	Schruben	564	3489	200	0.943	0.00771	8603.445	19470.975
QNet	0.6	SA/HW	CumulativeMeans	188	4888	338	0.931	0.00711	15006.602	27747.440
QNet	0.7	SA/HW	Schruben	441	3073	200	0.935	0.00872	15916.497	33833.185
QNet	0.7	SA/HW	CumulativeMeans	202	5110	328	0.936	0.00672	26535.484	48129.322
QNet	0.8	SA/HW	Schruben	479	2899	200	0.931	0.00923	35360.852	72506.196
QNet	0.8	SA/HW	CumulativeMeans	192	5648	348	0.938	0.00627	59114.796	101297.488
QNet	0.9	SA/HW	Schruben	479	3221	200	0.938	0.00833	130138.562	251708.501
QNet	0.9	SA/HW	CumulativeMeans	142	4934	336	0.932	0.00703	202153.624	325588.813
QNet	0.95	SA/HW	Schruben	471	3005	257	0.914	0.01000	515755.430	931039.710
QNet	0.95	SA/HW	CumulativeMeans	475	2969	200	0.933	0.00902	524835.146	1097713.116
QNet	0.5	DPBM(k=50)	CumulativeMeans	611	3521	200	0.943	0.00765	2198.007	10601.130
QNet	0.5	DPBM(k=50)	Schruben	630	3682	200	0.946	0.00732	2115.319	9635.670
QNet	0.6	DPBM(k=50)	Schruben	697	3934	200	0.949	0.00686	3586.181	15441.116
QNet	0.6	DPBM(k=50)	CumulativeMeans	646	3663	200	0.945	0.00736	3713.480	16958.936 🛱
QNet	0.7	DPBM(k=50)	CumulativeMeans	620	3646	200	0.945	0.00739	7054.980	30296.156
QNet	0.7	DPBM(k=50)	Schruben	589	3789	200	0.947	0.00712	6746.274	27699.527
QNet	0.8	DPBM(k=50)	Schruben	753	3717	200	0.946	0.00725	15919.411	62351.794
QNet	0.8	DPBM(k=50)	CumulativeMeans	752	3763	200	0.947	0.00717	16332.167	66918.458
QNet	0.9	DPBM(k=50)	CumulativeMeans	647	4176	200	0.952	0.00648	62485.341	234035.325
QNet	0.9	DPBM(k=50)	Schruben	739	4438	200	0.955	0.00610	61758.770	224066.710
QNet	0.95	DPBM(k=50)	CumulativeMeans	469	3513	200	0.943	0.00766	272752.366	863012.857
QNet	0.95	DPBM(k=50)	Schruben	455	3397	200	0.941	0.00792	270505.613	850299.943

										A
QNet	0.5	DPBM(k=15)	CumulativeMeans	559	3261	200	0.939	0.00824	3169.202	11021.483
QNet	0.5	DPBM(k=15)	Schruben	558	3435	200	0.942	0.00783	2994.940	10029.950
QNet	0.6	DPBM(k=15)	CumulativeMeans	671	3508	200	0.943	0.00767	5349.467	18014.899
QNet	0.6	DPBM(k=15)	Schruben	717	3946	200	0.949	0.00684	5086.901	16372.203
QNet	0.7	DPBM(k=15)	Schruben	729	3721	200	0.946	0.00725	9405.755	29329.385
QNet	0.7	DPBM(k=15)	CumulativeMeans	691	3652	200	0.945	0.00738	9516.081	31998.582
QNet	0.8	DPBM(k=15)	CumulativeMeans	675	3446	200	0.942	0.00781	22528.595	71674.439
QNet	0.8	DPBM(k=15)	Schruben	682	3471	200	0.942	0.00775	22145.206	66203.273
QNet	0.9	DPBM(k=15)	CumulativeMeans	765	4041	200	0.951	0.00669	81591.996	249732.725
QNet	0.9	DPBM(k=15)	Schruben	822	4115	200	0.951	0.00657	80564.666	239103.012
QNet	0.95	DPBM(k=15)	CumulativeMeans	613	3347	200	0.940	0.00803	336205.897	914282.836
QNet	0.95	DPBM(k=15)	Schruben	535	2909	200	0.931	0.00920	335193.558	901398.591
QNet	0.5	MSE-DPBM	CumulativeMeans	560	3260	200	0.939	0.00824	3154.562	11014.078
QNet	0.5	MSE-DPBM	Schruben	558	3447	200	0.942	0.00780	2987.629	10038.749
QNet	0.6	MSE-DPBM	CumulativeMeans	667	3475	200	0.942	0.00774	5349.395	18009.959
QNet	0.6	MSE-DPBM	Schruben	717	3927	200	0.949	0.00688	5063.519	16368.316
QNet	0.7	MSE-DPBM	Schruben	721	3698	200	0.946	0.00729	9344.426	29246.952
QNet	0.7	MSE-DPBM	CumulativeMeans	682	3613	200	0.945	0.00746	9489.436	32037.522
QNet	0.8	MSE-DPBM	CumulativeMeans	675	3422	200	0.942	0.00786	22413.793	71660.471
QNet	0.8	MSE-DPBM	Schruben	680	3489	200	0.943	0.00771	21868.271	66022.300
QNet	0.9	MSE-DPBM	CumulativeMeans	763	4043	200	0.951	0.00668	81323.643	249584.312
QNet	0.9	MSE-DPBM	Schruben	815	4122	200	0.951	0.00656	79809.554	238995.849
QNet	0.95	MSE-DPBM	Schruben	500	2843	200	0.930	0.00940	331072.697	900649.050
QNet	0.95	MSE-DPBM	CumulativeMeans	625	3398	200	0.941	0.00791	334472.527	914983.845
QNet	0.5	Mod. MSE-DPBM	CumulativeMeans	583	3275	200	0.939	0.00820	3013.452	10923.571
QNet	0.5	Mod. MSE-DPBM	Schruben	543	3419	200	0.942	0.00787	2884.290	9956.261
QNet	0.6	Mod. MSE-DPBM	CumulativeMeans	640	3353	200	0.940	0.00802	4917.493	17635.350
QNet	0.6	Mod. MSE-DPBM	Schruben	697	3943	200	0.949	0.00685	4820.327	16105.243
QNet	0.7	Mod. MSE-DPBM	Schruben	688	3690	200	0.946	0.00731	8893.976	28723.943
QNet	0.7	Mod. MSE-DPBM	CumulativeMeans	625	3470	200	0.942	0.00775	8981.217	31359.621
										ě

										L.
QNet	0.8	Mod. MSE-DPBM	Schruben	679	3284	200	0.939	0.00818	20441.343	63807.471
QNet	0.8	Mod. MSE-DPBM	CumulativeMeans	637	3357	200	0.940	0.00801	20789.104	68852.867
QNet	0.9	Mod. MSE-DPBM	CumulativeMeans	568	3380	200	0.941	0.00795	76787.854	228340.124
QNet	0.9	Mod. MSE-DPBM	Schruben	578	3322	200	0.940	0.00809	78143.262	222201.519
QNet	0.95	Mod. MSE-DPBM	CumulativeMeans	425	2915	241	0.917	0.01000	329586.959	810292.465
QNet	0.95	Mod. MSE-DPBM	Schruben	457	3005	257	0.914	0.01000	332848.919	796225.680
				Table E.5: Q	Net Results	Table				1
										Ę

Model	Load	SOAM	Transient M.	Batch Size m	No. of Batces k	Optimal Batch Size m^*
AR(1)	0.5	SA/HW	Schruben	17.0792	153.483	0
AR(1)	0.5	SA/HW	CumulativeMeans	13.5929	143.929	0
AR(1)	0.6	SA/HW	Schruben	17.2308	154.344	0
AR(1)	0.6	SA/HW	CumulativeMeans	14.2279	144.677	0
AR(1)	0.7	SA/HW	Schruben	18.2316	151.037	0
AR(1)	0.7	SA/HW	CumulativeMeans	15.1788	144.602	0
AR(1)	0.8	SA/HW	Schruben	19.1383	146.508	0
AR(1)	0.8	SA/HW	CumulativeMeans	16.2864	144.649	0
AR(1)	0.9	SA/HW	Schruben	21.2128	142.427	0
AR(1)	0.9	SA/HW	CumulativeMeans	18.2909	143.434	0
AR(1)	0.95	SA/HW	Schruben	25.1023	142.105	0
AR(1)	0.95	SA/HW	CumulativeMeans	20.9239	146.654	0
$M/H_{2}/1$	0.5	SA/HW	Schruben	888.112	144.25	0
$M/H_{2}/1$	0.5	SA/HW	CumulativeMeans	881.578	144.068	0
$M/H_2/1$	0.6	SA/HW	Schruben	1316.18	143.063	0
$M/H_{2}/1$	0.6	SA/HW	CumulativeMeans	1311.41	144.401	0
$M/H_{2}/1$	0.7	SA/HW	Schruben	2153.26	144.464	0
$M/H_{2}/1$	0.7	SA/HW	CumulativeMeans	2188.18	144.5	0
$M/H_{2}/1$	0.8	SA/HW	Schruben	4333.67	144.721	0
$M/H_{2}/1$	0.8	SA/HW	CumulativeMeans	4391.85	143.855	0

131

$M/H_2/1$	0.9	SA/HW	Schruben	14923.7	143.694	0
$M/H_2/1$	0.9	SA/HW	CumulativeMeans	14973.9	144.028	0
$M/H_{2}/1$	0.95	SA/HW	Schruben	54640.8	145.627	0
$M/H_{2}/1$	0.95	SA/HW	CumulativeMeans	54508.2	145.398	0
M/D/1	0.5	SA/HW	Schruben	22.9424	149.987	0
M/D/1	0.5	SA/HW	CumulativeMeans	13.9227	145.388	0
M/D/1	0.6	SA/HW	Schruben	45.1456	145.399	0
M/D/1	0.6	SA/HW	CumulativeMeans	31.9914	145.362	0
M/D/1	0.7	SA/HW	Schruben	101.899	145.009	0
M/D/1	0.7	SA/HW	CumulativeMeans	81.1836	145.613	0
M/D/1	0.8	SA/HW	Schruben	295.178	144.632	0
M/D/1	0.8	SA/HW	CumulativeMeans	259.606	145.617	0
M/D/1	0.9	SA/HW	Schruben	1536.63	144.759	0
M/D/1	0.9	SA/HW	CumulativeMeans	1495.42	144.999	0
M/D/1	0.95	SA/HW	Schruben	7182.94	144.827	0
M/D/1	0.95	SA/HW	CumulativeMeans	7147.95	144.74	0
M/M/1	0.5	SA/HW	Schruben	114.564	143.693	0
M/M/1	0.5	SA/HW	CumulativeMeans	94.605	144.841	0
M/M/1	0.6	SA/HW	Schruben	190.3	144.608	0
M/M/1	0.6	SA/HW	CumulativeMeans	166.518	144.348	0
M/M/1	0.7	SA/HW	Schruben	372.142	143.47	0
M/M/1	0.7	SA/HW	CumulativeMeans	336.701	143.805	0
M/M/1	0.8	SA/HW	Schruben	900.564	143.529	0
M/M/1	0.8	SA/HW	CumulativeMeans	862.321	143.969	0
M/M/1	0.9	SA/HW	Schruben	3808.96	145.18	0
M/M/1	0.9	SA/HW	CumulativeMeans	3755.58	144.943	0
M/M/1	0.95	SA/HW	Schruben	15767.1	144.081	0
M/M/1	0.95	SA/HW	CumulativeMeans	15776.4	144.051	0
QNet	0.5	SA/HW	Schruben	87.9731	144.192	0
QNet	0.5	SA/HW	CumulativeMeans	114.314	144.018	0

QNet	0.6	SA/HW	Schruben	138.031	144.144	0
QNet	0.6	SA/HW	CumulativeMeans	185.091	144.072	0
QNet	0.7	SA/HW	Schruben	240.273	144.805	0
QNet	0.7	SA/HW	CumulativeMeans	323.265	144.955	0
QNet	0.8	SA/HW	Schruben	508.222	145.219	0
QNet	0.8	SA/HW	CumulativeMeans	687.452	144.296	0
QNet	0.9	SA/HW	Schruben	1775.51	145.203	0
QNet	0.9	SA/HW	CumulativeMeans	2241.77	144.789	0
QNet	0.95	SA/HW	Schruben	6717.11	144.578	0
QNet	0.95	SA/HW	CumulativeMeans	7821.57	143.807	0
AR(1)	0.5	MSE-DPBM	CumulativeMeans	68.9344	15.022	110.056
AR(1)	0.5	MSE-DPBM	Schruben	68.9753	15.0224	110.131
AR(1)	0.6	MSE-DPBM	CumulativeMeans	68.2947	15.0117	109.038
AR(1)	0.6	MSE-DPBM	Schruben	68.2447	15.0128	108.978
AR(1)	0.7	MSE-DPBM	Schruben	66.9611	15.0082	106.959
AR(1)	0.7	MSE-DPBM	CumulativeMeans	66.9124	15.0071	106.896
AR(1)	0.8	MSE-DPBM	Schruben	63.693	15.004	101.838
AR(1)	0.8	MSE-DPBM	CumulativeMeans	63.9297	15.002	102.218
AR(1)	0.9	MSE-DPBM	Schruben	43.6855	15.0003	70.2802
AR(1)	0.9	MSE-DPBM	CumulativeMeans	44.8332	15.0002	72.0925
AR(1)	0.95	MSE-DPBM	Schruben	9.18715	15	15.6686
AR(1)	0.95	MSE-DPBM	CumulativeMeans	9.58601	15	16.302
$M/H_{2}/1$	0.5	MSE-DPBM	CumulativeMeans	5226.38	16.1656	8440.96
$M/H_2/1$	0.5	MSE-DPBM	Schruben	5224.79	16.1865	8440.73
$M/H_2/1$	0.6	MSE-DPBM	CumulativeMeans	7859.32	16.1238	12693.2
$M/H_2/1$	0.6	MSE-DPBM	Schruben	7877.7	16.1197	12719.8
$M/H_2/1$	0.7	MSE-DPBM	CumulativeMeans	13026.6	16.1044	21025.7
$M/H_2/1$	0.7	MSE-DPBM	Schruben	12946.3	16.1003	20899.2
$M/H_2/1$	0.8	MSE-DPBM	CumulativeMeans	25982.6	16.156	41991.8
$M/H_2/1$	0.8	MSE-DPBM	Schruben	25696.3	16.1564	41536.9

$M/H_{2}/1$	0.9	MSE-DPBM	Schruben	79000.5	16.139	127859
$M/H_{2}/1$	0.9	MSE-DPBM	CumulativeMeans	82560.4	16.2119	133640
$M/H_{2}/1$	0.95	MSE-DPBM	Schruben	244123	16.0368	395709
$M/H_{2}/1$	0.95	MSE-DPBM	CumulativeMeans	252555	16.0765	409484
M/D/1	0.5	MSE-DPBM	Schruben	85.7263	15.0109	136.591
M/D/1	0.5	MSE-DPBM	CumulativeMeans	85.7823	15.0043	136.634
M/D/1	0.6	MSE-DPBM	Schruben	200.131	15.0348	317.621
M/D/1	0.6	MSE-DPBM	CumulativeMeans	201.172	15.0329	319.332
M/D/1	0.7	MSE-DPBM	CumulativeMeans	514.745	15.1208	816.871
M/D/1	0.7	MSE-DPBM	Schruben	514.093	15.1348	815.962
M/D/1	0.8	MSE-DPBM	CumulativeMeans	1646.54	15.3202	2620.56
M/D/1	0.8	MSE-DPBM	Schruben	1642.83	15.3422	2615.38
M/D/1	0.9	MSE-DPBM	CumulativeMeans	8786.39	15.7422	14093.4
M/D/1	0.9	MSE-DPBM	Schruben	8939.04	15.8303	14360.1
M/D/1	0.95	MSE-DPBM	CumulativeMeans	35264.9	15.9532	56955.2
M/D/1	0.95	MSE-DPBM	Schruben	39460.8	16.0547	63706.9
M/M/1	0.5	MSE-DPBM	Schruben	599.217	15.3205	954.466
M/M/1	0.5	MSE-DPBM	CumulativeMeans	601.663	15.3282	958.152
M/M/1	0.6	MSE-DPBM	CumulativeMeans	1049.2	15.4591	1674.55
M/M/1	0.6	MSE-DPBM	Schruben	1059.95	15.4475	1691.58
M/M/1	0.7	MSE-DPBM	Schruben	2085.48	15.629	3337.78
M/M/1	0.7	MSE-DPBM	CumulativeMeans	2097.75	15.6173	3356.94
M/M/1	0.8	MSE-DPBM	CumulativeMeans	5199.61	15.8172	8350.47
M/M/1	0.8	MSE-DPBM	Schruben	5198.41	15.8728	8352.72
M/M/1	0.9	MSE-DPBM	CumulativeMeans	21208.2	15.9916	34192.5
M/M/1	0.9	MSE-DPBM	Schruben	22494.6	16.067	36297.3
M/M/1	0.95	MSE-DPBM	CumulativeMeans	70269.9	15.9672	113849
M/M/1	0.95	MSE-DPBM	Schruben	83345.7	16.104	134871
QNet	0.5	MSE-DPBM	CumulativeMeans	440.692	15.1632	700.732
QNet	0.5	MSE-DPBM	Schruben	459.65	15.1936	731.014
		1	1		· · · · · · · · · · · · · · · · · · ·	
QNet	0.6	MSE-DPBM	CumulativeMeans	729.66	15.1796	1159.63
-------------	------	---------------	-----------------	---------	---------	---------
QNet	0.6	MSE-DPBM	Schruben	744.113	15.257	1183.7
QNet	0.7	MSE-DPBM	Schruben	1352.79	15.2942	2152.89
QNet	0.7	MSE-DPBM	CumulativeMeans	1336.02	15.2231	2123.85
QNet	0.8	MSE-DPBM	Schruben	3041.91	15.3363	4843.26
QNet	0.8	MSE-DPBM	CumulativeMeans	3056.53	15.2369	4859.35
QNet	0.9	MSE-DPBM	CumulativeMeans	11081	15.2308	17607
QNet	0.9	MSE-DPBM	Schruben	10910.8	15.3586	17372.7
QNet	0.95	MSE-DPBM	Schruben	41636	15.4084	66384.7
QNet	0.95	MSE-DPBM	CumulativeMeans	42130.4	15.2622	66949.4
AR(1)	0.5	Mod. MSE-DPBM	Schruben	253.227	15.0217	391.575
AR(1)	0.5	Mod. MSE-DPBM	CumulativeMeans	252.759	15.0253	393.528
AR(1)	0.6	Mod. MSE-DPBM	Schruben	252.673	15.026	391.039
AR(1)	0.6	Mod. MSE-DPBM	CumulativeMeans	252.691	15.0259	394.304
AR(1)	0.7	Mod. MSE-DPBM	Schruben	252.291	15.029	391.337
AR(1)	0.7	Mod. MSE-DPBM	CumulativeMeans	252.764	15.0253	394.061
AR(1)	0.8	Mod. MSE-DPBM	Schruben	252.788	15.0251	390.937
AR(1)	0.8	Mod. MSE-DPBM	CumulativeMeans	252.643	15.0262	392.524
AR(1)	0.9	Mod. MSE-DPBM	Schruben	251.543	15.0348	388.471
AR(1)	0.9	Mod. MSE-DPBM	CumulativeMeans	252.175	15.0299	388.809
AR(1)	0.95	Mod. MSE-DPBM	Schruben	250.282	15.0447	386.994
AR(1)	0.95	Mod. MSE-DPBM	CumulativeMeans	250.289	15.0446	385.812
$M/H_2/1$	0.5	Mod. MSE-DPBM	Schruben	4236.53	29.9283	6650.87
$M/H_2/1$	0.5	Mod. MSE-DPBM	CumulativeMeans	4173.45	30.2809	6556.81
$M/H_{2}/1$	0.6	Mod. MSE-DPBM	Schruben	6225.53	30.2033	9858.64
$M/H_2/1$	0.6	Mod. MSE-DPBM	CumulativeMeans	6036.69	30.9591	9616.42
$M/H_2/1$	0.7	Mod. MSE-DPBM	Schruben	9702.76	33.1762	15446.5
$M/H_2/1$	0.7	Mod. MSE-DPBM	CumulativeMeans	9508.02	33.6749	15183.5
$M/H_2/1$	0.8	Mod. MSE-DPBM	Schruben	18539.6	37.1869	30088.6
$M/H_2/1$	0.8	Mod. MSE-DPBM	CumulativeMeans	18295.6	37.0463	29673.1

M/H ₂ /1	0.9	Mod. MSE-DPBM	Schruben	53294	52.3898	90451.7
M/H ₂ /1	0.9	Mod. MSE-DPBM	CumulativeMeans	54344.9	48.0373	92507
$M/H_{2}/1$	0.95	Mod. MSE-DPBM	Schruben	155423	82.3599	273302
$M/H_{2}/1$	0.95	Mod. MSE-DPBM	CumulativeMeans	158084	78.9475	275922
M/D/1	0.5	Mod. MSE-DPBM	Schruben	245.611	15.0904	393.685
M/D/1	0.5	Mod. MSE-DPBM	CumulativeMeans	245.573	15.0945	392.33
M/D/1	0.6	Mod. MSE-DPBM	Schruben	257.906	15.3882	421.386
M/D/1	0.6	Mod. MSE-DPBM	CumulativeMeans	257.947	15.3951	419.633
M/D/1	0.7	Mod. MSE-DPBM	Schruben	469.86	17.1621	748.13
M/D/1	0.7	Mod. MSE-DPBM	CumulativeMeans	463.395	17.5647	736.715
M/D/1	0.8	Mod. MSE-DPBM	Schruben	1363.77	21.7975	2145.86
M/D/1	0.8	Mod. MSE-DPBM	CumulativeMeans	1363.01	21.5574	2127.63
M/D/1	0.9	Mod. MSE-DPBM	Schruben	6693.37	30.4543	10832.8
M/D/1	0.9	Mod. MSE-DPBM	CumulativeMeans	6609.11	31.4588	10715.5
M/D/1	0.95	Mod. MSE-DPBM	Schruben	27852	42.6348	46580.2
M/D/1	0.95	Mod. MSE-DPBM	CumulativeMeans	27523.8	42.586	45954.4
M/M/1	0.5	Mod. MSE-DPBM	Schruben	543.303	17.9296	841.269
M/M/1	0.5	Mod. MSE-DPBM	CumulativeMeans	541.538	18.0376	833.442
M/M/1	0.6	Mod. MSE-DPBM	Schruben	914.787	20.4575	1412.13
M/M/1	0.6	Mod. MSE-DPBM	CumulativeMeans	908.424	20.3704	1417.33
M/M/1	0.7	Mod. MSE-DPBM	Schruben	1714.02	24.0853	2674.49
M/M/1	0.7	Mod. MSE-DPBM	CumulativeMeans	1717.45	24.1355	2678.25
M/M/1	0.8	Mod. MSE-DPBM	Schruben	4111.96	28.2705	6535.01
M/M/1	0.8	Mod. MSE-DPBM	CumulativeMeans	4081.07	27.8652	6471.03
M/M/1	0.9	Mod. MSE-DPBM	Schruben	15976.9	36.6498	26279.7
M/M/1	0.9	Mod. MSE-DPBM	CumulativeMeans	15907.7	37.0128	26106.1
M/M/1	0.95	Mod. MSE-DPBM	Schruben	54790.7	57.9878	92587.8
M/M/1	0.95	Mod. MSE-DPBM	CumulativeMeans	55414.3	55.0286	92879.8
QNet	0.5	Mod. MSE-DPBM	Schruben	428.068	16.7505	632.463
QNet	0.5	Mod. MSE-DPBM	CumulativeMeans	396.948	17.285	550.754

QNet	0.6	Mod. MSE-DPBM	Schruben	656.925	18.8729	961.55
QNet	0.6	Mod. MSE-DPBM	CumulativeMeans	614.186	19.7247	846.012
QNet	0.7	Mod. MSE-DPBM	Schruben	1113.41	22.3059	1618.1
QNet	0.7	Mod. MSE-DPBM	CumulativeMeans	1047.29	23.6548	1478.59
QNet	0.8	Mod. MSE-DPBM	Schruben	2238.68	28.3639	3319.08
QNet	0.8	Mod. MSE-DPBM	CumulativeMeans	2165.23	29.8233	3156.1
QNet	0.9	Mod. MSE-DPBM	Schruben	6564.88	42.3196	9995.59
QNet	0.9	Mod. MSE-DPBM	CumulativeMeans	6415.36	43.4503	9927.61
QNet	0.95	Mod. MSE-DPBM	Schruben	20286.4	59.2605	32638.3
QNet	0.95	Mod. MSE-DPBM	CumulativeMeans	19427.1	60.7532	31389.8

Table	E.6:	Avearge	batch	sıze	and	number	ot	batches	per	method	
-------	------	---------	-------	------	-----	--------	----	---------	-----	--------	--

Appendix F

Akaroa2 Method Registration

In order to use the methods of simulation output analysis they have to register themselves as available methods under Akaroa2 and be compiled with the whole application. The code in Appendix A, Appendix B and Appendix C are necessary. Their object file path have to be added to AKANAL_OBJ in Makefile.main.