
Master Thesis
Electrical Engineering
July 2014

ON EFFICIENT AUTOMATED METHODS
FOR SIMULATION OUTPUT DATA ANALYSIS

MARTIN BROŽOVIČ

Department of Communication Systems (DIKO)
Blekinge Institute of Technology
37179 Karlskrona
Sweden

Need a dissertation on a similar topic? Check out how our dissertation services can help you.

https://www.researchprospect.com/dissertation-writing-services/

This thesis is submitted to the Department of Communication Systems at
Blekinge Institute of Technology in partial fulfilment of the requirements
for the degree of Master of Science in Electrical Engineering. The thesis is
equivalent to 20 weeks of full time studies.

Contact Information

Author(s):
Martin Brožovič
Address: Jesenická 25, 794 01, Krnov, Czech Republic
E-mail: martinbrozovic@gmail.com

External Advisor(s)

Professor Krzysztof Pawlikowski
Department of Computer Science and Engineering
University of Canterbury
Address: College of Engineering, University of Canterbury, Private Bag
4800, Christchurch 8140, New Zealand
Phone: +64 3 364 2987

University advisor(s):

Professor Markus Fiedler
Department of Communication Systems (DIKO)

Department of Communication Systems
Blekinge Institute of Technology
371 79 KARLSKRONA SWEDEN

Internet: www.bth.se
Phone: +46 455 385000
SWEDEN

Abstract

With the increase in computing power and software engineering in the past
years computer based stochastic discrete-event simulations have become very
commonly used tool to evaluate performance of various, complex stochastic
systems (such as telecommunication networks). It is used if analytical meth-
ods are too complex to solve, or cannot be used at all. Stochastic simulation
has also become a tool, which is often used instead of experimentation in
order to save money and time by the researchers. In this thesis, we focus
on the statistical correctness of the final estimated results in the context
of steady-state simulations performed for the mean analysis of performance
measures of stable stochastic processes. Due to various approximations the
final experimental coverage can differ greatly from the assumed theoretical
level, where the final confidence intervals cover the theoretical mean at much
lower frequency than it was expected by the preset theoretical confidence
level.

We present the results of coverage analysis for the methods of dynamic
partially-overlapping batch means, spectral analysis and mean squared er-
ror optimal dynamic partially-overlapping batch means. The results show
that the variants of dynamic partially-overlapping batch means, that we
propose as their modification under Akaroa2, perform acceptably well for
the queueing processes, but perform very badly for auto-regressive process.
We compare the results of modified mean squared error optimal dynamic
partially-overlapping batch means method to the spectral analysis and show
that the methods perform equally well.

Keywords: Akaroa2, batch means, simulation output analysis, sequential
coverage analysis, spectral analysis.

i

Contents

Abstract i

Contents ii

List of Figures v

List of Tables viii

Introduction 1

1 Introduction 2
1.1 Research Questions . 3
1.2 Aims and Objectives . 4
1.3 Thesis Structure . 4

2 Background 5
2.1 Simulations . 6
2.2 Computer-based Quantitative Stochastic Simulations 6
2.3 Credibility of results . 7
2.4 Simulation Approach . 9

2.4.1 Fixed sample size approach 9
2.4.2 Sequential approach 9

2.5 Automated Simulation Controller Akaroa2 10
2.5.1 Akmaster . 10
2.5.2 Akslave . 10
2.5.3 Akrun . 11
2.5.4 Distributed Simulations 12

2.6 Pseudo Random Number Generators 13
2.6.1 Linear Congruential Generators 14
2.6.2 Combined Multiple Recursive Generator 14

ii

3 Methods of Output Analysis 16
3.1 Independent Replications . 16
3.2 Batch Means Methods . 17

3.2.1 Non-overlapping batch means 17
3.2.2 Sequential implementation of NBM 18
3.2.3 Overlapping Batch Means 19
3.2.4 Dynamic Non-Overlapping Batch Means 20
3.2.5 Dynamic Partial-Overlapping Batch Means 21
3.2.6 Spectral Analysis . 24

4 Initial Transient Detection 26
4.1 Stationarity . 26
4.2 Initialization Detection . 26

4.2.1 Schruben’s Test . 27
4.2.2 Method Of Cumulative Means 28

Analysis 30

5 Coverage Analysis 31
5.1 M/G/1 . 33
5.2 M/M/1 . 33
5.3 M/D/1 . 33
5.4 M/H2/1 . 33
5.5 Autoregressive Process . 34
5.6 Open Queueing Network . 34
5.7 Implementation of Coverage Analysis 35

Experiment Design 38

6 Experiment Design 39
6.1 Akaroa2 Simulation Controller 39
6.2 Output Analysis Methods . 39

6.2.1 Dynamic Partially-Overlapping Batch Means 40
6.2.2 MSE-DPBM . 42
6.2.3 Modified MSE-DPBM 44

Results 47

7 Results 48
7.1 Experiment 1: Average Run Length 48
7.2 Experiment 2: Coverage Analysis 52

7.2.1 AR(1) . 53

iii

7.2.2 M/M/1 . 56
7.2.3 M/D/1 . 59
7.2.4 M/H2/1 . 61
7.2.5 Open Queueing Network 64

7.3 Experiment 3: Memory Requirements 67
7.3.1 AR(1) . 68
7.3.2 M/M/1 . 69
7.3.3 M/D/1 . 71
7.3.4 M/H2/1 . 72
7.3.5 Queueing Network . 73

7.4 Average Number of Runs . 74

8 Conclusions 78
8.1 Answers to Research Questions 79
8.2 Future Work . 81

Bibliography 82

Appendices 85

Appendix 86

A DPBM 86

B MSE-DPBM 93

C Modified MSE-DPBM 103

D Coverage Analysis 112

E Tables of Results per Model 120

F Akaroa2 Method Registration 138

iv

List of Figures

2.1 The normal distribution of random variable [20] 8
2.2 Akaroa2 output . 11
2.3 Akaroa2 function [5] . 12

3.1 NBM Batching . 18
3.2 OBM Batching . 20
3.3 Collapsing in DNBM . 21
3.4 DPBM Collapsing [28] . 24

5.1 Open Queueing network . 34
5.2 Coverage Analysis . 36

7.1 M/M/1’s average run length per simulation using 25 crossings
rule . 49

7.2 M/M/1’s average run length per simulation using Cumulative
Means . 50

7.3 M/D/1’s average run length per simulation using 25 crossings
rule . 50

7.4 M/D/1’s average run length per simulation using Cumulative
Means . 51

7.5 M/H2/1’s average run length per simulation using 25 cross-
ings rule . 51

7.6 M/H2/1’s average run length per simulation using Cumula-
tive Means . 52

7.7 AR(1)’s coverage, using variants of DPBM and 25 crossings
rule . 53

7.8 AR(1)’s coverage, using variants of DPBM and Cumulative
Means . 53

7.9 AR(1)’s coverage, SA/HW vs. Mod. MSE-DPBM using 25
crossings rule . 54

7.10 AR(1)’s coverage, SA/HW vs. Mod. MSE-DPBM using Cu-
mulative Means . 54

7.11 AR(1)’s run length using 25 crossings rule 55
7.12 AR(1)’s run length using Cumulative Means 55

v

7.13 M/M/1’s coverage, using variants of DPBM and 25 crossings
rule . 56

7.14 M/M/1’s coverage, using variants of DPBM and Cumulative
Means . 57

7.15 M/M/1’s coverage, SA/HW vs. Mod. MSE-DPBM using 25
crossings rule . 57

7.16 M/M/1’s coverage, SA/HW vs. Mod. MSE-DPBM using
Cumulative Means . 58

7.17 M/D/1’s coverage, using variants of DPBM and 25 crossings
rule . 59

7.18 M/D/1’s coverage, using variants of DPBM and Cumulative
Means . 59

7.19 M/D/1’s coverage, SA/HW vs. Mod. MSE-DPBM using 25
crossings rule . 60

7.20 M/D/1’s coverage, SA/HW vs. Mod. MSE-DPBM using
Cumulative Means . 60

7.21 M/H2/1’s coverage, using variants of DPBM and 25 crossings
rule . 61

7.22 M/H2/1’s coverage, using variants of DPBM and Cumulative
Means . 62

7.23 M/H2/1’s coverage, SA/HW vs. Mod. MSE-DPBM using 25
crossings rule . 63

7.24 M/H2/1’s coverage, SA/HW vs. Mod. MSE-DPBM using
Cumulative Means . 63

7.25 QNet’s coverage, using variants of DPBM and 25 crossings rule 64
7.26 QNet’s coverage, using variants of DPBM Cumulative Means 65
7.27 QNet’s coverage, SA/HW vs. Mod. MSE-DPBM using 25

crossings rule . 65
7.28 QNet’s coverage, SA/HW vs. Mod. MSE-DPBM using Cu-

mulative Means . 66
7.29 QNet Run length using 25 crossings rule 66
7.30 QNet Run length using Cumulative Means 67
7.31 Average batch sizes recorded during the coverage experiment

of AR(1) model . 68
7.32 Average number of batches recorded during the coverage ex-

periment . 68
7.33 Average batch sizes recorded during the coverage experiment

of M/M/1 model . 69
7.34 Average number of batches recorded during the coverage ex-

periment of M/M/1 model . 70
7.35 Average batch sizes recorded during the coverage experiment

of M/D/1 model . 71
7.36 Average number of batches recorded during the coverage ex-

periment of M/D/1 model . 71

vi

7.37 Average batch sizes recorded during the coverage experiment
of M/H2/1 model . 72

7.38 Average number of batches recorded during the coverage ex-
periment of M/H2/1 model 72

7.39 Average batch sizes recorded during the coverage experiment
of queueing network model 73

7.40 Average number of batches recorded during the coverage ex-
periment of queueing network model 73

7.41 The number of runs required for the coverage experiment of
AR(1) . 75

7.42 The number of runs required for the coverage experiment of
M/M/1 . 75

7.43 The number of runs required for the coverage experiment of
M/D/1 . 76

7.44 The number of runs required for the coverage experiment of
M/H2/1 . 76

7.45 The number of runs required for the coverage experiment of
queueing network . 77

A.1 DPBM Algorithm as implemented in Akaroa2 87

B.1 MSE-DPBM Algorithm as implemented in Akaroa2 94

C.1 Modified MSE-DPBM Algorithm as implemented in Akaroa2 104

vii

List of Tables

3.1 Asymptotic bias and variance result [27] 23

5.1 Coverage Experiments . 37

E.1 AR(1) Results Table . 122
E.2 M/M/1 Results Table . 124
E.3 M/D/1 Results Table . 126
E.4 M/H2/1 Results Table . 129
E.5 QNet Results Table . 131
E.6 Avearge batch size and number of batches per method 137

viii

Introduction

1

Chapter 1

Introduction

With the increase in computing power and software engineering in the past
years computer based stochastic discrete-event simulations have become very
commonly used tool to evaluate performance of various, complex stochastic
systems (such as telecommunication networks). It is used if analytical meth-
ods cannot be used. Stochastic simulation has also become a tool, which
is often used instead of experimentation in order to save money and time
by the researchers. Unfortunately, as shown in [21] stochastic simulations
are often used incorrectly, without proper analysis of the output, and then
the simulation results cannot be considered credible. In the case of steady-
state simulations the problem is that the simulation output data are usually
strongly correlated. This has led to proposal of methods of simulation out-
put analysis with various interval estimators. In this thesis, we focus on the
statistical correctness of the final estimated results in the context of steady-
state simulations performed for the mean analysis of performance measures
of stable stochastic processes.

Sequential analysis of output data in steady-state stochastic simulations,
used in order to produce final estimates, is nowadays regarded as the ap-
proach to use in order to properly control the simulation length and produce
appropriately credible final estimates [13], [18]. The simulation runs from
checkpoint to checkpoint until a stopping condition is met. In our case
we use the relative precision of the final estimate, defined as the ratio of
current half-width of confidence interval to the current point estimate of
wanted estimation of a performance measure, steady-state mean in our case
[17], [20]. The simulation is stopped when such stopping condition is met.
One of the main indicators that a method is good is its coverage defined
as relative frequency with which the final confidence interval contains the
true value μx. Any method used for analysis of simulation output data
should produce narrow and stable confidence intervals and the experimental
coverage should not differ too much from the assumed theoretical level 1−α.

2

CHAPTER 1. INTRODUCTION 3

Pawlikowski argues in [22] that such analysis should be done sequen-
tially in order to produce statistically correct results of the experimental
coverage. Pawlikowski outlines rules that should be used for such analy-
sis in [22]. Using these rules we study the coverage of 4 different methods
of the mean value analysis, namely Dynamic Partially-Overlapping Batch
Means (DPBM) [27], Mean Squared Error Optimal DPBM (MSE-DPBM)
[28], modified version of MSE-DPBM (Mod. MSE-DPBM) and Spectral
Analysis (SA/HW) as implemented in [16].

Initial transient period is present during the initialization of stochastic
processes, it is a period, where the processes do not characterize the steady-
state. It has been shown in [17] that a method of detecting the initial
transient and truncating all the observations from such period reduces the
risk that simulation might stop too early. In [20] it is shown that discarding
observation from the initial period leads to reduced bias of the final steady-
state estimates. Two techniques are used namely Schruben’s test [20] and
method of Cumulative Means [6]. The results of the experimental coverage,
using variations of the 4 methods of mean value analysis for steady-state
systems and one simulation engine per each, have been obtained using a
fully automated simulation controller of distributed stochastic simulation
Akaroa2 [18].

1.1 Research Questions

1. Are DPBM and MSE-DPBM implementable as a tool for steady-state
simulation under Akaroa2?

2. Can MSE-DPBM be improved as a method of simulation output anal-
ysis?

3. Which of the variants of DPBM perform the best in terms of coverage
analysis?

4. Are the DPBM variants accurate as an automated data analysis method
in steady-state simulations?

5. Does a variant of DPBM perform better than Spectral Analysis in
terms of coverage analysis?

6. Is Schruben’s test better than Cumulative Means as a method of initial
transient detection?

CHAPTER 1. INTRODUCTION 4

1.2 Aims and Objectives

• To implement DPBM and MSE-DPBM as a component of Akaroa2.

• To modify MSE-DPBM and implement as a component of Akaroa2.

• To implement sequential coverage analysis experiment.

• To compare variants of DPBM and SA/HW in terms of their quality of
coverage of confidence intervals using stochastic, analytically tractable
reference models.

• To decide upon overall quality of variants of DPBM and SA/HW.

• To decide if Schruben’s test performs better than Cumulative Means
as a method of initial transient period detection.

1.3 Thesis Structure

In Chapter 1 we give an introduction to the research to present our moti-
vation and aims behind the thesis. Chapter 2 describes the background of
this thesis. This knowledge helps the reader to understand the fundamen-
tal concepts behind steady-state simulations and problems encountered in.
Chapter 3 gives an introduction to the simulation output analysis methods
(SOAMs). The chapter explains the fundamental theory behind the used
variants of DPBM and SA/HW. Chapter 4 presents the initial transient de-
tection methods that are used in the experiment. Chapter 5 presents the
analysis of the coverage and rules that have been set up. Chapter 6 describes
the necessary changes to implementation of DPBM variants and their im-
plementation as a component of Akaroa2. Chapter 7 provides the results
of coverage analysis. Finally, the conclusions are presented in Chapter 8.
Future work and discussion are presented in Chapter 8, as well.

Chapter 2

Background

This peer review will examine the main issues surrounding the credibility of
results while using quantitative sequential stochastic discrete-event simula-
tions as a tool to evaluate behaviour of real world systems. The main focus
is given to proper analysis of the simulation output and methods used for
such analysis.

In the Sections 2.1 and 2.2 the introduction to quantitative sequential
stochastic simulations will be shown. Section 2.3 will include an explana-
tion of valid simulation studies, and how to ensure credibility of the results
of simulation studies of various complex stochastic systems. Next in Sec-
tion 2.4, the sequential and fixed sample size approach to simulation will be
shown, the benefits and pitfalls of these two approaches will be discussed.
Section 2.5 will introduce the automated controller of distributed simula-
tions Akaroa2. Lastly, the Section 2.6 will describe nowadays vastly used
pseudo-random number generators. Various methods of simulation output
analysis will be introduced and discussed in Chapter 3, need for such meth-
ods is justified in the Section 2.3. Used methods of initial transient detection
and their justification will be presented in Chapter 4. Coverage analysis will
be introduced in Chapter 5 and its usage, as a tool to assess quality of such
output analysis methods, will be justified. Together with the coverage anal-
ysis, the reference stochastic processes used for the empirical evaluation of
the coverage will be introduced.

At the end of these three major chapters it is hoped that a critical
understanding of the key issues is presented, that the reader will be better
informed in these areas, and that the research will be justified.

5

CHAPTER 2. BACKGROUND 6

2.1 Simulations

Simulations are used to imitate the behaviour and operation of a real-world
system, where system is a “collection of entities e.g., people or machines,
that act and interact together toward the accomplishment of some logical
end [24]”. A system state is a collection of variables, which are necessary
to describe a system at a particular time. We will focus our attention to
discrete systems, where the “state variables of a system changes instanta-
neously at separated points of time [13]”, such system can be a stochastic
process such as telecommunication network, which we focus on in this thesis.
Compared to continuous systems, where the state variable change continu-
ously with time. These systems have to be modelled accordingly, one would
produce a set of mathematical and logical relationships, called assumptions,
about the behaviour and working principle of the system under study. These
assumptions would then constitute a model of the system [13].

2.2 Computer-based Quantitative Stochastic Sim-
ulations

The assumptions, if simple enough, can be solved analytically by using theo-
rems from algebra, probability theory or calculus and provide insight about
the performance, behaviour, of the system under various circumstances and
input parameters. However, if these assumptions are highly complex, as
most of the real-world systems are, the analytical solution would not be
possible, either too complex to solve in timely manner or too costly. To
overcome this issue computer-based quantitative stochastic simulations are
used. In these simulations we use a numerical evaluation of the assump-
tions of a system under study. The simulation gathers data and based on
these data it estimates the wanted performance parameter. Since stochastic
processes are solely controlled by random numbers, “the results produced
are nothing more than statistical samples [20]”. As mentioned in [20] by
Pawlikowski, the simulation studies are sometimes taken as a complex pro-
gramming exercise only and little or no effort is put into proper statistical
analysis of the simulation output.

We are focusing on steady-state simulations of stochastic systems, where
the simulated processes approach steady-state and the distribution of col-
lected data, observations, become time invariant. Processes are not neces-
sarily in their steady-state as the simulation begins, the steady-state param-
eters still vary with time. The use of a method to detect this period and
truncate such observations can be included to reduce the bias in the final
estimates. These methods of initial transient detection are introduced in
Chapter 4.

CHAPTER 2. BACKGROUND 7

2.3 Credibility of results

What is a valid simulation? That was a question that Pawlikowski et al.
have asked in [21]. The article has pointed out that one cannot rely on
majority of results from research papers published on studies of stochastic
system. These studies have been using a simulation as a tool for producing
results and deciding upon final claims.

To ensure credibility of a simulation study, experiment, one would need
to abide by three basic rules [21]:

1. Use a valid and verified model of a system.

2. Use a correct and tested pseudo-random number generator.

3. Use a proper method of simulation output analysis.

Since the main purpose of this thesis study was solely focused on assessing
quality of various output analysis methods, it will be given the most space in
this chapter. Section 2.6 will introduce basic introduction and explanation
of PRNGs.

Focus is given solely on simulations of stochastic processes in their steady-
state, and therefore looking for an unknown mean μx of a wanted perfor-
mance parameter. This is achieved by taking an average i.e.:

θ̂(n) =
1

n

n∑
i=1

xi, (2.1)

where xi is the i-th observation collected during the simulation, for i =
1, 2, ..., n and is called a point estimator and characterizes the system anal-
ysed. To ensure a proper analysis of the output the final estimates θ̂(n)
have to be determined together with their statistical error [22]. The preci-
sion with which the point estimator in Equation 2.1 estimates the unknown
mean μx is given by:

P (θ̂ −Δ1−α(n) ≤ μx ≤ θ̂ +Δ1−α(n)) = 1− α, (2.2)

where Δ1−α(n) is a half-width of a confidence interval (CI) at a given con-
fidence level 1− α of the point estimator. More precisely, if the simulation
is run sufficiently many times and the observations xn are random vari-
ables, the interval at Equation 2.2 would contain the true value of mean
approximately 1− α times, example can be seen in Figure 2.1. We call this
proportion the coverage by the confidence interval. The Δ1−α(n) is cal-
culated based on the standard deviation of the estimate θ̂(n) and assumes
that the observations x1, x2, ..., xn are independent and normally distributed
(IID) variables:

CHAPTER 2. BACKGROUND 8

Figure 2.1: The normal distribution of random variable [20]

Δ1−α = tdf,1−α
2
σ̂(θ̂(n)), (2.3)

where 1− α/2 is the critical point for the t distribution with n− 1 degrees
of freedom, σ̂(θ̂(n)) is the standard deviation of the estimate of the mean
[13]. Therefore, the σ2(θ̂(n)), variance of the estimate of the mean, can be
called a quality measure, or accuracy, of using the point estimator θ̂(n). The
central limit theorem says, that if n is “sufficiently large”, the random vari-
able (estimated mean θ̂(n)) can be assumed to be distributed as a standard
normal random variable, regardless of the underlying distribution of the xn
observations [13]. It is well known, that if n > 30 the Equation 2.3 becomes
[20]:

Δ1−α = z1−α
2
σ̂(θ̂(n)), (2.4)

where the z1−α
2
is the upper critical point obtained from standard normal

distribution. For good approximation a value of n should be greater than
100, as recommended in [20] and [13]. Then if the random variables are
independent and identically distributed we can use an unbiased estimator
of variance [13]:

σ2 =

n∑
i=1

[xn − θ̂(n)]2

n− 1
, (2.5)

However, as it will be shown in Chapter 3, that is not possible in simulation
of stochastic processes, where random components are involved. It is due to
that the observations are usually highly autocorrelated.

It is also necessary to say that a correct method of detecting the tran-
sient period has to be used. Transient period is a period where the processes
do not represent steady state yet, these initial observations have to be dis-
regarded to reduce the final bias of the steady-state estimates. Chapter 4
will go into more detail regarding this problem.

CHAPTER 2. BACKGROUND 9

2.4 Simulation Approach

There are currently two approaches to simulation that are widely used and
will be introduced in this section. It is argued that sequential approach
has to be used in order to properly simulate different stochastic systems
and evaluate the final estimates, of performance measure of systems in the
steady-state, together with their statistical errors [18].

2.4.1 Fixed sample size approach

Many limitations can be encountered when using this approach. The main
issue is that collected sample n of output data can be too small and, because
of that, it may not represent steady-state yet or the CI is too large, or
in other words: ”one does not have control over the size of the CI which
results [14]”. Additionally, the collected observations are almost always
autocorrelated. If these two issues are not properly resolved, the results
might differ greatly from the true measure such as steady state mean μx

(for example queueing time θw of M/M/1 system), since it is impossible
to decide in advance how large the sample of output data should be, to
make sure that it contains observations representing steady-state behaviour.
Generally, results of a simulation run under this approach cannot be relied
upon. The main cause of this is that different systems behave in different
way and different run lengths are necessary in order to construct adequately
small and stable CIs.

2.4.2 Sequential approach

“No procedure in which the run length is fixed before the simulation begins
can generally be relied upon to produce a confidence interval that covers μx

with the desired probability 1−α, if the fixed run length is too small for the
system being simulated [13]”. Other justifications for sequential approach
can be found here [22], [18]. This method is based on sequential analysis of
the quality of the confidence interval i.e.: relative precision of the estimate
θ̂, after n observations have been collected, is given as:

ε(n) =
Δ1−α(n)

θ̂(n)
, (2.6)

where Δ1−α(n) is the half-width of the CI at the specified 1− α confidence
level for the estimate θ̂(n) of the required performance measure θ̂ after n
observations [17]. The equation (Equation 2.4) for half-width calculation is
presented in Section 2.3.

This approach ,as proposed in [10] by Heildeberger and Welch, takes two
arguments: the desired relative precision of CI (as mentioned above), and
the maximal run length of the simulation. Both need to be set up before the

CHAPTER 2. BACKGROUND 10

simulation is started. The sequential simulation uses a sequence of check-
points. A checkpoint is a point in time at which the ε(n) is compared with
the desired level ε. If ε(n) ≤ ε the simulation is stopped. If ε(n) > ε the sim-
ulation proceeds to the next checkpoint, therefore, giving the experimenter
a full control over the final error.

2.5 Automated Simulation Controller Akaroa2

Akaroa2, developed at the University of Canterbury [18], is an automatic
controller based on Multiple Replications in Parallel (MRIP) scenario of
sequential distributed simulations. It automatically launches multiple repli-
cations, which produce statistically equivalent sequences of observations.
These sequences are then provided to the global analyser, which estimates
the wanted measure and assesses if the stopping conditions have been met.
Akaroa2 implements a modified method of Spectral Analysis (SA/HW)
(non-modified version is introduced later in Section 3.2.6) [16] and a sequen-
tial version of the classical non-overlapping batch means method (introduced
later in Section 3.2.2, as proposed in [20] by Pawlikowski. It has been shown
that SA/HW is superior to non-overlapping batch means in terms of qual-
ity of the coverage of CIs [22] (it has not been compared to dynamic batch
means methods yet, see Section 3.2.5). Akaroa2 is coded in C++ and runs
on Unix workstations, it can also be used not only for mean analysis, but
also for proportions and quantiles.

Akaroa2 has four main components: akmaster, akslave, akrun and
simulation engines. Where simulation engines are the processes that run
on multiple CPUs, in a LAN, and produce parallel streams of simulation
output [5].

2.5.1 Akmaster

Akmaster is the global simulation controller, it runs, maintains parallel sim-
ulation engines, it provides global output analysis and assesses stopping
conditions [5].

2.5.2 Akslave

Akslave is the process that runs on hosts, runs simulation engines that are
coordinated by akmaster.

CHAPTER 2. BACKGROUND 11

2.5.3 Akrun

Akrun is the user terminal interface to initiate simulations. It takes several
arguments such as simulation name to be run, starting seed, number of
simulation engines to use, output analysis method, initial transient method,
relative precision and confidence level. Example can be seen in Figure 2.2.

Figure 2.2: Akaroa2 output

When akrun is invoked it contacts the akmaster, which provides an ID
of the simulation and chooses a host (running akslave) for each simulation
engine based on the requested number −n. Akmaster then tells akslave on
that particular host to launch a simulation and provides the parameters,
as well. Akmaster maintains the host name and port for duplex commu-
nication between akslave and itself. Simulation engine generates the data
locally on each host and analysis of such data is also done locally by akslave.
That means a need for local initial transient detection for each simulation
engine. The simulation output analysis is done sequentially, meaning if a
checkpoint was reached, akslave sends the local estimates (θ̂(n) and σ2(θ̂))
to the akmaster to be incorporated to the global estimate i.e [5]:

μ̂ =
1

n

N∑
i=1

niμ̂i, (2.7)

σ̂2(μ̂) =
1

n2

N∑
i=1

n2
i σ̂

2
i (μ̂i), (2.8)

“where μi is the local estimate from the simulation engine i, σ̂2
i is the local

estimate of the variance of μi, ni is the number of observations from engine

i, N is the number of engines and n =
N∑
i=1

ni [5]”. When the global estimates

are calculated the analysis of the stopping condition, such as relative error
(Equation 2.6), is performed. If they are reached, akmaster kills the simu-
lation engines and sends the final estimates back to akrun to be presented
to the user. The principle of funtion can be seen in Figure 2.3

Akaroa2 uses Combined Multiple Recursive Generator for the generation
of random numbers, which will be introduced in Section 2.6. It also provides
APIs for the user to implements its own simulation models.

CHAPTER 2. BACKGROUND 12

Figure 2.3: Akaroa2 function [5]

2.5.4 Distributed Simulations

In this section we introduce the two approaches that are widely used in order
to speed up the simulation runs. First, we introduce the Single Replication
in Parallel scenario and after we will talk about Multiple Replications in
Parallel scenario, a scenario that we use within this research.

Single Replication in Parallel

In Single Replication in Parallel (SRIP) scenario is the simulation model
split up between a number of simulation engines (processors) or is split into
independent sub-models. As mentioned in [23], SRIP does not provide a
significant speed up as the level of distributiveness of such model is highly
limited, and some models cannot be split up at all. Another problems
include that if one replication fails, the whole simulation experiment fails.
Therefore, it is not recommended to use such scenario to speed up simulation
experiments.

Multiple Replications in Parallel

Pawlikowski has mentioned, in [23], that simulation run-length only depends
on the time needed to collect the necessary number of observations. This
has lead to the idea behind MRIP. In the MRIP scenario independent repli-

CHAPTER 2. BACKGROUND 13

cations of a simulated model are run on different simulation engines. These
engines would then produce statistically different, independent, streams of
observations of such simulated model, in our case representing the steady-
state mean. The observations are then submitted to one global analyser
(Akmaster) which controls the simulation run and decides if such simula-
tion has collected enough observations and the stopping condition has been
satisfied, see Section 2.3. If the stopping condition has been satisfied, all the
simulation engines are stopped at the same time, even if one engine might
be still running a replication.

However, a problem arises here, if one simulation engine is much faster
than the other ones a possibility exists that this simulation engine would
perform all the work before the slower engines could even finish one repli-
cation. On the other hand, MRIP has shown that while used on similar
CPUs the speed up is significant and can even improve the quality of used
methods of output analysis [22]. In our research we have used MRIP with
only one replication (single simulation engine) per model.

For more information please refer to [18].

2.6 Pseudo Random Number Generators

Simulating processes that include random components necessarily calls for
use of random numbers that are drawn from a specified distribution. Before
the incline of simulation experiments, random numbers were drawn by hand,
dice rolling, or simple machines. However, they included many problems
such as speed of producing numbers or need to save every random number
to a memory for later use, such as debugging or reproduction of results.
Therefore they cannot be used for computer based stochastic simulations.
That lead to use of algorithmic random number generators, where the num-
bers are produced based on an formula (algorithm). One can see that such
numbers are not random at all, but they only appear random, therefore we
will talk from now on about pseudo random number generators (PRNGs).
Section 7.1 in [13], outlines rules that every proper PRNG has to satisfy.
The rules include that PRNG should produce numbers fast, the numbers
have to appear distributed uniformly on U[0,1] and cannot be correlated
with each other. The generated sequence has to be reproducible, PRNG has
be be able to produce independent streams of random numbers, be easily
implementable and efficient in time and memory. It also well known that
algorithmic PRNGs have a limited period, where if the period passes the
random numbers would start to repeat, this leads to another rule that such
period should be long enough. Hellekalek gives a good overview of stan-
dards for good PRNGs in [11]. As can be seen from the introduced rules, it

CHAPTER 2. BACKGROUND 14

is not very easy to find a correct generator. Next section will introduce basic
PRNGs that have been used widely for computer based stochastic simula-
tions.

2.6.1 Linear Congruential Generators

Linear Congruential Generators (LCGs) have been and probably still are
one of the most used PRNGs. The sequence of random numbers is is given
by [13]:

Zi = (aZi−1 + c)(mod m), (2.9)

un =
Zn

m
, (2.10)

where m is the modulus, a is the multiplier, c is the increment and Z0 is the
starting point, or seed. As mentioned above, the sequence of Z1, Z2, ..., Zn,
is not random at all. So the selection of parameters has to be given a special
attention. The integers have to satisfy 0 < m, a < m, c < m and Z0 < m
[13]. It is quite clear that such sequence would eventually exhaust all pos-
sible random numbers, amount depends on parameter selection, and loop
itself around and produce same random numbers. If parameters are selected
properly it is expected that LCG will produce sequence of random numbers
from 0 to m, called full period. The seed Z0 is the only parameter that
has to be remembered in order to reproduce same sequence of random num-
bers. The random number un would then be a independent and identically
distributed in the range [0,1) [25].

Multiplicative LCG

Probably the most commonly used PRNG based on LCG is the multiplica-
tive LCG (MLCG). The parameter c is here selected to be 0, c = 0. But,
by carefully selecting the parameters a and m, a period of m − 1 can be
achieved. It has been shown that m can be selected as 2b, where b is the
number of bits that the computer, or compiler, has available. Therefore
on 32-bit computer m = 231. However, this is not sufficient as it does not
guarantee that such generator will produce a full period. In MLCG the
parameter m is selected as the largest prime number less than 2b and if a
is the primitive element modulo m, that is the smallest integer al − 1, we
can obtain a almost full period of m− 1, where each random number would
repeat exactly once in period [13].

2.6.2 Combined Multiple Recursive Generator

As it can be seen above MLCG could produce only a relatively small amount
of random numbers (2b − 1). That is solved by the multiple recursive gen-

CHAPTER 2. BACKGROUND 15

erator (MRG) which is given as follows [25]:

Zn = a1xn−1 + a2xn−2 + ...+ akxn−k(mod m), (2.11)

un =
Zn

m
, (2.12)

and can achieve up to period of mk − 1. However, as [25] mentioned, one
would like to keep coefficients of recurrence 3 small.

Solution to this problem was introduced in [15] by L’Ecuyer et al. They
have introduced combined MRG, which combines a J amount of MRGs [25]:

Zj,n = aj,1xj,n−1 + aj,2xj,n−2 + ...+ aj,kjxj,n−kj mod m, (2.13)

un = (

J∑
j=1

xj,n
mj

) (mod 1) (j = 1, 2, ..., J), (2.14)

We will focus here on a MRG32k3a [15], as it the one implemented in
Akaroa2. MCRG32k3a is defined by two MRGs each with three terms as
follows [25]:

a11 = 0

a12 = 1403580

a13 = −810728

m1 = 232 − 209

a21 = 527612

a22 = 0

a23 = −1370589

m2 = 232 − 22853

As mentioned in [25] by McNickle, this implementation performs well
in statistical tests up to 45 dimensions. The main advantage here is that
MRG32k3a achieves a period of 2191 with arbitrary seed and at least one
non-zero element per MRG. The implementation in Akaroa2 takes the full
period and splits it into 2127 streams of IID numbers. Each of those is then
split into 251 sub-streams of length 276.

More information on PRNGs can be found in [25], [13], [11] and CMRG
can be found in [15].

Chapter 3

Methods of Output Analysis

Due to the random nature of the simulated processes and their often nat-
urally autocorrelated (not independent) features, output data cannot be
analysed using classical statistical methods. Secondly, an initial transient
period is present, a period where the processes do not characterize steady-
state. The initial observations have to be disregarded to reduce the final
bias of steady-state estimates. It has also been shown in [17], that initial
transient deletion is necessary in order to reduce the risk of simulation stop-
ping prematurely.

Many methods to properly analyse the simulation output and deal with
the problems with correlation have been proposed. Three “basic” methods
are: independent replications (IRs), non-overlapping batch means (NBM)
and spectral analysis (SA). Also we assume that observations x1, x2, ..., xn
are from a covariance stationary process, steady-state mean and variance
exist, so we can use the following methods.

3.1 Independent Replications

Independent replications have been widely used with fixed-sample size ap-
proach to simulation. This method sets up the sample size n prior of the
run of the simulation. The sequence of n observations x1, x2, ..., xn can be
then split between k independent replications, with m = n/k observations
in each. From this a problem arises, where every replication requires to
detect transient period at the beginning of each of the replications of the
process and discard the observations from this period creating a lot of un-
necessary overhead. If the initial sample size n is set up being to small then
the estimations of mean will be highly autocorrelated resulting in difference
between theoretical coverage 1−α and the experimental coverage of the CIs.
This is due to that if one increases number of k replications it would lead
to smaller batch size m per replication, and therefore increasing the size of

16

CHAPTER 3. METHODS OF OUTPUT ANALYSIS 17

CI for θ̂, not the actual value of θ̂ [14].

For further details please refer to in [20], [13], [14].

3.2 Batch Means Methods

Methods based on batch means split a single run of length n into k batches
of size m. Which, if long enough, can be assumed to be independent from
each other. The mean is then estimated per batch and contributes to the
overall mean over the n observations. The batches can also arbitrary overlap
resulting in decrease of the variance of the estimator.

There are methods developed for both fixed and sequential approach of
simulation and the most important ones will be introduced in this section.

3.2.1 Non-overlapping batch means

Method of non-overlapping batch means (NBM), as proposed originally by
Conway [2], is traditionally used with fixed sample size approach. As de-
scribed above, the sample size is decided before the actual simulation run
and the n, x1, x2, ..., xn, observations are split into k batches of size m. The
mean is constructed according to the Equation 2.1 and is, therefore, decided
from the individual observations and is equivalent to calculating the mean
per batch, see Equation 3.2. The variance, or quality measure of the point
estimator, is estimated from all of the means over all batches see Equation
2.5, or can be estimated based on the individual batch means, see Equation
3.1.

As mentioned in [20] and [13], the main idea behind this approach is
that observations that are separated more in time are less correlated. So
if we set up the batch size to be long “enough” the batch means might
seem as uncorrelated and normally distributed, which also flows from the
Central Limit Theorem as mentioned in Section 2.3. However, this leads to
the biggest problem of this method being how to decide if the batches are
long “enough”. The problem is that if the run length n is too “small” the
means over individual batches can be highly correlated and the estimator in
Equations 2.5 and 3.1 will be heavily biased. Both of these will negatively
influence the size and quality of final CIs, therefore resulting in lower cov-
erage than 1 − α. Second problem would be how to determine the length
of the initial transient period and therefore from which observation can one
start creating the batches, because all the observation in batches need to
characterize the steady-state of a stochastic process. Transient detection
methods will be discussed in the Chapter 4. Idea of batching in NBM is
shown in Figure 3.1.

CHAPTER 3. METHODS OF OUTPUT ANALYSIS 18

σ̂2 =

B∑
j=1

(X̄j − θ̂(n))2

b(b− 1)
, (3.1)

where

X̄j =

jm∑
i=(j−1)

xn

m
(3.2)

is the j-th mean of a batch.

Figure 3.1: NBM Batching

3.2.2 Sequential implementation of NBM

The sequential implementation of non-overlapping batch means, as described
in [20], will be described in this section. For the sequential implementation of
NBM one would need to specify two phases. First, a phase where the initial
period of a process is detected and observations from such period are dis-
carded. Second, a phase where the process is simulated and its steady-state
performance parameter is analysed. The second phase needs the observa-
tions to be representing the steady-state of a process, which is achieved by
using the phase one.

As was mentioned above, the observations collected during the simu-
lation are usually highly autocorrelated, therefore the classical statistical
methods cannot be used, as they assume independence of data. The main
problem with classical NBM is that if the batch size is selected incorrectly,
the overall quality of coverage of CI is affected, resulting in usually lower
coverage than selected 1− α. This is solved by this sequential method, the

CHAPTER 3. METHODS OF OUTPUT ANALYSIS 19

batch size m∗ is selected sequentially here. The implementation in [20], does
not keep the observations separately, but rather the means over batches are
kept. These batches are then tested for autocorrelation. “A given batch
size can be accepted as the batch size for approximately uncorrelated batch
means if all L autocorrelation coefficients of lag k(k = 1, 2, ..., L), are statis-
tically negligible at a given significance level βk; 0 < βk < 1” [20]. Also it is
not necessary to estimate autocorrelations coefficients over all means, it is
usually enough to estimate only 0.1kbo lags, where kbo is the number of batch
means used for autocorrelation test. This is given due to that with increas-
ing lag, the autocorrelation coefficients are calculated from lower amount of
data, and therefore negligible. The method uses a estimator referred to as
“jackknife” for the autocorrelation estimation. This estimator is usually less
biased than the ordinary estimators, i.e. [20]:

ˆ̂r(k,m) = 2r̂(k,m)− r̂′(k,m) + r̂′′(k,m)

2
, (3.3)

where k is the lag coefficient and m is the batch size, “r̂′(k,m) and r̂′′(k,m)
are estimators over the first and second half of the analysed sequence of kbo
batch means” [20]. It is also recommended that kbo ≥ 100, size of batches
m should not be less than 50 and that L should not be too large, just about
0.1kb0 as mentioned earlier.

The method holds two buffers, the “ReferenceSequence” is used for hold-
ing means over all the batches of size mo, and “AnalysedSequence” used
to hold kbo number of batches of size ms = smo, (s = 1, 2, ...), which is
formed from the batch means kept in the reference sequence. The batch size
m∗ = ms if the batch size passed the autocorrelation test two consecutive
times.

For more detailed explanation and implementation please refer to [20].

3.2.3 Overlapping Batch Means

Overlapping batch means (OBM), as originally proposed by Meketon and
Schmeiser in [19], exploit the idea that if you create a new batch with each
consecutive observation, you will have more observations in the final esti-
mation of the mean and variance of the mean. However, as it can be seen
it also suffers from greater correlation between the means. On the other
hand, as was mentioned above, the batch size is more important than the
independence between the individual batches. The article in [19] has also
shown that the estimator used with OBM has variance 1/3 lower than the
“classical” NBM estimator and that it will essentially have 1.5 times greater
number of degrees of freedom, while keeping the bias of the estimator the
same. The method was developed mainly for fixed sample size approach,

CHAPTER 3. METHODS OF OUTPUT ANALYSIS 20

where one could have more observations per batch than in the NBM and,
therefore, save computational time. Idea of batching in OBM is shown in
Figure 3.2.

Figure 3.2: OBM Batching

For more information please refer to [19] and [20].

3.2.4 Dynamic Non-Overlapping Batch Means

The method, as proposed by Yeh and Schmeiser in [30], does not require the
run length to be set before the simulation run. Dynamic non-overlapping
batch means (DNBM) creates batches on a same principle as NBM does,
and therefore splits the sample of n observations into k smaller, independent,
batches of size m. DNBM uses finite memory and manipulates the batch
size dynamically during the actual simulation run. The methodology here is
very similar to the one introduced in [20] for the Spectral Analysis method.
The method shows good memory (O(1)) and computational requirements
(O(N)).

The main idea is to create a vector, finite memory space, of size 2k(k =
1, 2, ..., 2k) where k is a positive integer, that will hold the observations. This
vector constitutes of cells, batches of size m. DNBM holds the observations
as sums and each new observation xn is added to the sum. If the current
batch (cell of a vector) becomes full the algorithm would move to the next
batch, if any, and add the observation until this batch becomes full. When
there is no more space in the memory i.e. all the batches are full, equal
to the batch size m, DNBM would “collapse” the 2k batches in vector into
k batches. Meaning the means from batches k + 1 up to 2k will be added
to the batches 0 up to k and the batch size would be doubled m = m × 2.
Hence, half of the vector would essentially become available. The batch size
m can be determined from n and k [30]:

m = 2�log2 n
k �−1. (3.4)

CHAPTER 3. METHODS OF OUTPUT ANALYSIS 21

Therefore, the batch size will always increase by the power of two. It is
recommended to use between 10 to 30 batches i.e. k = 5 to 15 [30]. The
method also introduced two estimators, one V̂TBM that would not consider
a “partial batch”, where partial batch is the last batch that has not been
filled up at the current checkpoint, and would truncate all the observations
from such batch. Second, V̂PBM , that would consider all the batches as they
are. It has been shown in [30] that in terms of mean squared error (MSE),
MSE will be introduced in Chapter 5, the V̂PBM shows overall lower MSE
especially for small number of batches k the small partial batch helps to
reduce the variance more significantly than it increases the squared bias.
For higher number of batches the difference becomes negligible. However,
this experiment was done only for few processes and the experimental quality
of coverage was not assessed at all. Both estimators can be seen in following
formulas:

V̂TBM =
m
n

b− 1

b∑
i=1

(
A(i)

m
− θ̂bm)2, (3.5)

V̂PBM =

rA−1∑
i=1

((A(i)
m − θ̂(n)))2 + (mA

m)((A(rA
mA

)− θ̂(n))2

(rA − 1)(rA − 1 + ma
m)

, (3.6)

where A is the vector of size 2k, m is the current batch size, n is the sample
size, θ̂(n) is the overall sample mean, θ̂bm is the sample mean of truncated
data, b =

⌊
n
m

⌋
is the number of full batches, mA is the batch size of a current

batch pointed to by rA. Idea of batching in DNBM is shown in Figure 3.3.

For detailed description please refer to [30].

Figure 3.3: Collapsing in DNBM

3.2.5 Dynamic Partial-Overlapping Batch Means

Dynamic partial-overlapping batch means (DPBM) were proposed originally
in [27], [26] and [28] by Song. The main idea here is to collapse a vector
of a certain size in the same way as in DNBM. But to use a special case

CHAPTER 3. METHODS OF OUTPUT ANALYSIS 22

of OBM called partial overlapping batch means (PBM), as can be found in
[29]. The idea behind PBM is to shift the overlap and do not create a new
batch with each new observation xn as in OBM. The shift has been selected
to be m/4 and it has been shown, see [27], that PBM estimator with m/4
shift has only 3 % higher asymptotic relative variance than OBM see Table
3.1 while reducing the correlations between the batch means. To implement
this idea in DPBM it is required to have 4 vectors of size 2k, where all the
data will be stored. The idea is to collapse all the vectors when the first
vector becomes full. The idea of collapsing the first vector is identical to the
one of DNBM, however to create a 75 % overlap the observations have to be
collapsed into second, third and fourth vector, as well. When the first vector
becomes full for the first time the data are collapsed only into the first and
second vector. Every other collapse the data are collapsed into all four of the
vectors. After collapsing has occurred for all of the vectors it is necessary
to save the observation xn into all of them. For detailed algorithm see [27].
The idea of collapsing can be seen in Figure 3.4.The variance estimator is
described as following [27]:

V̂DPBM =
1

db

[b1∑
i=1

(Ak(i)

m
− θ̂(n)

)2

+

b2∑
i=1

(Bk(i)

m
− θ̂(n)

)2

+

b3∑
i=1

(Ck(i)

m
− θ̂(n)

)2

+

b4∑
i=1

(Dk(i)

m
− θ̂(n)

)2]
,

(3.7)

where bi, i = 1, 2, 3, 4 are number of full batches in vector A to D [27]:

b1 = r1−1+
⌊m1

m

⌋
, b2 = r2−1+

⌊m2

m

⌋
, b3 = r3−1+

⌊m3

m

⌋
, b4 = r4−1+

⌊m4

m

⌋
,

(3.8)

,db = n((n
m) − 1), b =

⌊
(n−m+s)

s

⌋
and s = m/4. See [27] for proof. The

batch size amounts to m = 2h, where h is the number of collapses.

However, the DNBM and the original DPBM [27] do not reflect the
correlation structure of the data as the batch size is selected only on a basis
of n and k. To overcome this problem a mse-optimal DPBM (MSE-DPBM)
estimator was proposed in [28]. The algorithm of MSE-DPBM would take

a value of current estimated variance with batch size m, (̂V)DPBM(m), as

CHAPTER 3. METHODS OF OUTPUT ANALYSIS 23

i Shift s=m/i Estimator Type σ2(V̂ (m,s))

σ2(V̂ O(m))

bias(V̂ (m,s))

bias(V̂ O(m))

1 m NBM 1.50 1
2 m/2 PBM 1.12 1
3 m/3 PBM 1.06 1
4 m/4 PBM 1.03 1
m 1 OBM 1.00 1

Table 3.1: Asymptotic bias and variance result [27]

a baseline to estimate the optimal batch size m̂∗. It would then adjust the
value of batch size, or memory size, accordingly to the value of m̂∗ to reflect
the correlation of the data [28]. If the current batch size m is far greater
than m̂∗ the algorithm increases the memory k, k = k+1 and no collapsing
occurs. The crucial step is therefore to estimate the m̂∗ and for sufficiently
large m and n it is:

m̂∗ = (1.03n(
γ̂1
γ̂2

)2)
1
3 + 1, (3.9)

where γ̂0 is the sum off all correlations:

γ̂0 = nV̂DPBM (m)/R̂0, (3.10)

γ̂1 is the sum of all weighted correlations:

γ̂1 = nm[V̂DPBM (m)− V̂B(
m

2
)]/R̂0, (3.11)

and R̂0 is the sample variance:

R̂0 = n−1(
n∑

i=1

x2i − nθ̂2). (3.12)

V̂DPBM (m) is the current estimated variance Equation 3.7 and V̂DPBM (m/2)
is the previous estimated variance, or variance that was calculated before
the batch size was doubled (collapsing) and equals to 50 % OBM estimator
proposed in [26] i.e.:

V̂B(m/2) =
1

db
[

b′A∑
i=1

(
A′

j−1(i)

mj−1
− θ̂n)

2 +

b′B∑
i=1

(
B′

j−1(i)

mj−1
− θ̂n)

2], (3.13)

mj−1 is the previous batch size at previous step j, orm/2, db = n((n
mj−1

)−1),

b =
⌊
(n−m+s)

s

⌋
, and A′

j−1, B
′
j−1 are virtual vectors, constructed to represent

a previous state of vectors, because the previous state of the four vectors is
overwritten at step this step. See Equations (13)-(16) in [26].

More information can be found in [27], [26] and [28].

CHAPTER 3. METHODS OF OUTPUT ANALYSIS 24

Figure 3.4: DPBM Collapsing [28]

3.2.6 Spectral Analysis

Assuming that the process has already passed its initial transient period
and the observations characterize the steady-state of a process the Spectral
Analysis (SA) can be used.

Spectral Analysis was initially proposed in [9] and modified for use un-
der Akaroa2 [18] and [16]. From a covariance stationary 4.1 sequence of
observation x1, x2, ..., xn assume that γ(k) is the covariance function given
by [9]:

γ(k) = E[(x(j)− θ̂(n)(x(j + k)− γ], (3.14)

CHAPTER 3. METHODS OF OUTPUT ANALYSIS 25

and
∞∑

k=−∞
‖γ(k)‖ < ∞. So that the process has a spectral density p(f) and

the functions γ(k) and p(0) are, therefore, Fourier pairs [9]. It is well known
that the variance can be estimated σ̂2 = p(0)/n, the spectral density at
frequency zero divided by number of observations.

SA does not suffer from the problems with autocorrelated data. Original
implementation by Heidelberger and Welch does plan for the method to be
used in the sequential approach and also groups the collected observations
into finite number of batches to save memory, rather than saving all the
observations. It can be seen that the main problem here is how to estimate
the p(0). “The variance is obtained as the value of the periodogram Π(f)
(of the analysed sequence of observations) at the frequency f = 0” [3]. As
the peridogram, especially for low fs, is highly variable the periodogram
is transformed into a logarithm of an averaged periodogram to achieve a
smoother function. A regression fit to such logarithm of the averaged pe-
riodogram is applied to obtain the value of the periodogram at f(0). The
polynomial degree of the regression fit is usually less than two, d ≤ 2 using
a fixed number, K, of the points of such periodogram Π(f). In [9] authors
show that to estimate the steady-state mean μx we should use d = 2 and
K = 25 and the CI of such μx can be constructed using quantiles of the
Student t distribution with degrees of freedom equal to 7 (df = 7) [3]. Vari-
ous values for d and k have been tested in [8], but no significant change was
achieved. For more detailed explanation please refer to [9], [20] and [3].

This method, as mentioned above, has been modified for use in Akaroa2
in [20] and later modified in [16]. In [20] the method takes two arguments,
relative precision of the estimates and maximal simulation run length. Se-
quential approach using checkpoints, as described in Section 2.4.2, is used
and selection of checkpoints is explained in detail in [20]. The method uses a
finite memory and groups the observations into batches M , where the mini-
mal number of batches is 100. A mean θ̂(n) is then calculated per each of the
batches and observations are, therefore, kept as their means to save mem-
ory. When M batches with batch size m are collected half of the batches,
from middle to the end, are collapsed into the batches in front and doubling
the batch size. It has been found in [16] that SA/HW performs very well
in terms of quality of the CIs when the acceptable error is greater than 10
%. However, the quality lowers when a higher precision is necessary as the
simulation can stop prematurely. The method in [16] swaps the polynomial
used for the regression fit to the average of the periodogram points, which
would equal to using a polynomial of degree 0.

Chapter 4

Initial Transient Detection

The purpose of this sections is to introduce initial transient period detec-
tion methods and steady-state processes that have been used within the
experiments in this thesis.

4.1 Stationarity

As was said in Chapter 3 the methods of output analysis, and is important
for our research, assume that the observations collected during the simu-
lation of a stochastic process characterize the steady-state behaviour of a
simulated process. And that the processes simulated are stationary [12]:

FX(x; t+ τ) = FX(x; t), (4.1)

have constant mean, constant variance and the lag − h covariances depend
only on the time interval h i.e. the process {Xi} is covariance stationary
when:

1. E[Xi] = μx,

2. σ2[Xi] = E[X2
i]− μ2

x,

3. Cov{Xi, Xi+h} = E[XiXi+h]− μ2
x = R(h).

4.2 Initialization Detection

If one simulates a stochastic process, which involves an input of random
numbers, it is well known that such process is in the beginning in its transient
phase and its stochastic parameters vary in time. It is important to use a
transient detection method to delete observations from such stage and use
only those observations xn that have been collected after the process passed
this stage and is, therefore, stable. It can be said that the main reason

26

CHAPTER 4. INITIAL TRANSIENT DETECTION 27

one would be using initial transient detection method is to find a truncation
point, after which observations can be considered as representing the steady-
state of a stochastic process. It was shown that including a initial transient
detection method with fixed sample size approach can improve the quality
of and estimator, meaning its bias will be lowered [20]. In [17] McNickle
mentiones that with sequential approach this is not the issue, as one could
run the simulation long enough to reduce the influence of initial observations.
However, in [17] McNickle has also found that it is recommended to use a
method of transient detection, to prevent simulation stopping prematurely.

4.2.1 Schruben’s Test

First method that has been used in the experiment is based on Schruben’s
test of stationarity, as implemented by Pawlikowski in [20], and its main idea
is to test, sequentially, if sufficient number of initial observations has been
deleted and the process can be assumed to be in its steady-state, hence ob-
servations xn used for the final estimation and analysis represent the steady-
state parameters. The heuristic rule that “the initial transient period is over
after n0 observations if the time series x1, x2, ..., xn0 crosses the mean X̄n0 k
times ”[20] is applied to get the first approximation of a truncation point n∗

0.
X̄n0 is the mean estimate θ̂(n), and k are selected to be equal to 25. Using
this rule we get a sequence nt of observations that can be tested for station-
arity. As mentioned in [20] a problem arises that it is necessary to know the
degrees of freedom for the steady-state estimator σ2(θ̂(n)) earlier than we
know that the process is in its stationary phase. The paper mentions that
one should only do the estimation over observations from subsequence nv of
currently testing sequence nt. Taking nt ≥ γvnv, where γv ≥ 2. Schruben
has selected the nt to be at least nt = 200, meaning 200 observations would
be stored before stationarity testing. However, the initial period can be
longer than n = 200, therefore Pawlikowski recommended in [20] that:

nt = max(γvnv, γn
∗
o), (4.2)

“where γn∗
0 is the smallest length of one step in sequential testing for station-

arity for a given n∗
0, γ > 0 [20]” . The method would discard n∗

0 observations
and after next nt observations are collected it would calculate the σ2(θ̂(n))
using one of the methods mentioned in Chapter 3. When the σ2(θ̂(n)) is
estimated the method can start testing the nt sequence for stationarity. If
the truncation point was assumed correctly, the process can be assumed to
be in its steady state. If not more γn∗

0 observations would be collected and
whole process would be repeated until the length of initial period has been
found, or limit for maximum number of observations used for the detection
is reached. If the maximum number is reached, process can be regarded
as not stable. However, it was shown in [20] that Schruben’s test is rarely
initiated after the mean X̄n0 is crossed 25 times and this point is declared

CHAPTER 4. INITIAL TRANSIENT DETECTION 28

by the end of initial transient period by the first Schruben’s test. In our
research we refer to this methods as “25 crossings”.

For more information please refer to [20].

4.2.2 Method Of Cumulative Means

Second method used within the experiment is a transient detection method
based on cumulative means and developed by Freeth in [6]. Cumulative
mean is constructed from sequence of all observations xn and produces a
new sequence of such means [6]:

Ct =
1

t+ 1

t∑
i=0

xn, (4.3)

Ct is then a running mean of t + 1 observations at time t. Where the ob-
servations are expected to be realization of a system in its steady-state.
However, as was shown before, if one runs the simulation for a long period
of time, the effect of initial observations becomes negligible. That said it
can be seen that Ct would eventually converge to the steady-state mean μx

as t increases, from a graphical point of view Ct, the graph would become
more and more flat for increasing t [6]. Hence, it can be seen that cumu-
lative means can be used as a method for detecting the truncation point
in sequential steady-state simulations. To allow automatic detection of the
truncation point a forecasting method has to be used to decide if the plot
of Ct has become sufficiently flat and horizontal.

Freeth has found that to detect the flatness of the plot of Ct a single ex-
ponential smoothing is to be used instead of double exponential smoothing.
That has been found on a basis of preliminary testing, as it is not necessary
to use forecasting using slopes as double exponential smoothing uses. It is
also due to that if Ct converges to flatness single smoothing would be more
precise and the bad accuracy while the system is not in its steady-state will
be amplified, hence allowing for easier determination of the truncation point
[6]. The smoothed time is represented by [6]:

st = αCt + (1− α)st−1, t ≥ 1, (4.4)

where s0 = C0 and α is the smoothing factor such that 0 < α < 1, as Freeth
has found lower the α is the bigger the smoothing is. To forecast subsequent
Ct+1 the value of st is used. Then one step ahead error et forecasting is used
to detect the truncation point. et is given by:

et = st−1 − Ct, (4.5)

CHAPTER 4. INITIAL TRANSIENT DETECTION 29

so then et would converge to zero as st converges to Ct. However, due to the
randomness of the process, st and Ct could cross even within initial phase.
A method for correctly detecting et has to be used.

Using absolute error of et is not sufficient enough as it could give under-
estimated value of truncation point. To overcome this, Freeth proposed a
detection condition based on the sample standard deviation of the forecast-
ing errors Se:

Et ≤ γNSe, (4.6)

The stopping condition compares Et with the variation in the observed data,
γ, γ > 0, is a constant, all the observations within this window can be
assumed to be characterizing the steady-state if such condition is met and
the truncation point is then a point at the beginning of this sequence l =
i−N +1 [6]. It has been experimentally found that Et should be calculated
from sum of squared forecasting errors to reduce the influence of Se being
taken from non-stationary phase, which would artificially widen the value
of Et. Et is then:

Et =

N−1∑
i=0

e2t−1, t ≥ N − 1, (4.7)

The values of α and γ have been found experimentally to perform the
best at 0.01 and 0.1 respectively.

Since we are dealing with steady-state simulations in this thesis we pro-
pose that Cumulative Means should be used as an initial transient detection
method, as it produces much longer length of initial transient and is, there-
fore, safer than “25 crossings” method [6]. So that one can be safer in
assuming that observations xn used for the estimation of the steady-state
mean are actually observations characterizing the steady-state behaviour of
a stochastic process being simulated. On the other hand, as it is shown in
[17], the selection of method used for the initial transient detection does not
have a huge impact on the final steady-state estimates as the simulation
runs long enough.

Analysis

30

Chapter 5

Coverage Analysis

As mentioned above, to be confident that simulation is producing the cor-
rect results, one needs to be sure that the model used for simulation is valid
and representing correctly the real world system under study. Secondly, a
correct pseudo random generator has to be used, PRNGs were be introduced
in Section 2.6. Lastly, use a statistically correct method of output analysis.
This thesis deals with the last problem i.e. how good is an estimator in
terms of its coverage by CIs. We have been focusing on steady-state mean
analysis of stochastic processes under sequential approach to simulation.

There are three common measurements used to assess the quality of an
estimator [20]:

1. Bias of an estimator, is a measure of systematic error of measured
parameter, steady-state mean in our case. Or difference between the
estimated value to the true mean.

Bias[θ̂(n)] = E[θ̂(n)− μx]. (5.1)

2. Variance of an estimator, is a squared deviation of the estimator from
its mean value.

σ2[θ̂(n)] = E[{θ̂(n)− E[θ̂(n)]}2]. (5.2)

3. Mean squared error, is the difference between the estimator and what
is estimated. MSE corresponds to the expected value of the squared
error. The difference occurs due to the randomness or because the
estimator is not correct in its assumptions, in our case does not address
the autocorrelation of data correctly.

MSE[θ̂(n)] = Bias[θ̂(n)]2 + σ2[θ̂(n)]. (5.3)

31

CHAPTER 5. COVERAGE ANALYSIS 32

The main problem with these measures is that if the estimator does not
address the autocorrelation correctly (every estimator contains different as-
sumptions), the MSE value will be affected depending on the quality of the
method. Also, as it can be seen from the Equation 5.3 if variance grows
and bias decreases, MSE remains low, but the final CIs produced might be
bigger and unstable.

Therefore a different approach to the assessment of quality of an estima-
tor has to be developed. Pawlikowski et al. in [22] proposed an experimental
approach to the assessment of the quality of an estimator. The coverage of
confidence intervals, as mentioned above, is defined as a relative frequency
with which the final confidence interval contains the true value μx. If one
sets up the theoretical confidence level to be 1 − α it is also expected that
if simulation is run 100 times, the CIs would cover the true mean 1 − α
times. However, this is not always true in practice. The coverage can be
determined together with its CI [22]:

(
c− z1−α

2

√
c(1− c)

nc
, c+ z1−α

2

√
c(1− c)

nc

)
, (5.4)

where c is the estimated coverage of confidence intervals and nc is the num-
ber of replicated coverage experiments. One would expect c to be very close
to the theoretical level 1 − α. Pawlikowski in the article argues that, if
sequential approach was used to produce one coverage experiment, the cov-
erage analysis has to be done in sequential way as well. Three rules have
been set up in [22]:

1. Coverage should be analysed sequentially, i.e. analysis of coverage
should be stopped when relative precision (the relative half-width of
confidence interval) of the estimated coverage satisfies a specified level.

2. An estimate of coverage has to be calculated from a representative
sample of data, so the coverage analysis can start only after minimum
number of “bad” confidence intervals have been recorded.

3. Results from simulation runs that are clearly too short should not be
taken into account.

We have considered methods of MSE-DPBM [28] and SA/HW [16] for
the coverage analysis, as SA/HW has been already shown to perform better
in terms of coverage of confidence intervals to sequential method of NBM
[20] in [22]. Method of MSE-DPBM has been selected on basis that it is
believed to be superior to other batch means methods and is the latest one
in evolution of estimator based on BM.

CHAPTER 5. COVERAGE ANALYSIS 33

Using experimental analysis of coverage of confidence intervals limits us
to use of analytically tractable models only, because a true mean μx has to
be known in order to assess if CI covers the μx or not. Following section
will introduce the stochastic processes that have been used for the cover-
age analysis. We have focused solely on mean waiting time, θw, analysis of
the queueing processes and mean value of autoregressive process. These pro-
cesses have been selected on a basis of their autocorrelation functions, where
queueing processes have non-fluctuating shape and autoregressive processes
have fluctuating autocorrelation function and are used widely as reference
models.

5.1 M/G/1

A M/G/1 process is described here only for description purposes of queueing
processes. M/G/1 are queuing processes where the arrival times are Pois-
son distributed, service times are of general distribution and one server is
present. Traffic intensity ρ is given by ρ = λ

μ , where λ is arrival rate and μ
is the service rate. As this experiment is dealing only with processes that
are stable, condition ρ < 1 has to be satisfied. The service time has been
set to μ = 10 as most of the processes are already implemented in Akaroa2,
specifically M/M/1, M/D/1 and M/H2/1. The processes were initialized
idle.

5.2 M/M/1

A M/M/1 process is a M/G/1 process with exponentially distributed service
rates. The steady-state mean for mean waiting time, the time customer
spends in the queue is given by [12]:

θw =
ρ

λ(1− ρ
. (5.5)

5.3 M/D/1

AM/D/1 process is a M/G/1 process with deterministic service rates D(mu =
1/D). The steady-state mean for mean waiting time [12]:

θw =
1

2μ

ρ

1− ρ
. (5.6)

5.4 M/H2/1

A M/H2/1 processes have Erlang distributed, with shape parameter k=2,
service rates. The steady-state mean for mean waiting time [12]:

CHAPTER 5. COVERAGE ANALYSIS 34

θw = ρ− ρ2

8(1− ρ)
. (5.7)

5.5 Autoregressive Process

An autoregressive process of order one, AR(1), have output generated by a
formula [7]:

Xt = c+ φXt−1 + εt, (5.8)

for a constant c and φ, which is the parameter of the autocorrelation model.
The white noise εt is a Gaussian distributed with zero mean E[εt] = 0 and
constant variance σ2[εt] = σ2

ε . The mean is then calculated as following:

μ =
c

1− φ
. (5.9)

AR(1) was implemented for this thesis as following, c = 1, and εt was taken
as N(0, 1) random number. Parameter c was selected to be equal to one,
because of the relative error calculation in Equation 2.6, to avoid division
by zero.

5.6 Open Queueing Network

The open queuing network was implemented according to the figure 5.1.

Figure 5.1: Open Queueing network

CHAPTER 5. COVERAGE ANALYSIS 35

After processing a random fraction of jobs p1, p2 return to Disk 1 or
Disk 2. A fraction p3 leaves the system. The mean CPU service time is 6,
the mean service time for each disk is p1 = p2 = 0.4, all distributions are
negative exponential, and the source rate is set to give loads at the CPU
ranging from 0.5 to 0.95 [17]. This model is referred to as QNet later in this
thesis.

5.7 Implementation of Coverage Analysis

. Coverage analysis has been introduced in the previous section of this chap-
ter. We use the rules as specified in [22] to evaluate the correctness of sim-
ulation output analysis methods (SOAM), such as SA/HW, DPBM, MSE-
DPBM and Modified MSE-DPBM, in simulations of analytically tractable
models. This allows us to compare the experimental, estimated, value to the
true performance parameter of a model, in our case we are only considering
steady-state mean μx. Coverage is the experimental confidence level of the
final CIs produced by a given SOAM. Meaning the proportion of final ex-
perimental CIs that cover the true mean of a model, see 5.4. We are using
a sequential approach to the coverage analysis, and such analysis is stopped
when absolute error Δz− 1

2
is lower than 1 %. Since we expect the values to

be very close to one, using theoretical confidence level of 95%, we can use
the absolute error instead of relative error as in Equation 2.6 and be safe
that the CIs are narrow and stable.

It is often not true that in practice that a method would cover the true
mean μx at the expected confidence level 1− α = 95%, therefore we accept
the SOAM as being correct if the experimental coverage is sufficiently close
to the theoretical value. If the coverage is higher than expected we assume
that the SOAM might be stopping the simulation too soon. If the coverage
is lower the SOAM is most likely stopping the simulation too early.

For the coverage analysis we use the models described above. We use
wide range of traffic intensities, ρ, for the queueing models (0.5, 0.6, ..., 0.95)
and the same range for the AR(1)’s φ parameter. All the queueing models
have been initialized empty with service rate μ = 10. We have selected the
memory size parameter of DPBM k, k = 15 and 50 for MSE-DPBM k = 15
and for Modified MSE-DPBM k = 15.

Implementation of the rules as specified in [22]:

• Record 200 “bad” CIs, the CIs that do not cover the true mean of a
simulated model.

• Compute the average length from all simulations L̄ and standard de-

CHAPTER 5. COVERAGE ANALYSIS 36

viation σ(L̄).

• Reject all simulation runs that are shorter than one standard deviation
below the mean Lmin = L̄− σ(L̄).

• Compare estimated θ̂ to the true mean μx. Continue until stopping
condition has been reached Δz− 1

2
< 1, while still rejecting the too

short simulations.

As the study is very intensive on time and computational resources a
MySQL database is set up, where we keep all the results of each coverage
experiment (single simulation experiment) separate. Block diagram of the
coverage analysis can be see in Figure 5.2. Coding is done in Perl and can
be seen in Appendix D.

Figure 5.2: Coverage Analysis

Coverage has been run for all the combinations as can be seen in the
Table 5.1.

We have used 64bit Linux distribution with CPUs based on Intel archi-
tecture for the experiment. We use a single processor scenario of MRIP to
assess the quality of methods.

CHAPTER 5. COVERAGE ANALYSIS 37

Model Analysis Method Initial Transient Load/φ Confidence level

M/M/1 DPBM Schruben 0.5, 0.6 , ...,0.95 0.95
M/M/1 DPBM CumulativeMeans 0.5, 0.6 ...,0.95 0.95
M/M/1 SA/HW Schruben 0.5, 0.6 , ...,0.95 0.95
M/M/1 SA/HW CumulativeMeans 0.5, 0.6 ...,0.95 0.95
M/H2/1 DPBM Schruben 0.5, 0.6 , ...,0.95 0.95
M/H2/1 DPBM CumulativeMeans 0.5, 0.6 ...,0.95 0.95
M/H2/1 SA/HW Schruben 0.5, 0.6 , ...,0.95 0.95
M/H2/1 SA/HW CumulativeMeans 0.5, 0.6 ...,0.95 0.95
QNet DPBM Schruben 0.5, 0.6 , ...,0.95 0.95
QNet DPBM CumulativeMeans 0.5, 0.6 ...,0.95 0.95
QNet SA/HW Schruben 0.5, 0.6 , ...,0.95 0.95
QNet SA/HW CumulativeMeans 0.5, 0.6 ...,0.95 0.95
M/D/1 DPBM Schruben 0.5, 0.6 , ...,0.95 0.95
M/D/1 DPBM CumulativeMeans 0.5, 0.6 ...,0.95 0.95
M/D/1 SA/HW Schruben 0.5, 0.6 , ...,0.95 0.95
M/D/1 SA/HW CumulativeMeans 0.5, 0.6 ...,0.95 0.95
AR(1) DPBM Schruben 0.5, 0.6 , ...,0.95 0.95
AR(1) DPBM CumulativeMeans 0.5, 0.6 ...,0.95 0.95
AR(1) SA/HW Schruben 0.5, 0.6 , ...,0.95 0.95
AR(1) SA/HW CumulativeMeans 0.5, 0.6 ...,0.95 0.95

Table 5.1: Coverage Experiments

Experiment Design

38

Chapter 6

Experiment Design

In this chapter we introduce the experiment design and settings. We present
the modifications of DPBM methods, this are done in order to be able to
implement such methods as a component of Akaroa2.

6.1 Akaroa2 Simulation Controller

The methods of DPBM have to be modified for their inclusion as a com-
ponent of Akaroa2. This functions are receive an observation, check if
checkpoint was reached and send the estimated values θ̂(n) and σ2(θ̂). The
method then runs on each of akslave’s simulation engines and performs the
local estimation of parameters, these estimations are in our case: mean θ̂
and variance of the mean σ2(θ̂). Methods have to register themselves as a
available method to Akaroa2, see [4] or Appendix F. It is also necessary
to specify checkpoint spacing, a point in time when estimates are sent to
akmaster for analysis. Checkpoint spacing will be introduced in Section
6.2.1.

6.2 Output Analysis Methods

Four output analysis methods are selected for the analysis of their coverage
as introduced in Chapter 5. Namely SA/HW as implemented in [16] by
Pawlikowski et al., DPBM [27], MSE-DPBM [28], as implemented by Song,
and a modified version of MSE-DPBM. All of the methods, except SA/HW
which is already present in Akaroa2, are presented here in their modified
form. The modifications include functions that are necessary in order for
the methods to work as a component of Akaroa2.

39

CHAPTER 6. EXPERIMENT DESIGN 40

6.2.1 Dynamic Partially-Overlapping Batch Means

Dynamic partially-overlapping batch means as implemented in [27] by Song,
is selected for the experiment only as a reference method, and is not suitable
for automated analysis in Akaroa2. Every method, to be considered auto-
mated, can not have batch size m or number of batches k fixed before the
simulation run. Both need to be dynamically selected during the run-time
of the simulation experiment. And as it flows from DPBM [27], the memory
parameter k (number of batches) is fixed. The methods from Akaroa2, that
are included are:

• CheckpointReached(), function to decide if checkpoint was reached.

• GetCheckpoint(Checkpoint &cp), if checkpoint is reached, estimates
are send to Akaroa2’s akmaster, to check if stopping condition was
reached.

• ProcessObservation(real value), starts to process observation, if any,
that comes from simulation engine. Value is the observation xn.

We make changes to the algorithm that is implemented in [27], as it is
inconsistent with implementation of MSE-DPBM [28]. The vector L(i) =
1, 2, ..., 8k consists of four sub-vectors A,B,C,D. In implementation [27]
the vectors are updated with new observation xn every time a observations
comes, on the other hand in [28] the new observation is saved into the
vector B only after one, h > 0, collapsing has occurred, respectively to
B,C and D after at least two collapses, h > 1, have occurred. As we have
found experimentally this updating does not make any difference to the
estimates θ̂(n) and σ2θ. Therefore, as a baseline the updating as in [28] is
used for the implementation here. As we have coded the DPBM method
first and implemented estimation of m̂∗ on top of that code implementation
is as following for all the methods (DPBM, MSE-DPBM and modified MSE-
DPBM):

• Memory parameter g is named k.

• Changed naming for rA = r1, rB = r2, rC = r3, rD = r4 and similarly
for mA...mD = m1, ...,m4 to keep the naming conventions same for all
the methods.

• The updating of B, C and D is done as explained above.

• The checkpoint spacing has been selected as follows: CheckpointReached()
can return true iff collapsing has occurred h > 1 and new batch has
been collected m1 = m.

• Code implementation:

CHAPTER 6. EXPERIMENT DESIGN 41

– k = memorySize.

– h = numberOfCollapsingOccured.

– n = currentSampleSizeN.

– V̂DPBM (m) = estimatorDPBM.

– m = batchSize.

The algorithm as can be seen in Figure A.1:

1. Start and initialize variables, n = 1, h = 0, m = 1, L(i) = 0, i =
(1, 2, ..., 8k), mj = 0, rj = 0, j = 1, 2, 3, 4.

2. Wait for observation xn from Akaroa2 simulation engine and start
processing it.

3. If current cell in vector A has room increase batch size m += 1 and
go to step 7, else go to step 4.

4. Does vector A has room i.e. r1 < 2k? If yes go to step 4.1, or go to
step 4.2.

4.1. Initialize m1 = 1 and set r1+ = 1 to point to the next cell. Go
to step 6.

4.2. If h = 0 go to 4.2.1, else go to 4.2.2.

4.2.1. Collapse the vectorsA andB and initialize values ofm1, m2, r1, r2

• B(i) = A(2i)+A(2i+1), i = 1, ..., g−1; B(k) = A(2k).

• A(i) = A(2i− 1) +A(2i), i = 1, ..., g.

• m1 = 1, m2 = 2h, r1 = k + 1, r2 = g.

• Go to step 5.

4.2.2. Collapse the vectors to D, C, B, A and initialize values of
m1, m2, m3, m4, r1, r2, r3, r4.

• D(i) = B(2i)+B(2i+1), i = 1, ..., k−1; D(k) = B(2k).

• C(i) = B(2i− 1) +B(2i), i = 1, ..., k.

• B(i) = A(2i)+A(2i+1), i = 1, ..., k−1; B(k) = A(2k).

• A(i) = A(2i− 1) +A(2i), i = 1, ..., k.

• m1 = 1, m2 = 2h, m3 = 2k + 2k−1, m4 = 2k−1.

• r1 = k + 1, r2 = k, r3 = k, r4 = k.

• Go to step 5.

5. Update h += 1 and m = 2h.

6. Initialize the sum stored in vector A1 = 0.

7. Add the new observations xn in the current cell in A, A(r1) += xn.

CHAPTER 6. EXPERIMENT DESIGN 42

8. If number of collapsing h > 0 go to step 8.1, else go to step 9.

8.1. If h = 1 go to step 8.2, else go to step 8.3.

8.2. If cell B(r2) has room (m2 < m), set m2 += 1, else set m2 =
1, r2 += 1, B(r2) = 0. Update B(r2) += xn. Go to step 9.

8.3. If cell B(r2) has room (m2 < m), set m2 += 1, else set m2 =
1, r2 += 1, B(r2) = 0. Update B(r2) += xn.

8.4. If cell C(r3) has room (m3 < m), set m3 += 1, else set m3 =
1, r3 += 1, C(r3) = 0. Update C(r3) += xn.

8.5. If cell D(r4) has room (m4 < m), set m4 += 1, else set m4 =
1, r4 += 1, D(r4) = 0. Update D(r4) += xn. Go to step 9.

9. Increase the sample size n += 1.

10. Call checkpointReached(), if checkpoint was reached go to step 11, else
go to step 2.

11. Calculate θ̂(n), σ2(θ̂) and send these values to akmaster.

12. If stopping condition satisfied, stop simulation and present estimated
results, else go to step 2.

Flowchart A.1 and C++ code of the method can be found in Appedix A.

6.2.2 MSE-DPBM

Optimal mean squared error DPBM provides the facility to dynamically
change number of batches k and batch size m during the run-time of a sim-
ulation, as shown in Section 3.2.5. MSE-DPBM is implemented accordingly
to [28] with changes as introduced in Section 6.2.1. The estimators for m̂∗

3.9, sum of all correlations 3.10 and sum of all weighted correlations 3.11
assume that the sample size n and batch size m are large enough, see Sec-
tion 3.1 in [28]. When the simulation starts the sample size and batch size
are equal to n = 1 and m = 2h = 1 respectively, where h is number of
collapses. It can be seen that with first collapsing and calculation of m̂∗

the batch size and sample size are m = 2 and n = m × 2k respectively.
Therefore if user selects the memory size to be 1 (k = 1), m and n are not
”large enough” as m = 2 and n = 2. The estimation of V̂DPBM (m) occurs
every time the method for estimation m̂∗ is called. For implementation of
this method we use the same methods from Akaroa2 as in DPBM section
imp:dpbm. Additional variables that are included in MSE-DPBM:

• V̂B(m/2) = previousDPBM.

• m̂∗ = optimalBatchSize.

CHAPTER 6. EXPERIMENT DESIGN 43

• Checkpoint spacing is implemented in the same way as in DPBM.

Algorithm for MSE-DPBM, as implemented in Akaroa2, follows:

1. Start and initialize variables, n = 1, h = 0, m = 1, L(i) = 0, i =
(1, 2, ..., 8k), mj = 0, rj = 0, j = 1, 2, 3, 4.

2. Wait for observation xn from Akaroa2 simulation engine and start
processing it.

3. If current cell in vector A has room increase batch size m += 1 and
go to step 7, else go to step 4.

4. Does vector A has room i.e. r1 < 2k? If yes go to step 4.1, or go to
step 4.2.

4.1. Initialize m1 = 1 and set r1+ = 1 to point to the next cell. Go
to step 6.

4.2. If h = 0 go to 4.2.3, else go to 4.2.1.

4.2.1. Compute m̂∗, i.e. compute V̂B(m/2) [3.13], V̂DPBM (m) [3.7]

and estimate m̂∗ = (1.03n(γ̂1γ̂2)
2)

1
3 + 1 [3.9].

4.2.2. If m < m̂∗ go to step 4.2.4, else increase memory k += 1
and go to step 4.

4.2.3. Collapse the vectorsA andB and initialize values ofm1, m2, r1, r2

• B(i) = A(2i)+A(2i+1), i = 1, ..., g−1; B(k) = A(2k).

• A(i) = A(2i− 1) +A(2i), i = 1, ..., g.

• m1 = 1, m2 = 2h, r1 = k + 1, r2 = g.

• Go to step 5.

4.2.4. Collapse the vectors to D, C, B, A and initialize values of
m1, m2, m3, m4, r1, r2, r3, r4.

• D(i) = B(2i)+B(2i+1), i = 1, ..., k−1; D(k) = B(2k).

• C(i) = B(2i− 1) +B(2i), i = 1, ..., k.

• B(i) = A(2i)+A(2i+1), i = 1, ..., k−1; B(k) = A(2k).

• A(i) = A(2i− 1) +A(2i), i = 1, ..., k.

• m1 = 1, m2 = 2h, m3 = 2k + 2k−1, m4 = 2k−1.

• r1 = k + 1, r2 = k, r3 = k, r4 = k.

• Go to step 5.

5. Update h += 1 and m = 2h.

6. Initialize the sum stored in vector A1 = 0.

7. Add the new observations xn in the current cell in A, A(r1) += xn.

8. If number of collapsing h > 0 go to step 8.1, else go to step 9.

CHAPTER 6. EXPERIMENT DESIGN 44

8.1. If h = 1 go to step 8.2 else go to step 8.3.

8.2. If cell B(r2) has room (m2 < m), set m2 += 1, else set m2 =
1, r2 += 1, B(r2) = 0. Update B(r2) += xn. Go to step 9.

8.3. If cell B(r2) has room (m2 < m), set m2 += 1, else set m2 =
1, r2 += 1, B(r2) = 0. Update B(r2) += xn.

8.4. If cell C(r3) has room (m3 < m), set m3 += 1, else set m3 =
1, r3 += 1, C(r3) = 0. Update C(r3) += xn.

8.5. If cell D(r4) has room (m4 < m), set m4 += 1, else set m4 =
1, r4 += 1, D(r4) = 0. Update D(r4) += xn. Go to step 9.

9. Increase the sample size n += 1.

10. Call checkpointReached(), if checkpoint was reached go to step 11, else
go to step 2.

11. Calculate θ̂(n), σ2(θ̂(n)) and send these values to akmaster.

12. If stopping condition satisfied, stop simulation and present estimated
results, else go to step 2.

Flowchart B.1 and C++ code of the method can be found in Appedix B.

6.2.3 Modified MSE-DPBM

We have discussed the ”large enough” problem in the Section 6.2.2. In this
section we introduce the changes to the MSE-DPBM algorithm.

It seems unnecessary to calculate V̂B(m/2) every time that vector A has
become full to estimate the m̂∗, especially at the beginning of the simulation
when n and m are low. Our implementation does not use the estimation
of V̂B(m/2) to estimate the optimal batch size, rather we save the value
of current VDPBM (m) every time that estimation of m̂∗ occurs, when we
come to the next estimation the value of VDPBM (m) is available and can
be used as VB(m/2), we call this as VDPBM (m/2). In addition to that we
introduce a waiting period, a period when no estimation of m̂∗ occurs. This
period is present until the batch size is greater than 64, m > 64. In this
period we just collapse the vectors accordingly and compute VDPBM (m) to
be used in the first estimation of m̂∗ as VB(m/2). The value of m > 64
was selected on the basis that if memory size k = 1 is selected, we would
have at least 128 observations available for the calculation of CI, see Section
2.3 for the discussion of normal distribution. It has been shown in [28] that
VDPBM (m/2) and VB(m/2) are assymptotically equal even though VB(m/2)
is only 50 % OBM compared to 75 % OBM of VDPBM (m/2). The algorithm
is presented next:
Algorithm for modified version of MSE-DPBM:

CHAPTER 6. EXPERIMENT DESIGN 45

1. Start and initialize variables, n = 1, h = 0, m = 1, L(i) = 0, i =
(1, 2, ..., 8k), mj = 0, rj = 0, j = 1, 2, 3, 4.

2. Wait for observation xn from Akaroa2 simulation engine and start
processing it.

3. If current cell in vector A has room increase batch size m += 1 and
go to step 7, else go to next step.

4. Does vector A has room i.e. r1 < 2k? If yes go to step 4.1, or go to
step 4.2.

4.1. Initialize m1 = 1 and set r1+ = 1 to point to the next cell. Go
to step 6.

4.2. If h = 0 go to 4.2.4, else go to 4.2.1.

4.2.1. If m > 64 go to next step, else go to 4.2.5.

4.2.2. Compute m̂∗, i.e. use previous V̂DPBM (m/2) and V̂DPBM (m)

[3.7] and estimate m̂∗ = (1.03n(γ̂1γ̂2)
2)

1
3 + 1 [3.9].

4.2.3. If m < m̂∗ go to step 4.2.5, else increase memory k += 1 and
go to step 4.

4.2.4. Collapse the vectorsA andB and initialize values ofm1, m2, r1, r2

• B(i) = A(2i)+A(2i+1), i = 1, ..., g−1; B(k) = A(2k).

• A(i) = A(2i− 1) +A(2i), i = 1, ..., g.

• m1 = 1, m2 = 2h, r1 = k + 1, r2 = g.

• Go to step 5.

4.2.5. Collapse the vectors to D, C, B, A and initialize values of
m1, m2, m3, m4, r1, r2, r3, r4.

• D(i) = B(2i)+B(2i+1), i = 1, ..., k−1; D(k) = B(2k).

• C(i) = B(2i− 1) +B(2i), i = 1, ..., k.

• B(i) = A(2i)+A(2i+1), i = 1, ..., k−1; B(k) = A(2k).

• A(i) = A(2i− 1) +A(2i), i = 1, ..., k.

• m1 = 1, m2 = 2h, m3 = 2k + 2k−1, m4 = 2k−1.

• r1 = k + 1, r2 = k, r3 = k, r4 = k.

• Go to step 5.

5. Update h += 1 and m = 2h.

6. Initialize the sum stored in vector A1 = 0.

7. Add the new observations xn in the current cell in A, A(r1) += xn.

8. If number of collapsing h > 0 go to step 8.1, else go to step 9.

8.1. If h = 1 go to step 8.2 else go to step 8.3.

CHAPTER 6. EXPERIMENT DESIGN 46

8.2. If cell B(r2) has room (m2 < m), set m2 += 1, else set m2 =
1, r2 += 1, B(r2) = 0. Update B(r2) += xn. Go to step 9.

8.3. If cell B(r2) has room (m2 < m), set m2 += 1, else set m2 =
1, r2 += 1, B(r2) = 0. Update B(r2) += xn.

8.4. If cell C(r3) has room (m3 < m), set m3 += 1, else set m3 =
1, r3 += 1, C(r3) = 0. Update C(r3) += xn.

8.5. If cell D(r4) has room (m4 < m), set m4 += 1, else set m4 =
1, r4 += 1, D(r4) = 0. Update D(r4) += xn.

8.6. If m ≤ 64 save V̂DPBM (m/2) = VDPBM (m), and compute new
V̂DPBM (m), else go to step 9.

9. Increase the sample size n += 1.

10. Call checkpointReached(), if checkpoint was reached go to step 11, else
go to step 2.

11. Calculate θ̂(n), σ2(θ̂(n)) and send these values to akmaster.

12. If stopping condition satisfied, stop simulation and present estimated
results, else go to step 2.

See Section MSE-DPBM in Appendix C for the C++ code and flowchart of
this implementation.

Results

47

Chapter 7

Results

In this chapter we present results of the conducted experiments. First, we
introduce an experiment that tests the experimental average run length,
number of observation per independent coverage simulation, compared to
the theoretical average number of observations that are necessary to pro-
duce CIs with confidence level 1 − α = 0.95. Second experiment will in-
troduce the coverage analysis of all the models, we first test the DPBM
modification and select the one performing the best. Then we compare this
method to SA/HW and decide if one performs better than the other. In the
third experiment we compare the memory requirements of MSE-DPBM and
Mod. MSE-DPBM and show the requirements for SA/HW as a reference,
as well. Next section of Experiment 3 shows the average number of runs per
simulation model and method of output analysis, the comparison is done
to show the computational efficiency of such methods. In every experiment
we compare the two initial transient detection methods, 25 crossings and
Cumulative Means. This comparison is only done for a reference purposes,
as it was said in Section 4.2.2 we recommend using Cumulative Means as a
method of initial transient detection, as it detects longer transient periods
and is, therefore, safer to use [6].

7.1 Experiment 1: Average Run Length

In this experiment we are assessing the average run length L̄ of single sim-
ulation run, or number of observation, that has been collected during a
coverage analysis experiment of selected models under various loads. We
compare these experimental results to the theoretical results presented in
Table 7 in [17]. McNickle has calculated the theoretical average number
of observations, that is necessary to collect in order to obtain experimental
confidence level of 0.90 and 0.95 respectively. We are doing the analysis
for our implementation of DPBM, MSE-DPBM, Modified MSE-DPBM and
SA/HW and decide if these methods are usable for coverage analysis un-

48

CHAPTER 7. RESULTS 49

der Akaroa2. The analysis is done for values of load ρ, ρ = 0.5, 0.6, ...0.9,
as these are present for comparison in [17]. The selected models for the
comparison are M/M/1, M/D/1 and M/H2/1, models that have been the-
oretically evaluated by McNickle. Experiment results are going to tell us if
used method is suitable for using for coverage analysis and for analysing the
output of stochastic steady-state simulations. We have plotted the average
number, average run length, of observations necessary to construct a CI of
0.95 confidence level on the x-axis, the y-axis is the number of observations,
or length. As errors bars we have used the standard deviation of the length
σ(L̄). Refer to Tables E.2, E.3 and E.4 for exact results.

Figure 7.1: M/M/1’s average run length per simulation using 25 crossings
rule

CHAPTER 7. RESULTS 50

Figure 7.2: M/M/1’s average run length per simulation using Cumulative
Means

Figure 7.3: M/D/1’s average run length per simulation using 25 crossings
rule

CHAPTER 7. RESULTS 51

Figure 7.4: M/D/1’s average run length per simulation using Cumulative
Means

Figure 7.5: M/H2/1’s average run length per simulation using 25 crossings
rule

CHAPTER 7. RESULTS 52

Figure 7.6: M/H2/1’s average run length per simulation using Cumulative
Means

From the results you can see that all the SOAMs are stopping, in aver-
age, the simulation too early. Therefore, we are expecting the experimental
coverage to be lower than the preset theoretical level 1 − α = 0.95. On
the other hand, the number of observations per simulation and model/load
combination seems to be sufficiently close to the theoretical value and the
DPBM variations can be used for the coverage analysis. It can be seen that
SA/HW and Mod. MSE-DPBM are performing better in this experiment
and especially while simulating M/H2/1 model the difference is quite signif-
icant. The confidence intervals overlap for this experiment, therefore refer
to Tables E.2, E.3 and E.4 for exact results if you are interested more in the
actual values of σ(L̄).

Comparing the 25 crossings rule and Cumulative Means method, we can
see that they both do not affect the average simulation run length and are
equivalent.

7.2 Experiment 2: Coverage Analysis

This section introduces the results of experimental coverage analysis, as set
up in Section 5.7, for all of the SOAMs and models as described in Table
5.1. In all the graphs we have plotted the performance of DPBM variants
and SA/HW over range of correlation coefficient φ = 0.5, 0.6, ..., 0.95 for
the AR(1) process and traffic intensity ρ = 0.5, 0.6, ..., 0.95 for the queueing
processes. As error bars we have selected the absolute error Δz− 1

2
, this is

true unless otherwise stated.

CHAPTER 7. RESULTS 53

7.2.1 AR(1)

Figure 7.7: AR(1)’s coverage, using variants of DPBM and 25 crossings rule

Figure 7.8: AR(1)’s coverage, using variants of DPBM and Cumulative
Means

From the results in Figures 7.7 and 7.8 it can be seen that both DPBM
methods and MSE-DPBM method perform very poorly for higher value
of the correlation coefficient φ = 0.8, 0.9, 0.95. The MSE-DPBM has very
similar performance to DPBM (k = 15) and the two lines overlap. We
assume that the problem is in the estimation of optimal batch size m̂∗.

CHAPTER 7. RESULTS 54

The Mod. MSE-DPBM performs better than other DPBM variants and is
selected for comparison with SA/HW.

Figure 7.9: AR(1)’s coverage, SA/HW vs. Mod. MSE-DPBM using 25
crossings rule

Figure 7.10: AR(1)’s coverage, SA/HW vs. Mod. MSE-DPBM using Cu-
mulative Means

From the Figures 7.9 and 7.10 we conclude that SA/HW performs better
for higher values of the autocorrelation coefficient φ, where our main atten-
tion lies. The overestimation of CIs at φ = 0.95 of SA/HW is lower than

CHAPTER 7. RESULTS 55

the underestimation of Mod. MSE-DPBM, therefore, we recommend using
SA/HW based on the its quality of coverage by CI. On the other hand, both
methods sufficiently good and usable for the analysis of AR(1).

Figure 7.11: AR(1)’s run length using 25 crossings rule

Figure 7.12: AR(1)’s run length using Cumulative Means

Comparing the average run-length from Figures 7.11 and 7.12 we can
see that SA/HW and DPBM variants required, in average, similar number
of observations per one simulation experiment of coverage analysis. How-

CHAPTER 7. RESULTS 56

ever, we can see that SA/HW requires more observations at φ = 0.9. All
the DPBM variants require around 2000 to 4500 observations and SA/HW
requires little bit over 150000. Please note that the error bars here are the
standard deviations of the average length.

We don’t see any significant difference between using 25 crossings rule
and Cumulative Means methods of initial transition detection, however the
it can be seen from Table E.1 that by using Cumulative Means required
in average less observations than 25 crossings rule. For detailed results see
Table E.1.

7.2.2 M/M/1

Figure 7.13: M/M/1’s coverage, using variants of DPBM and 25 crossings
rule

CHAPTER 7. RESULTS 57

Figure 7.14: M/M/1’s coverage, using variants of DPBM and Cumulative
Means

From Figures 7.13 and 7.14 we can see that Mod. MSE-DPBM performs
the best out of the DPBM variants. The method of DPBM k = 50 performs
sufficiently well, however as mentioned in Section 6.2.1 the method cannot
be used for as an automated component of Akaroa2. We select the Mod.
MSE-DPBM to be compared with SA/HW as it performs the best and
especially for higher traffic intensities ρ = 0.9 and 0.95 the performance is
almost optimal.

Figure 7.15: M/M/1’s coverage, SA/HW vs. Mod. MSE-DPBM using 25
crossings rule

CHAPTER 7. RESULTS 58

Figure 7.16: M/M/1’s coverage, SA/HW vs. Mod. MSE-DPBM using
Cumulative Means

From the Figures 7.15 and 7.16 we see that Mod. MSE-DPBM performs
better for the whole range of traffic intensities ρ = 0.5, ..., 0.95. Run length
per simulation was compared in Experiment 1, please see Section 7.1. How-
ever, method of SA/HW is still a suitable method.

Comparing the 25 crossings rule with Cumulative Means, we can see
from Table E.2 that simulations with 25 crossings rule and SA/HW required
longer independent simulations in the lower ranges of ρ = 0.5, 0.6, 0.7. The
difference in average number of observations for DPBM variants is insignifi-
cant. However, using 25 crossings rule the coverage is closer to the required
level of 0.95.

For detailed results see Table E.2.

CHAPTER 7. RESULTS 59

7.2.3 M/D/1

Figure 7.17: M/D/1’s coverage, using variants of DPBM and 25 crossings
rule

Figure 7.18: M/D/1’s coverage, using variants of DPBM and Cumulative
Means

From Figures 7.17 and 7.18 we can see that Mod. MSE-DPBM performs
the best for higher loads of ρ but poorly for lower loads of ρ. However, as
our main focus lies in the higher loads, where the correlations are higher, we
select the Mod. MSE-DPBM for the comparison with SA/HW. The DPBM

CHAPTER 7. RESULTS 60

k = 15 performs very good in this scenario, however it cannot be used as an
automated method under Akaroa2 6.2.1.

Figure 7.19: M/D/1’s coverage, SA/HW vs. Mod. MSE-DPBM using 25
crossings rule

Figure 7.20: M/D/1’s coverage, SA/HW vs. Mod. MSE-DPBM using Cu-
mulative Means

Comparing the SA/HW and Mod. MSE-DPBM, see Figures 7.19 and
7.20, we can conclude that Mod. MSE-DPBM performs better overall than
SA/HW. Both SA/HW and Mod. MSE-DPBM, while using Cumulative

CHAPTER 7. RESULTS 61

Means, perform better for higher values of the traffic intensity ρ. Both
methods perform sufficiently well for usage as an output analysis method
of steady-state simulations. The average run lengths were compared in the
Experiment 1 7.1.

Comparing the 25 crossings rule and Cumulative Means methods of ini-
tial transient detection we can see that both methods do not affect the
quality of coverage highly, both methods here are, therefore, suitable.

7.2.4 M/H2/1

Figure 7.21: M/H2/1’s coverage, using variants of DPBM and 25 crossings
rule

CHAPTER 7. RESULTS 62

Figure 7.22: M/H2/1’s coverage, using variants of DPBM and Cumulative
Means

From the Figures 7.21 and 7.22 we can see that Mod. MSE-DPBM performs
the best out of the DPBM variants. And is very close to the theoretical
preset confidence level of 1− α = 0.95 for all the range of traffic intensities
ρ. Therefore we select the Mod. MSE-DPBM to compare with SA/HW.
All the other DPBM variants under-perform for the higher loads, especially
for ρ = 0.9 and 0.95. However, MSE-DPBM method here is usable. DPBM
with k = 15 and k = 50 are sufficiently good, but cannot be used as an
automated method.

CHAPTER 7. RESULTS 63

Figure 7.23: M/H2/1’s coverage, SA/HW vs. Mod. MSE-DPBM using 25
crossings rule

Figure 7.24: M/H2/1’s coverage, SA/HW vs. Mod. MSE-DPBM using
Cumulative Means

The Figure 7.23 and 7.24 show that Mod. MSE-DPBM performs better
than SA/HW for the whole range of traffic intensities, where SA/HW ap-
proaches experimental coverage of 0.93 and 0.92 for 25 crossings rule and
Cumulative means respectively. The Mod. MSE-DPBM keeps its experi-
mental coverage very close to the value of 0.95. Here we can conluded that
SA/HW and Mod. MSE-DPBM are both usable for simulation output anal-

CHAPTER 7. RESULTS 64

ysis of stochastic steady-state simulation. The run lengths were compared
in the Experiment 1 7.1.

Again we can see that while using the 25 crossings rule method of initial
transient detection the experimental coverage is slightly better than while
using Cumulative Means. For more details please refer to Table E.4.

7.2.5 Open Queueing Network

Figure 7.25: QNet’s coverage, using variants of DPBM and 25 crossings rule

CHAPTER 7. RESULTS 65

Figure 7.26: QNet’s coverage, using variants of DPBM Cumulative Means

From the Figures 7.25 and 7.26 we can see that Mod. MSE-DPBM performs
worse than all the other variants of DPBM. We, therefore, select the MSE-
DPBM for the comparison to SA/HW. However, all the variants of DPBM
perform sufficiently good, even Mod. MSE-DPBM’s experimental coverage
of 0̃.915 for ρ = 0.95 is still acceptable.

Figure 7.27: QNet’s coverage, SA/HW vs. Mod. MSE-DPBM using 25
crossings rule

CHAPTER 7. RESULTS 66

Figure 7.28: QNet’s coverage, SA/HW vs. Mod. MSE-DPBM using Cumu-
lative Means

The Figures 7.27 and 7.28 show that both methods of MSE-DPBM and
SA/HW perform sufficiently good and can be used for stochastic steady-
state simulations, where MSE-DPBM shows slightly better performance
than SA/HW for our scenario.

Figure 7.29: QNet Run length using 25 crossings rule

CHAPTER 7. RESULTS 67

Figure 7.30: QNet Run length using Cumulative Means

The Figures 7.29 and 7.30 show that SA/HW and MSE-DPBM have
longer average of number of observations per simulation. Which would make
us think that these two methods would perform better in means of their cov-
erage. This has shown true in the figures above.

Comparing the results from Figures 7.27 and 7.28 we can see that using
Cumulative Means produces better experimental coverage. For more results
please refer to Table E.5.

7.3 Experiment 3: Memory Requirements

In this experiment we show the memory requirements of MSE-DPBM, Mod.
MSE-DPBM and SA/HW. We do not consider both DPBM versions for this
experiment. The values are here for reference purposes only, as DPBMmeth-
ods and SA/HW are not directly comparable. The methods based on batch
means work better with more observations per batch as the observations xn
in a batch become more independent and the independence is more impor-
tant than a correlation between batches, see Section 3.2.3. SA/HW uses
batches just to save memory as it stores only the sums of the observations
xn 3.2.6. The checkpoint spacing for DPBM based methods is different than
the one for SA/HW. The batch size m and number of batches k are shown
here. The optimal batch size m̂∗ is not shown in the graphs in order to keep
them clean and will be discussed separately for each model, for results of
m̂∗ please refer to Table E.6. For all the models, the optimal batch size m̂∗
performs in a similar manner, once the current batch size m approaches the

CHAPTER 7. RESULTS 68

m̂∗ the m̂∗ increases and until m reaches to it again, the number of batches
is increasing.

7.3.1 AR(1)

Figure 7.31: Average batch sizes recorded during the coverage experiment
of AR(1) model

Figure 7.32: Average number of batches recorded during the coverage ex-
periment

CHAPTER 7. RESULTS 69

From the Figures 7.31 and 7.32 we see that SA/HW requires more and
bigger batches in average than MSE-DPBM and Mod. MSE-DPBM. This
is consistent with the results of coverage analysis, where SA/HW performed
considerably better than DPBM methods, except the Mod. MSE-DPBM.
Using method of Cumulative Means for the transient detection seems to
require more observations per batch than 25 crossings rule, while keeping the
number of batches essentially the same. From this experiment we conclude
that using Mod. MSE-DPBM, out of the DPBM variants, with 25 crossings
rule is the best option. SA/HW requires much bigger number of observations
to produce essentially equal coverage as Mod. MSE-DPBM.

7.3.2 M/M/1

Figure 7.33: Average batch sizes recorded during the coverage experiment
of M/M/1 model

CHAPTER 7. RESULTS 70

Figure 7.34: Average number of batches recorded during the coverage ex-
periment of M/M/1 model

The Figures 7.33 and 7.34 show that Mod. MSE-DPBM requires lower
amount of observations than MSE-DPBM, while keeping the number of
batches essentially the same. This is consistent with the results of the cov-
erage analysis experiment. However, using Cumulative Means here seems
to require less observations to produce the final CIs. We recommend us-
ing either SA/HW with both methods of initial transient detection. Mod.
MSE-DPBM with 25 crossings rule can be used instead of SA/HW, where
SA/HW requires negligibly more observations, in average.

CHAPTER 7. RESULTS 71

7.3.3 M/D/1

Figure 7.35: Average batch sizes recorded during the coverage experiment
of M/D/1 model

Figure 7.36: Average number of batches recorded during the coverage ex-
periment of M/D/1 model

Figures 7.35 and 7.36 show same behaviour as the M/M/1 model.

CHAPTER 7. RESULTS 72

7.3.4 M/H2/1

Figure 7.37: Average batch sizes recorded during the coverage experiment
of M/H2/1 model

Figure 7.38: Average number of batches recorded during the coverage ex-
periment of M/H2/1 model

Figures 7.37 and 7.38 show same behaviour as the M/M/1 and M/D/1
model, except that Mod. MSE-DPBM with Cumulative Means requires on
average more batches than all of the other DPBM implementations, while

CHAPTER 7. RESULTS 73

keeping the batch size equal to the one with using 25 crossings rule. We
recommend using Mod. MSE-DPBM with 25 crossings rule or SA/HW as
has been shown in coverage analysis experiment 7.2.

7.3.5 Queueing Network

Figure 7.39: Average batch sizes recorded during the coverage experiment
of queueing network model

Figure 7.40: Average number of batches recorded during the coverage ex-
periment of queueing network model

CHAPTER 7. RESULTS 74

Figures 7.39 and 7.40 we can see that using Cumulative Means or 25 cross-
ings rule as a method of initial transient detection is equally good. However,
as we have seen in Experiment 2 7.2 MSE-DPBM performs the best in terms
of coverage analysis, but from the results here we can see that it requires
more observations than Mod. MSE-DPBM, therefore we recommend us-
ing the Mod. MSE-DPBM, as its experimental coverage is almost equal to
the one of MSE-DPBM. As in the previous experiments, SA/HW is recom-
mended to use, as well.

7.4 Average Number of Runs

In this experiment we show the number of runs that that are required to
produce the final experimental coverage per each model. We compare the 25
crossings rule and Cumulative Means methods of initial transient detection,
as well.

From the Figure 7.41 we can see that Mod. MSE-DPBM needed the least
amount of runs to produce the final coverage results. Besides that SA/HW
required equal number of runs up until φ = 0.95, where it almost doubled
the amount of Mod. MSE-DPBM. MSE-DPBM produced high number of
runs, which did not cover the true mean in more than half cases 7.2. Us-
ing Cumulative Means reduces the number of runs highly, especially for the
lower levels of φ. At the higher level of φ, φ = 0.9, 0.95 the two methods
produces essentially the same number of runs.

For models of M/M/1 (Figure 7.42), M/D/1 (Figure 7.43) and M/H2/1
(Figure 7.44) the method of Cumulative Means shows better performance,
as by using this method of initial transient we can see the coverage analy-
sis required significantly less independent runs. SA/HW required less runs
for the whole range of traffic intensities ρ than both of the MSE-DPBM
methods. Mod. MSE-DPBM required the most independent coverage ex-
periments for all three models, however produced the best final coverage 7.2.

For the queueing network model, using the cumulative means method
seem to require more independent runs for each method. The method of
SA/HW here requires significantly more runs than the MSE-DPBM meth-
ods.

CHAPTER 7. RESULTS 75

Figure 7.41: The number of runs required for the coverage experiment of
AR(1)

Figure 7.42: The number of runs required for the coverage experiment of
M/M/1

CHAPTER 7. RESULTS 76

Figure 7.43: The number of runs required for the coverage experiment of
M/D/1

Figure 7.44: The number of runs required for the coverage experiment of
M/H2/1

CHAPTER 7. RESULTS 77

Figure 7.45: The number of runs required for the coverage experiment of
queueing network

For more results accurate please refer to Tables E.1, E.2, E.3, E.4 and E.5

Chapter 8

Conclusions

From the research experiments we conclude that, first, the methods of
DPBM and MSE-DPBM are implementable as components of Akaroa2 and
can be, possibly, used as output analysis methods of sequential steady-state
simulations. Secondly, the method of MSE-DPBM can be modified in or-
der to perform better than MSE-DPBM in terms of experimental coverage
analysis. The results of experimental coverage analysis show that DPBM
and MSE-DPBM cannot be used in sequential stochastic steady-state simu-
lations, as they perform badly for auto-regressive model and their coverage
drops to 0.47 at φ = 0.95 value of correlation coefficient of such process, how-
ever perform sufficiently well for the other 4 models (queueing models). On
top of that, DPBM cannot be used as an automated method as its number of
batches is fixed a priory of the simulation run. The Modified MSE-DPBM
performs better than the other DPBM variants and also slightly better in
terms of sequential experimental coverage analysis than SA/HW using a
single processor scenario of MRIP. However, as it was shown in [22], in-
troducing more simulations engines SA/HW improves in terms of coverage,
where the batch means method does not. If we use multiple processor sce-
nario of MRIP, as low as 4 independent replications of a simulation at one
time, we inject an artificial independence for to SA/HW method, which by
its nature works with correlated data and such independence improves its
coverage quality. Where for batch means methods, which assume indepen-
dence in their nature, introducing more simulation engines does not improve
their performance.

We conclude that both methods, Mod. MSE-DPBM and SA/HW, are
sufficiently good to be used for sequential stochastic steady-state simula-
tions. But, we recommend to use the method of SA/HW as it requires, in
average, less independent simulation runs to produce the final confidence
intervals for coverage analysis. Therefore, is more stable method than Mod.
MSE-DPBM, which produces more short “rejected” runs. We also compare

78

CHAPTER 8. CONCLUSIONS 79

the two methods of initial transient detection, namely 25 crossings rule and
Cumulative Means. The results do not differ much and the results confirm
the results found in [6] by Freeth. As we focus only on steady-state analysis
of such processes we propose to use the method of Cumulative Means, as it
gives much longer length of initial transient and is, therefore, safer to use
for steady-state analysis. We also conclude that a method of detecting the
length of the initial transient does not have much influence on the coverage
or the run-length of a simulation. That also flows from the results shown by
McNickle in [17], where it was shown that for longer simulations the trun-
cation of observations does not have much influence on the final estimated
values, only prevents the simulation of stopping too early.

From our results we can conclude that one should use SA/HW as imple-
mented in Akaroa2 [16].

8.1 Answers to Research Questions

In this section we present the answers to our research questions, that have
been asked in the Introduction section.

1 - Are DPBM and MSE-DPBM implementable as a tool for
steady-state simulation under Akaroa2?

Yes, they are with few minor modifications. These include functions of
Akaroa2 such as CheckpointReached(), GetCheckpoint(Checkpoint &cp)
and ProcessObservation(real value). By including these methods and mi-
nor modifications to the algorithm of the methods the implementation as a
component of Akaroa2 is possible. Checkpoint spacing has to be introduced
to a artificial value. We have decided to send values to akmaster for analy-
sis of stopping condition every time that full batch has been recorded after
collapsing has occurred at least once.

For detailed results please refer to Sections 6.2.1 and 6.2.2.

2 - Can MSE-DPBM be improved as a method of simulation out-
put analysis?

Yes, with few modifications. We have decided not to include the estimation
of previous variance V̂B(m/2) every time that estimation of optimal batch
size m̂∗ occurs. Rather we save current value of V̂DPBM(m), that can
be used later for the estimation as V̂B(m/2) and computational time can
be saved. Also we have included a waiting period, as the formulas for the
estimation of optimal batch size assume that n and m are large enough,

CHAPTER 8. CONCLUSIONS 80

to start estimation only after minimal number of observations has been
collected, m > 64.
Please refer to Section 6.2.3 for details.

3 - Which of the variants of DPBM perform the best in terms of
coverage analysis?

The Modified MSE-DPBM method performs better than the MSE-DPBM
in 4 out of 5 experiment scenarios for coverage analysis. MSE-DPBM is
better only at scenario simulating the open queueing network.

4 - Are the DPBM variants accurate as an automated data analysis
method in steady-state simulations?

No, not all of them. The DPBM methods cannot be used as an automated
methods, due to their fixed memory. MSE-DPBM is accurate for the queue-
ing models, but performs badly for AR(1) model. Modified MSE-DPBM is
accurate for all of our tested scenarios.
Please refer to Section 7.2.

5 - Does a variant of DPBM perform better than Spectral Analysis
in terms of coverage analysis?

No. The Modified MSE-DBPM performs better for the single processor
MRIP scenario, where SA/HW performs almost equally. By introducing
the multiple processor scenario of MRIP we assume that the methods would
be performing essentially equal. Mod. MSE-DPBM, however, shows less
stability as more runs were rejected as “too short” than while using SA/HW.
Please refer to Section 7.2 and 7.3.

6 - Is Schruben’s test better than Cumulative Means as a method
of initial transient detection?

No, using the 25 crossings rule (please refer to Section 4.2.1 method of ini-
tial transient showed that, for 4 out of 5 (AR(1), M/M/1, M/D/1, M/H2/1)
of our reference models, it reduces the difference between theoretical confi-
dence level 1−α and the experimental coverage. Using Cumulative Means,
however, shows reduction in the amount of independent simulation runs for
4 out of 5 of models, especially for higher values of ρ and φ where the cor-
relations are strong.

However, as we focus on steady-state analysis we recommend using
method of Cumulative Means as it shows better performance in the most
complex of our simulated models, the open queueing network. Therefore,

CHAPTER 8. CONCLUSIONS 81

user can be safer that the initial transient has passed when the estimation
phase starts.

8.2 Future Work

In future we would like to analyse the experimental coverage of a method
developed by Alexopoulos et al. called ”A sequential procedure for estimat-
ing the steady-state mean using standardized time series” [1]. The authors
claim the methods is simpler than methods of batch means and can produce
comparable quality of CIs.

Secondly, we would like to analyse why SA/HW required as many runs
for φ = 0.90 of AR(1) process, refer to Figures 7.11 and 7.11.

Thirdly, we would like perform coverage analysis under multiprocessor
scenario of MRIP.

Bibliography

[1] C. Alexopoulos, D. Goldsman, Peng Tang, and J.R. Wilson. A sequen-
tial procedure for estimating the steady-state mean using standardized
time series. In Simulation Conference (WSC), 2013 Winter, pages 613–
622, Dec 2013.

[2] Richard W Conway. Some tactical problems in digital simulation. Man-
agement Science, 10(1):47–61, 1963.

[3] G Ewing, D McNickle, and K Pawlikowski. Spectral analysis for confi-
dence interval estimation under multiple replications in parallel. In Pro-
ceedings of the 14th European Simulation Symposium, Dresden, pages
52–61, 2002.

[4] G Ewing and K Pawlikowski. Akaroa ii version 2.4. 2 user’s manual.
Technical report, Department of Computer Science, University of Can-
terbury, 1997.

[5] Greg Ewing, Krzysztof Pawlikowski, and Don McNickle. Akaroa-2: Ex-
ploiting network computing by distributing stochastic simulation. SCSI
Press, 1999.

[6] Adam Freeth. Honours Report: A Sequential Steady-State Detection
Method for Quantitative Discrete-Event Simulation. Department of
Computer Science and Software Engineering, University of Canterbury,
Christchurch, New Zealand, 2012.

[7] James Douglas Hamilton. Time series analysis, volume 2. Princeton
university press Princeton, 1994.

[8] Philip Heidelberger and Peter D Welch. Adaptive spectral methods for
simulation output analysis. IBM Journal of Research and Development,
25(6):860–876, 1981.

[9] Philip Heidelberger and Peter D Welch. A spectral method for confi-
dence interval generation and run length control in simulations. Com-
munications of the ACM, 24(4):233–245, 1981.

82

BIBLIOGRAPHY 83

[10] Philip Heidelberger and Peter D. Welch. Simulation run length control
in the presence of an initial transient. Operations Research, 31(6):1109–
1144, 1983.

[11] Peter Hellekalek. Good random number generators are (not so) easy to
find. Mathematics and Computers in Simulation, 46(5):485–505, 1998.

[12] Leonard Kleinrock. Queueing systems, volume I: Theory. Wiley Inter-
science, 1975.

[13] Averill M. Law. Simulation Modeling & Analysis 4th Edition. McGraw-
Hill Science, New York, 2006.

[14] Averill M. Law and W. David Kelton. Confidence intervals for steady-
state simulations: I. a survey of fixed sample size procedures. Opera-
tions Research, 32(6):1221–1239, 1984.

[15] Pierre L’Ecuyer. Combined multiple recursive random number genera-
tors. Operations Research, 44(5):816–822, 1996.

[16] Don McNickle, Gregory Ewing, and Krzysztof Pawlikowski. Refining
spectral analysis for confidence interval estimation in sequential simu-
lation. Proceedings of the ESS, Budapest, pages 99–103, 2004.

[17] Don McNickle, Gregory C. Ewing, and Krzysztof Pawlikowski. Some
effects of transient deletion on sequential steady-state simulation. Sim-
ulation Modelling Practice and Theory, 18(2):177–189, 2010.

[18] Don McNickle, Krzysztof Pawlikowski, and Greg Ewing. Akaroa2: A
controller of discrete-event simulation which exploits the distributed
computing resources of networks. In Proceedings 24th European Con-
ference on Modelling and Simulation (ECMS 2010), pages 104–109,
2010.

[19] Marc S Meketon and Bruce Schmeiser. Overlapping batch means:
Something for nothing? In Proceedings of the 16th conference on Win-
ter simulation, pages 226–230. IEEE Press, 1984.

[20] Krzysztof Pawlikowski. Steady-state simulation of queueing processes:
survey of problems and solutions. ACM Computing Surveys (CSUR),
22(2):123–170, 1990.

[21] Krzysztof Pawlikowski, H-DJ Jeong, and J-SR Lee. On credibility of
simulation studies of telecommunication networks. Communications
Magazine, IEEE, 40(1):132–139, 2002.

[22] Krzysztof Pawlikowski, Donald C McNickle, and Gregory Ewing. Cov-
erage of confidence intervals in sequential steady-state simulation. Sim-
ulation Practice and Theory, 6(3):255–267, 1998.

BIBLIOGRAPHY 84

[23] Krzysztof Pawlikowski, Victor WC Yau, and Don McNickle. Dis-
tributed stochastic discrete-event simulation in parallel time streams.
In Proceedings of the 26th conference on Winter simulation, pages 723–
730. Society for Computer Simulation International, 1994.

[24] Joseph William Schmidt and Robert Edward Taylor. Simulation and
analysis of industrial systems. RD Irwin, 1970.

[25] Marcus Schoo, Krzysztof Pawlikowski, and Donald C McNickle. A
survey and empirical comparison of modern pseudo-random number
generators for distributed stochastic simulations. Technical report, De-
partment of Computer Science and Software Development, University
of Canterbury, 2005.

[26] Wheyming T Song and Mingchang Chih. Extended dynamic partial-
overlapping batch means estimators for steady-state simulations. Eu-
ropean Journal of Operational Research, 203(3):640–651, 2010.

[27] Wheyming Tina Song. A finite-memory algorithm for estimating the
variance of the sample mean. IIE Transactions, 39(7):703–711, 2007.

[28] Wheyming Tina Song and Mingchang Chih. Run length not required:
Optimal-mse dynamic batch means estimators for steady-state simula-
tions. European Journal of Operational Research, 229(1):114–123, 2013.

[29] Peter D Welch. On the relationship between batch means, overlapping
means and spectral estimation. In Proceedings of the 19th conference
on Winter simulation, pages 320–323. ACM, 1987.

[30] Yingchieh Yeh and Bruce Schmeiser. Simulation output analysis via dy-
namic batch means. In Proceedings of the 32nd conference on Winter
simulation, pages 637–645. Society for Computer Simulation Interna-
tional, 2000.

Appendices

85

Appendix A

DPBM

1 /* Modification of DPBM as implemented in Song 2010 */

2
3 #include <iostream>

4 #include <stdio.h>

5 #include <stdlib.h>

6 #include <vector>

7 #include <cmath>

8
9 //include the header file

10 #include "dpbm_variance_estimator.H"

11 #include "environment.H"

12 #include "checkpoint.H"

13 #include "akaroa/ak_message.H"

14
15 int checkpointPointer = 0;

16
17 DefineVarianceEstimatorType("DPBM", DynamicBMVarianceEstimator)

18
19 DynamicBMVarianceEstimator::DynamicBMVarianceEstimator(Environment *env,

long trans){

20 InitializeMethodVariables();

21 InitializeMethodVectors();

22 }

23
24 DynamicBMVarianceEstimator::~DynamicBMVarianceEstimator(){

25 //destructor

26 }

27
28 void DynamicBMVarianceEstimator::

29 ProcessObservation(real value)

30 {

31 StartProcessingObservation(value);

32 }

33
34 boolean DynamicBMVarianceEstimator::ReachedCheckpoint(){

35 if((checkpointPointer == 1) && (m1 == batchSize)){

36 ComputeEstimatorDPBM();

86

APPENDIX A. DPBM 87

Figure A.1: DPBM Algorithm as implemented in Akaroa2

37 return true;

38 } else {

APPENDIX A. DPBM 88

39 return false;

40 }

41
42 }

43
44 boolean DynamicBMVarianceEstimator::GetCheckpoint(Checkpoint &cp){

45 cp.df = 0;

46 cp.mean = mean;

47 cp.variance = estimatorDPBM;

48 return true;

49 }

50
51 void DynamicBMVarianceEstimator::InitializeMethodVariables(){

52 currentSampleSizeN = 1;

53 numberOfCollapsesOccured = 0;

54 batchSize = pow(2, numberOfCollapsesOccured);

55 m1 = 0, m2 = 0, m3 = 0, m4 = 0;

56 r1 = 0, r2 = 0, r3 = 0, r4 = 0;

57 memorySize = 15;

58 return;

59 }

60
61 void DynamicBMVarianceEstimator::InitializeMethodVectors(){

62 for(int i = 0; i < (2*memorySize); i++){

63 observationVectorA.push_back(0.00);

64 observationVectorB.push_back(0.00);

65 observationVectorC.push_back(0.00);

66 observationVectorD.push_back(0.00);

67 }

68 return;

69 }

70
71 void DynamicBMVarianceEstimator::StartProcessingObservation(real value){

72 if(m1 < batchSize){

73 m1 += 1;

74 AddObservation(value);

75 EndObservation(value);

76 return;

77 } else {

78 m1 = 1;

79 VectorHasRoom(value);

80 return;

81 }

82 }

83
84 void DynamicBMVarianceEstimator::VectorHasRoom(real value){

85 if(r1 < ((2*memorySize)-1)){

86 IncreasePointer();

87 SetCurrentCell();

88 AddObservation(value);

89 EndObservation(value);

90 return;

91 } else {

92 if(numberOfCollapsesOccured == 0){

APPENDIX A. DPBM 89

93 CollapseVectorB();

94 CollapseVectorA();

95 InitializeData();

96 UpdateKandM();

97 SetCurrentCell();

98 AddObservation(value);

99 EndObservation(value);

100 return;

101 } else {

102 CollapseVectorD();

103 CollapseVectorC();

104 CollapseVectorB();

105 CollapseVectorA();

106 checkpointPointer = 1;

107 InitializeData();

108 UpdateKandM();

109 SetCurrentCell();

110 AddObservation(value);

111 EndObservation(value);

112 return;

113 }

114 }

115 }

116
117 void DynamicBMVarianceEstimator::InitializeData(){

118 if(numberOfCollapsesOccured == 0){

119 m1 = 1;

120 m2 = pow(2, numberOfCollapsesOccured);

121 r1 = memorySize;

122 r2 = memorySize - 1;

123 return;

124 } else {

125 m1 = 1;

126 m2 = pow(2, numberOfCollapsesOccured);

127 m3 = pow(2, numberOfCollapsesOccured) + pow(2, (

numberOfCollapsesOccured -1));

128 m4 = pow(2, (numberOfCollapsesOccured - 1));

129 r1 = memorySize;

130 r2 = memorySize - 1;

131 r3 = memorySize - 1;

132 r4 = memorySize - 1;

133 return;

134 }

135 }

136
137 void DynamicBMVarianceEstimator::UpdateKandM(){

138 numberOfCollapsesOccured += 1;

139 batchSize = pow(2,numberOfCollapsesOccured);

140 return;

141 }

142
143 void DynamicBMVarianceEstimator::SetCurrentCell(){

144 observationVectorA[r1] = 0;

145 return;

APPENDIX A. DPBM 90

146 }

147
148 void DynamicBMVarianceEstimator::CollapseVectorD(){

149 for(int i = 1; i <= (memorySize-1); i++){

150 observationVectorD[i-1] = observationVectorB[(2*i)-1] +

observationVectorB[2*i];

151 }

152 observationVectorD[memorySize-1] = observationVectorB[(2*memorySize)-1];

153 m4 = m2;

154 return;

155 }

156
157 void DynamicBMVarianceEstimator::CollapseVectorC(){

158 for(int i = 1; i <= (memorySize);i++){

159 observationVectorC[i-1] = (observationVectorB[(2*i)-2] +

observationVectorB[(2*i)-1]);

160 }

161 m3 = m2 * pow(2, numberOfCollapsesOccured);

162 return;

163 }

164
165 void DynamicBMVarianceEstimator::CollapseVectorB(){

166 for(int i = 1; i <= (memorySize-1); i++){

167 observationVectorB[i-1] = observationVectorA[(2*i)-1] +

observationVectorA[2*i];

168 }

169 observationVectorB[memorySize-1] = observationVectorA[(2*memorySize)-1];

170 return;

171 }

172
173 void DynamicBMVarianceEstimator::CollapseVectorA(){

174 for(int i = 1; i <= (memorySize);i++){

175 observationVectorA[i-1] = (observationVectorA[(2*i)-2] +

observationVectorA[(2*i)-1]);

176 }

177 return;

178 }

179
180 void DynamicBMVarianceEstimator::IncreasePointer(){

181 m1 = 1;

182 r1 += 1;

183 return;

184 }

185
186 void DynamicBMVarianceEstimator::EndObservation(real value){

187 if(numberOfCollapsesOccured == 1 && numberOfCollapsesOccured > 0){

188 UpdateB(value);

189 }else if(numberOfCollapsesOccured > 1){

190 UpdateD(value);

191 UpdateC(value);

192 UpdateB(value);

193 }

194 currentSampleSizeN += 1;

195 return;

APPENDIX A. DPBM 91

196 }

197
198 void DynamicBMVarianceEstimator::UpdateB(real value){

199 if(m2 < batchSize){

200 m2 += 1;

201 } else {

202 m2 = 1;

203 r2 += 1;

204 observationVectorB[r2] = 0;

205 }

206 observationVectorB[r2] += value;

207 return;

208 }

209
210 void DynamicBMVarianceEstimator::UpdateC(real value){

211 if(m3 < batchSize){

212 m3 += 1;

213 } else {

214 m3 = 1;

215 r3 += 1;

216 observationVectorC[r3] = 0;

217 }

218 observationVectorC[r3] += value;

219 return;

220 }

221
222 void DynamicBMVarianceEstimator::UpdateD(real value){

223 if(m4 < batchSize){

224 m4 += 1;

225 } else {

226 m4 = 1;

227 r4 += 1;

228 observationVectorD[r4] = 0;

229 }

230 observationVectorD[r4] += value;

231 return;

232 }

233
234 void DynamicBMVarianceEstimator::AddObservation(real value){

235 observationVectorA[r1] += value;

236 return;

237 }

238
239 void DynamicBMVarianceEstimator::ComputeMean(int b1){

240 mean = 0;

241 for(int i = 0; i < b1; i++){

242 mean += (observationVectorA[i]);

243 }

244 mean = (mean/double(currentSampleSizeN));

245 return;

246 }

247
248 void DynamicBMVarianceEstimator::ComputeEstimatorDPBM(){

249 int b1 = int(r1 + floor(double(m1/batchSize)));

APPENDIX A. DPBM 92

250 int b2 = int(r2 + floor(double(m2/batchSize)));

251 int b3 = int(r3 + floor(double(m3/batchSize)));

252 int b4 = int(r4 + floor(double(m4/batchSize)));

253 ComputeMean(b1);

254 estimatorDPBM = 0;

255 double s = double(batchSize/4);

256 int b = int(floor(double((currentSampleSizeN-batchSize+s)/s)));

257 double db = double(b*(double((currentSampleSizeN/batchSize)-1)));

258 real sumA = 0, sumB = 0, sumC = 0, sumD = 0, calculation = 0;

259 for(int i = 0; i < b1; i++){

260 calculation = pow(double((observationVectorA[i]/double(batchSize))-

mean),2);

261 sumA += calculation;

262 calculation = 0;

263 }

264 for(int i = 0; i < b2; i++){

265 calculation = pow(double((observationVectorB[i]/double(batchSize))-

mean),2);

266 sumB += calculation;

267 calculation = 0;

268 }

269 for(int i = 0; i < b3; i++){

270 calculation = pow(double((observationVectorC[i]/double(batchSize))-

mean),2);

271 sumC += calculation;

272 calculation = 0;

273 }

274 for(int i = 0; i < b4; i++){

275 calculation = pow(double((observationVectorD[i]/double(batchSize))-

mean),2);

276 sumD += calculation;

277 calculation = 0;

278 }

279 estimatorDPBM = double((1/db)*double(sumA + sumB + sumC + sumD));

280 sumA = 0, sumB = 0, sumC = 0, sumD = 0;

281 return;

282 }

283
284 /* Debug tool */

285 void DynamicBMVarianceEstimator::PrintValuesInVectors(){

286 for(int i = 0; i < observationVectorA.size(); i++){

287 fprintf(stderr,"value�in�A[%d]:�%f�\n", i,observationVectorA[i]);

288 }

289 for(int i = 0; i < observationVectorB.size(); i++){

290 fprintf(stderr,"value�in�B[%d]:�%f�\n", i,observationVectorB[i]);

291 }

292 for(int i = 0; i < observationVectorC.size(); i++){

293 fprintf(stderr,"value�in�C[%d]:�%f�\n", i,observationVectorC[i]);

294 }

295 for(int i = 0; i < observationVectorD.size(); i++){

296 fprintf(stderr,"value�in�D[%d]:�%f�\n", i,observationVectorD[i]);

297 }

298 return;

299 }

Appendix B

MSE-DPBM

1 /* Variance estimator based on DPBM by Song */

2
3 #include <iostream>

4 #include <stdio.h>

5 #include <stdlib.h>

6 #include <vector>

7 #include <cmath>

8
9 //include the header file

10 #include "dpbm_variance_estimator.H"

11 #include "environment.H"

12 #include "checkpoint.H"

13 #include "akaroa/ak_message.H"

14 #include "akaroa.H"

15
16 int checkpointPointer = 0;

17
18 DefineVarianceEstimatorType("DPBM", DynamicBMVarianceEstimator)

19
20 DynamicBMVarianceEstimator::DynamicBMVarianceEstimator(Environment *env,

long trans){

21 InitializeMethodVariables();

22 InitializeMethodVectors();

23 }

24
25 DynamicBMVarianceEstimator::~DynamicBMVarianceEstimator(){

26 //destructor

27 }

28
29 void DynamicBMVarianceEstimator::

30 ProcessObservation(real value)

31 {

32 StartProcessingObservation(value);

33 }

34
35 boolean DynamicBMVarianceEstimator::ReachedCheckpoint(){

36 if((checkpointPointer == 1) && (m1 == batchSize)){

93

APPENDIX B. MSE-DPBM 94

Figure B.1: MSE-DPBM Algorithm as implemented in Akaroa2

37 ComputeEstimatorDPBM();

38 return true;

APPENDIX B. MSE-DPBM 95

39 } else {

40 return false;

41 }

42 return false;

43 }

44
45 boolean DynamicBMVarianceEstimator::GetCheckpoint(Checkpoint &cp){

46 cp.df = 0;

47 cp.mean = mean;

48 cp.variance = estimatorDPBM;

49 return true;

50 }

51
52 void DynamicBMVarianceEstimator::InitializeMethodVariables(){

53 currentSampleSizeN = 1;

54 numberOfCollapsesOccured = 0;

55 batchSize = pow(2, numberOfCollapsesOccured);

56 m1 = 0, m2 = 0, m3 = 0, m4 = 0;

57 r1 = 0, r2 = 0, r3 = 0, r4 = 0;

58 memorySize = 15;

59 estimatorDPBM = 0;

60 previousDPBM = 0;

61 optimalBatchSize = 0;

62 previousMemorySize = 0;

63 return;

64 }

65
66 void DynamicBMVarianceEstimator::InitializeMethodVectors(){

67 for(int i = previousMemorySize; i < (2*memorySize); i++){

68 observationVectorA.push_back(0.00);

69 observationVectorB.push_back(0.00);

70 observationVectorC.push_back(0.00);

71 observationVectorD.push_back(0.00);

72 }

73 return;

74 }

75
76 void DynamicBMVarianceEstimator::StartProcessingObservation(real value){

77 if(m1 < batchSize){

78 m1 += 1;

79 AddObservation(value);

80 EndObservation(value);

81 return;

82 } else {

83 VectorHasRoom(value);

84 return;

85 }

86 }

87
88 void DynamicBMVarianceEstimator::VectorHasRoom(real value){

89 if(r1 < ((2*memorySize)-1)){

90 IncreasePointer();

91 SetCurrentCell();

92 AddObservation(value);

APPENDIX B. MSE-DPBM 96

93 EndObservation(value);

94 return;

95 } else {

96 if(numberOfCollapsesOccured == 0){

97 CollapseVectorB();

98 CollapseVectorA();

99 InitializeData();

100 UpdateKandM();

101 SetCurrentCell();

102 AddObservation(value);

103 EndObservation(value);

104 return;

105 } else {

106 ComputeOptimalBatchSize();

107 checkpointPointer = 1;

108 if(batchSize < optimalBatchSize){

109 CollapseVectorD();

110 CollapseVectorC();

111 CollapseVectorB();

112 CollapseVectorA();

113 InitializeData();

114 UpdateKandM();

115 SetCurrentCell();

116 AddObservation(value);

117 EndObservation(value);

118 return;

119 } else {

120 previousMemorySize = 2*memorySize;

121 memorySize += 1;

122 InitializeMethodVectors();

123 VectorHasRoom(value);

124 }

125 }

126 }

127 }

128
129 void DynamicBMVarianceEstimator::InitializeData(){

130 if(numberOfCollapsesOccured == 0){

131 m1 = 1;

132 m2 = pow(2, numberOfCollapsesOccured);

133 r1 = memorySize;

134 r2 = memorySize - 1;

135 return;

136 } else {

137 m1 = 1;

138 m2 = pow(2, numberOfCollapsesOccured);

139 m3 = pow(2, numberOfCollapsesOccured) + pow(2, (

numberOfCollapsesOccured - 1));

140 m4 = pow(2, (numberOfCollapsesOccured - 1));

141 r1 = memorySize;

142 r2 = memorySize - 1;

143 r3 = memorySize - 1;

144 r4 = memorySize - 1;

145 return;

APPENDIX B. MSE-DPBM 97

146 }

147 }

148
149 void DynamicBMVarianceEstimator::UpdateKandM(){

150 numberOfCollapsesOccured += 1;

151 batchSize = pow(2,numberOfCollapsesOccured);

152 return;

153 }

154
155 void DynamicBMVarianceEstimator::SetCurrentCell(){

156 observationVectorA[r1] = 0;

157 return;

158 }

159
160 void DynamicBMVarianceEstimator::CollapseVectorD(){

161 for(int i = 1; i <= (memorySize-1); i++){

162 observationVectorD[i-1] = observationVectorB[(2*i)-1] +

observationVectorB[2*i];

163 }

164 observationVectorD[memorySize-1] = observationVectorB[(2*memorySize)-1];

165 m4 = m2;

166 return;

167 }

168
169 void DynamicBMVarianceEstimator::CollapseVectorC(){

170 for(int i = 1; i <= (memorySize);i++){

171 observationVectorC[i-1] = (observationVectorB[(2*i)-2] +

observationVectorB[(2*i)-1]);

172 }

173 m3 = m2 * pow(2, numberOfCollapsesOccured);

174 return;

175 }

176
177 void DynamicBMVarianceEstimator::CollapseVectorB(){

178 for(int i = 1; i <= (memorySize-1); i++){

179 observationVectorB[i-1] = observationVectorA[(2*i)-1] +

observationVectorA[2*i];

180 }

181 observationVectorB[memorySize-1] = observationVectorA[(2*memorySize)-1];

182 return;

183 }

184
185 void DynamicBMVarianceEstimator::CollapseVectorA(){

186 for(int i = 1; i <= (memorySize);i++){

187 observationVectorA[i-1] = (observationVectorA[(2*i)-2] +

observationVectorA[(2*i)-1]);

188 }

189 return;

190 }

191
192 void DynamicBMVarianceEstimator::IncreasePointer(){

193 m1 = 1;

194 r1 += 1;

195 return;

APPENDIX B. MSE-DPBM 98

196 }

197
198 void DynamicBMVarianceEstimator::EndObservation(real value){

199 if(numberOfCollapsesOccured == 1){

200 UpdateB(value);

201 }else if(numberOfCollapsesOccured > 1){

202 UpdateD(value);

203 UpdateC(value);

204 UpdateB(value);

205 }

206 currentSampleSizeN += 1;

207 return;

208 }

209
210 void DynamicBMVarianceEstimator::UpdateB(real value){

211 if(m2 < batchSize){

212 m2 += 1;

213 } else {

214 m2 = 1;

215 r2 += 1;

216 observationVectorB[r2] = 0;

217 }

218 observationVectorB[r2] += value;

219 return;

220 }

221
222 void DynamicBMVarianceEstimator::UpdateC(real value){

223 if(m3 < batchSize){

224 m3 += 1;

225 } else {

226 m3 = 1;

227 r3 += 1;

228 observationVectorC[r3] = 0;

229 }

230 observationVectorC[r3] += value;

231 return;

232 }

233
234 void DynamicBMVarianceEstimator::UpdateD(real value){

235 if(m4 < batchSize){

236 m4 += 1;

237 } else {

238 m4 = 1;

239 r4 += 1;

240 observationVectorD[r4] = 0;

241 }

242 observationVectorD[r4] += value;

243 return;

244 }

245
246 void DynamicBMVarianceEstimator::AddObservation(real value){

247 observationVectorA[r1] += value;

248 return;

249 }

APPENDIX B. MSE-DPBM 99

250
251 void DynamicBMVarianceEstimator::ComputeOptimalBatchSize(){

252 ComputeEstimatorDPBM();

253 ComputeVirtualA();

254 ComputeVirtualB();

255 ComputeEstimatorBDPBM();

256 real gamma0 = ((double(currentSampleSizeN)*estimatorBDPBM)/

sampleVariance);

257 real gamma1 = (double(((double(currentSampleSizeN)*double(batchSize))*(

estimatorDPBM-estimatorBDPBM)))/sampleVariance);

258 optimalBatchSize = cbrt((1.12*double(currentSampleSizeN))*(pow(double(

gamma1/gamma0),2)))+1;

259 return;

260 }

261
262 void DynamicBMVarianceEstimator::ComputeMean(int b1){

263 mean = 0;

264 for(int i = 0; i < b1; i++){

265 mean += (observationVectorA[i]);

266 }

267 mean = (mean/double(currentSampleSizeN));

268 real sum = 0, calculation = 0;

269 //sample variance

270 for(int i = 0; i < b1; i++){

271 calculation = pow(observationVectorA[i]-mean, 2);

272 sum += calculation;

273 calculation = 0;

274 }

275 sampleVariance = (sum / double(currentSampleSizeN));

276 return;

277 }

278
279 void DynamicBMVarianceEstimator::ComputeEstimatorDPBM(){

280 int b1 = int(r1 + floor(double(m1/batchSize)));

281 int b2 = int(r2 + floor(double(m2/batchSize)));

282 int b3 = int(r3 + floor(double(m3/batchSize)));

283 int b4 = int(r4 + floor(double(m4/batchSize)));

284 ComputeMean(b1);

285 estimatorDPBM = 0;

286 double s = floor(double(batchSize/4));

287 int b = int(floor(double((currentSampleSizeN-batchSize+s)/s)));

288 double db = double(b*(double((currentSampleSizeN/batchSize)-1)));

289 real sumA = 0, sumB = 0, sumC = 0, sumD = 0, calculation = 0;

290 for(int i = 0; i < b1; i++){

291 calculation = pow(double((observationVectorA[i]/double(batchSize))-

mean),2);

292 sumA += calculation;

293 calculation = 0;

294 }

295 for(int i = 0; i < b2; i++){

296 calculation = pow(double((observationVectorB[i]/double(batchSize))-

mean),2);

297 sumB += calculation;

298 calculation = 0;

APPENDIX B. MSE-DPBM 100

299 }

300 for(int i = 0; i < b3; i++){

301 calculation = pow(double((observationVectorC[i]/double(batchSize))-

mean),2);

302 sumC += calculation;

303 calculation = 0;

304 }

305 for(int i = 0; i < b4; i++){

306 calculation = pow(double((observationVectorD[i]/double(batchSize))-

mean),2);

307 sumD += calculation;

308 calculation = 0;

309 }

310 estimatorDPBM = double((1/db)*double(sumA + sumB + sumC + sumD));

311 sumA = 0, sumB = 0, sumC = 0, sumD = 0;

312 return;

313 }

314
315 void DynamicBMVarianceEstimator::ComputeVirtualA(){

316 vectorBDPBM1.reserve(4*memorySize);

317 real sumA = 0, sumB = 0;

318 for(int i = 1; i <= ceil(double(currentSampleSizeN)/double(batchSize));

i++){

319 for(int k = (i-1); k < r1; k++){

320 sumA += observationVectorA[k];

321 }

322 for(int k = (i-1); k <= r2; k++){

323 sumB += observationVectorB[k];

324 }

325 vectorBDPBM1[(2*i)-2] = sumA-sumB;

326 sumA = 0;

327 sumB = 0;

328 }

329 for(int i = 1; i <= floor((double(currentSampleSizeN)/double(batchSize))

+0.5);i++){

330 vectorBDPBM1[(2*i)-1] = observationVectorA[i-1] - vectorBDPBM1[(2*i)

-2];

331 }

332 return;

333 }

334
335 void DynamicBMVarianceEstimator::ComputeVirtualB(){

336 vectorBDPBM2.reserve(4*memorySize);

337 real sumA = 0, sumB = 0;

338 for(int i = 1; i <= ceil((double(currentSampleSizeN)-(double(batchSize)

/4))/double(batchSize)) ; i++){

339 for(int k = (i-1); k <= r3; k++){

340 sumA += observationVectorC[k];

341 }

342 for(int k = (i-1); k <= r4; k++){

343 sumB += observationVectorD[k];

344 }

345 vectorBDPBM2[(2*i)-2] = sumA-sumB;

346 sumA = 0;

APPENDIX B. MSE-DPBM 101

347 sumB = 0;

348 }

349 for(int i = 1; i <= floor(((double(currentSampleSizeN)-(double(batchSize

)/4))/double(batchSize))+0.5);i++){

350 vectorBDPBM2[(2*i)-1] = observationVectorC[i-1] - vectorBDPBM2[(2*i)

-2];

351 }

352 return;

353 }

354
355 void DynamicBMVarianceEstimator::ComputeEstimatorBDPBM(){

356 estimatorBDPBM = 0;

357 int previousBatchSize = batchSize / 2;

358 double s = (double(previousBatchSize)/2);

359 int b = floor((double(currentSampleSizeN)-double(previousBatchSize)+s)/s

);

360 double db = b*((double(currentSampleSizeN)/double(previousBatchSize))-1)

;

361 double sumA = 0, sumB = 0, calculation = 0;

362 int bA = floor(double(currentSampleSizeN)/double(previousBatchSize));

363 int bB = floor((double(currentSampleSizeN)-(double(previousBatchSize)/2)

)/double(previousBatchSize));

364 //sleep(1);

365 for(int i = 1; i <= bA; i++){

366 calculation = pow((((vectorBDPBM1[i-1])/double(previousBatchSize))-

mean),2);

367 sumA += calculation;

368 calculation = 0;

369 }

370 for(int i = 1; i <= bB; i++){

371 calculation = pow((((vectorBDPBM2[i-1])/double(previousBatchSize))-

mean),2);

372 sumB += calculation;

373 calculation = 0;

374 }

375 estimatorBDPBM = (1/db)*(sumA + sumB);

376 sumA = 0;

377 sumB = 0;

378 return;

379 }

380
381 void DynamicBMVarianceEstimator::PrintValuesInVectors(){

382 for(int i = 0; i < observationVectorA.size(); i++){

383 fprintf(stderr,"value�in�A[%d]:�%f�\n", i,observationVectorA[i]);

384 }

385 for(int i = 0; i < observationVectorB.size(); i++){

386 fprintf(stderr,"value�in�B[%d]:�%f�\n", i,observationVectorB[i]);

387 }

388 for(int i = 0; i < observationVectorC.size(); i++){

389 fprintf(stderr,"value�in�C[%d]:�%f�\n", i,observationVectorC[i]);

390 }

391 for(int i = 0; i < observationVectorD.size(); i++){

392 fprintf(stderr,"value�in�D[%d]:�%f�\n", i,observationVectorD[i]);

393 }

APPENDIX B. MSE-DPBM 102

394 return;

395 }

Appendix C

Modified MSE-DPBM

1 /* Modified MSE-DPBM */

2
3 #include <iostream>

4 #include <stdio.h>

5 #include <stdlib.h>

6 #include <vector>

7 #include <cmath>

8
9 //include the header file

10 #include "dpbm_variance_estimator.H"

11 #include "environment.H"

12 #include "checkpoint.H"

13 #include "akaroa/ak_message.H"

14 #include "akaroa.H"

15
16 int checkpointPointer = 0, newBatch = 0;

17
18 DefineVarianceEstimatorType("DPBM", DynamicBMVarianceEstimator)

19
20 DynamicBMVarianceEstimator::DynamicBMVarianceEstimator(Environment *env,

long trans){

21 InitializeMethodVariables();

22 InitializeMethodVectors();

23 }

24
25 DynamicBMVarianceEstimator::~DynamicBMVarianceEstimator(){

26 //destructor

27 }

28
29 void DynamicBMVarianceEstimator::

30 ProcessObservation(real value)

31 {

32 StartProcessingObservation(value);

33 }

34
35 boolean DynamicBMVarianceEstimator::ReachedCheckpoint(){

36 if((checkpointPointer == 1) && (m1 == batchSize)){

103

APPENDIX C. MODIFIED MSE-DPBM 104

Figure C.1: Modified MSE-DPBM Algorithm as implemented in Akaroa2

APPENDIX C. MODIFIED MSE-DPBM 105

37 pointerToDPBM = 1;

38 ComputeEstimatorDPBM();

39 return true;

40 } else {

41 return false;

42 }

43 return false;

44 }

45
46 boolean DynamicBMVarianceEstimator::GetCheckpoint(Checkpoint &cp){

47 cp.df = 0;

48 cp.mean = mean;

49 cp.variance = submitDPBM;

50 return true;

51 }

52
53 void DynamicBMVarianceEstimator::InitializeMethodVariables(){

54 currentSampleSizeN = 1;

55 numberOfCollapsesOccured = 0;

56 batchSize = pow(2, numberOfCollapsesOccured);

57 m1 = 0, m2 = 0, m3 = 0, m4 = 0;

58 r1 = 0, r2 = 0, r3 = 0, r4 = 0;

59 memorySize = 15;

60 estimatorDPBM = 0;

61 previousDPBM = 0;

62 optimalBatchSize = 0;

63 previousMemorySize = 0;

64 return;

65 }

66
67 void DynamicBMVarianceEstimator::InitializeMethodVectors(){

68 for(int i = previousMemorySize; i < (2*memorySize); i++){

69 observationVectorA.push_back(0.00);

70 observationVectorB.push_back(0.00);

71 observationVectorC.push_back(0.00);

72 observationVectorD.push_back(0.00);

73 }

74 return;

75 }

76
77 void DynamicBMVarianceEstimator::StartProcessingObservation(real value){

78 if(m1 < batchSize){

79 m1 += 1;

80 AddObservation(value);

81 EndObservation(value);

82 return;

83 } else {

84 VectorHasRoom(value);

85 return;

86 }

87 }

88
89 void DynamicBMVarianceEstimator::VectorHasRoom(real value){

90 if(r1 < ((2*memorySize)-1)){

APPENDIX C. MODIFIED MSE-DPBM 106

91 IncreasePointer();

92 SetCurrentCell();

93 AddObservation(value);

94 EndObservation(value);

95 return;

96 } else {

97 if(numberOfCollapsesOccured == 0){

98 CollapseVectorB();

99 CollapseVectorA();

100 InitializeData();

101 UpdateKandM();

102 SetCurrentCell();

103 AddObservation(value);

104 EndObservation(value);

105 return;

106 } else {

107 if(batchSize < 65) {

108 CollapseVectorD();

109 CollapseVectorC();

110 CollapseVectorB();

111 CollapseVectorA();

112 InitializeData();

113 UpdateKandM();

114 SetCurrentCell();

115 AddObservation(value);

116 EndObservation(value);

117 previousDPBM = estimatorDPBM;

118 ComputeEstimatorDPBM();

119 return;

120 } else {

121 ComputeOptimalBatchSize();

122 checkpointPointer = 1;

123 if(batchSize < optimalBatchSize){

124 CollapseVectorD();

125 CollapseVectorC();

126 CollapseVectorB();

127 CollapseVectorA();

128 InitializeData();

129 UpdateKandM();

130 SetCurrentCell();

131 AddObservation(value);

132 EndObservation(value);

133 return;

134 } else {

135 previousMemorySize = 2*memorySize;

136 memorySize += 1;

137 InitializeMethodVectors();

138 VectorHasRoom(value);

139 }

140 }

141
142 }

143 }

144 }

APPENDIX C. MODIFIED MSE-DPBM 107

145
146 void DynamicBMVarianceEstimator::InitializeData(){

147 if(numberOfCollapsesOccured == 0){

148 m1 = 1;

149 m2 = pow(2, numberOfCollapsesOccured);

150 r1 = memorySize;

151 r2 = memorySize - 1;

152 return;

153 } else {

154 m1 = 1;

155 m2 = pow(2, numberOfCollapsesOccured);

156 m3 = pow(2, numberOfCollapsesOccured) + pow(2, (

numberOfCollapsesOccured - 1));

157 m4 = pow(2, (numberOfCollapsesOccured - 1));

158 r1 = memorySize;

159 r2 = memorySize - 1;

160 r3 = memorySize - 1;

161 r4 = memorySize - 1;

162 return;

163 }

164 }

165
166 void DynamicBMVarianceEstimator::UpdateKandM(){

167 numberOfCollapsesOccured += 1;

168 batchSize = pow(2,numberOfCollapsesOccured);

169 return;

170 }

171
172 void DynamicBMVarianceEstimator::SetCurrentCell(){

173 observationVectorA[r1] = 0;

174 return;

175 }

176
177 void DynamicBMVarianceEstimator::CollapseVectorD(){

178 for(int i = 1; i <= (memorySize-1); i++){

179 observationVectorD[i-1] = observationVectorB[(2*i)-1] +

observationVectorB[2*i];

180 }

181 observationVectorD[memorySize-1] = observationVectorB[(2*memorySize)-1];

182 m4 = m2;

183 return;

184 }

185
186 void DynamicBMVarianceEstimator::CollapseVectorC(){

187 for(int i = 1; i <= (memorySize);i++){

188 observationVectorC[i-1] = (observationVectorB[(2*i)-2] +

observationVectorB[(2*i)-1]);

189 }

190 m3 = m2 * pow(2, numberOfCollapsesOccured);

191 return;

192 }

193
194 void DynamicBMVarianceEstimator::CollapseVectorB(){

195 for(int i = 1; i <= (memorySize-1); i++){

APPENDIX C. MODIFIED MSE-DPBM 108

196 observationVectorB[i-1] = observationVectorA[(2*i)-1] +

observationVectorA[2*i];

197 }

198 observationVectorB[memorySize-1] = observationVectorA[(2*memorySize)-1];

199 return;

200 }

201
202 void DynamicBMVarianceEstimator::CollapseVectorA(){

203 for(int i = 1; i <= (memorySize);i++){

204 observationVectorA[i-1] = (observationVectorA[(2*i)-2] +

observationVectorA[(2*i)-1]);

205 }

206 return;

207 }

208
209 void DynamicBMVarianceEstimator::IncreasePointer(){

210 m1 = 1;

211 r1 += 1;

212 return;

213 }

214
215 void DynamicBMVarianceEstimator::EndObservation(real value){

216 if(numberOfCollapsesOccured == 1){

217 UpdateB(value);

218 }else if(numberOfCollapsesOccured > 1){

219 UpdateD(value);

220 UpdateC(value);

221 UpdateB(value);

222 }

223 currentSampleSizeN += 1;

224 return;

225 }

226
227 void DynamicBMVarianceEstimator::UpdateB(real value){

228 if(m2 < batchSize){

229 m2 += 1;

230 } else {

231 m2 = 1;

232 r2 += 1;

233 observationVectorB[r2] = 0;

234 }

235 observationVectorB[r2] += value;

236 return;

237 }

238
239 void DynamicBMVarianceEstimator::UpdateC(real value){

240 if(m3 < batchSize){

241 m3 += 1;

242 } else {

243 m3 = 1;

244 r3 += 1;

245 observationVectorC[r3] = 0;

246 }

247 observationVectorC[r3] += value;

APPENDIX C. MODIFIED MSE-DPBM 109

248 return;

249 }

250
251 void DynamicBMVarianceEstimator::UpdateD(real value){

252 if(m4 < batchSize){

253 m4 += 1;

254 } else {

255 m4 = 1;

256 r4 += 1;

257 observationVectorD[r4] = 0;

258 }

259 observationVectorD[r4] += value;

260 return;

261 }

262
263 void DynamicBMVarianceEstimator::AddObservation(real value){

264 observationVectorA[r1] += value;

265 return;

266 }

267
268 void DynamicBMVarianceEstimator::ComputeOptimalBatchSize(){

269 previousDPBM = estimatorDPBM;

270 ComputeEstimatorDPBM();

271 real gamma0 = ((double(currentSampleSizeN)*estimatorDPBM)/sampleVariance

);

272 real gamma1 = (double(((double(currentSampleSizeN)*double(batchSize))*(

estimatorDPBM-previousDPBM)))/sampleVariance);

273 optimalBatchSize = cbrt((1.03*double(currentSampleSizeN))*(pow(double(

gamma1/gamma0),2)))+1;

274 return;

275 }

276
277 void DynamicBMVarianceEstimator::ComputeMean(int b1){

278 mean = 0;

279 for(int i = 0; i < b1; i++){

280 mean += (observationVectorA[i]);

281 }

282 mean = (mean/double(currentSampleSizeN));

283 real sum = 0, calculation = 0;

284 for(int i = 0; i < b1; i++){

285 calculation = pow(observationVectorA[i]-mean, 2);

286 sum += calculation;

287 calculation = 0;

288 }

289 sampleVariance = (sum / double(currentSampleSizeN));

290 return;

291 }

292
293 void DynamicBMVarianceEstimator::ComputeEstimatorDPBM(){

294 if(pointerToDPBM == 1){

295 int b1 = int(r1 + floor(double(m1/batchSize)));

296 int b2 = int(r2 + floor(double(m2/batchSize)));

297 int b3 = int(r3 + floor(double(m3/batchSize)));

298 int b4 = int(r4 + floor(double(m4/batchSize)));

APPENDIX C. MODIFIED MSE-DPBM 110

299 ComputeMean(b1);

300 double s = double(batchSize/4);

301 int b = int(floor(double((currentSampleSizeN-batchSize+s)/s)));

302 double db = double(b*(double((currentSampleSizeN/batchSize)-1)));

303 real sumA = 0, sumB = 0, sumC = 0, sumD = 0, calculation = 0;

304 for(int i = 0; i < b1; i++){

305 calculation = pow(double((observationVectorA[i]/double(batchSize

))-mean),2);

306 sumA += calculation;

307 calculation = 0;

308 }

309 for(int i = 0; i < b2; i++){

310 calculation = pow(double((observationVectorB[i]/double(batchSize

))-mean),2);

311 sumB += calculation;

312 calculation = 0;

313 }

314 for(int i = 0; i < b3; i++){

315 calculation = pow(double((observationVectorC[i]/double(batchSize

))-mean),2);

316 sumC += calculation;

317 calculation = 0;

318 }

319 for(int i = 0; i < b4; i++){

320 calculation = pow(double((observationVectorD[i]/double(batchSize

))-mean),2);

321 sumD += calculation;

322 calculation = 0;

323 }

324 submitDPBM = double((1/db)*double(sumA + sumB + sumC + sumD));

325 sumA = 0, sumB = 0, sumC = 0, sumD = 0;

326 pointerToDPBM = 0;

327 return;

328 } else {

329 int b1 = int(r1 + floor(double(m1/batchSize)));

330 int b2 = int(r2 + floor(double(m2/batchSize)));

331 int b3 = int(r3 + floor(double(m3/batchSize)));

332 int b4 = int(r4 + floor(double(m4/batchSize)));

333 ComputeMean(b1);

334 estimatorDPBM = 0;

335 double s = double(batchSize/4);

336 int b = int(floor(double((currentSampleSizeN-batchSize+s)/s)));

337 double db = double(b*(double((currentSampleSizeN/batchSize)-1)));

338 real sumA = 0, sumB = 0, sumC = 0, sumD = 0, calculation = 0;

339 for(int i = 0; i < b1; i++){

340 calculation = pow(double((observationVectorA[i]/double(batchSize

))-mean),2);

341 sumA += calculation;

342 calculation = 0;

343 }

344 for(int i = 0; i < b2; i++){

345 calculation = pow(double((observationVectorB[i]/double(batchSize

))-mean),2);

346 sumB += calculation;

APPENDIX C. MODIFIED MSE-DPBM 111

347 calculation = 0;

348 }

349 for(int i = 0; i < b3; i++){

350 calculation = pow(double((observationVectorC[i]/double(batchSize

))-mean),2);

351 sumC += calculation;

352 calculation = 0;

353 }

354 for(int i = 0; i < b4; i++){

355 calculation = pow(double((observationVectorD[i]/double(batchSize

))-mean),2);

356 sumD += calculation;

357 calculation = 0;

358 }

359 estimatorDPBM = double((1/db)*double(sumA + sumB + sumC + sumD));

360 sumA = 0, sumB = 0, sumC = 0, sumD = 0;

361 return;

362 }

363 }

364
365 void DynamicBMVarianceEstimator::PrintValuesInVectors(){

366 for(int i = 0; i < observationVectorA.size(); i++){

367 fprintf(stderr,"value�in�A[%d]:�%f�\n", i,observationVectorA[i]);

368 }

369 for(int i = 0; i < observationVectorB.size(); i++){

370 fprintf(stderr,"value�in�B[%d]:�%f�\n", i,observationVectorB[i]);

371 }

372 for(int i = 0; i < observationVectorC.size(); i++){

373 fprintf(stderr,"value�in�C[%d]:�%f�\n", i,observationVectorC[i]);

374 }

375 for(int i = 0; i < observationVectorD.size(); i++){

376 fprintf(stderr,"value�in�D[%d]:�%f�\n", i,observationVectorD[i]);

377 }

378 return;

379 }

Appendix D

Coverage Analysis

1 #!/usr/bin/perl

2 use warnings;

3 use strict;

4 use DBI;

5 use POSIX qw(strftime);

6 $| = 0;

7
8 our ($model, $load, $method, $transMethod, $seed, $theoreticalMean,

$currentTable, $mean, $standardDeviation, $lMin, $deltaCoverage);

9 our ($HOST,$MYSQLPORT,$DATABASE,$USERNAME,$PASSWD, $dbh);

10 our ($badCI, $totalCI);

11 our ($badLength, $goodLength) = 0;

12 our ($goodLBadCi, $goodLGoodCi, $goodLenghtTotal, $coverage);

13
14 require "db.conf";

15
16 sub InitializeVariables {

17 $model = $ARGV[0];

18 $load = $ARGV[1];

19 $method = $ARGV[2];

20 $transMethod = $ARGV[3];

21 $seed = "128:0";

22 GetTheoreticalMean();

23 return;

24 }

25
26 sub GetTheoreticalMean{

27 $theoreticalMean = ‘$model $load -t‘;

28 return;

29 }

30
31 sub CreateDatabase{

32 my $date = strftime "%m%d%Y", localtime;

33 my @dbLoad = split(/\./,$load);

34 $currentTable = "O_".$method."_".$model."_".$dbLoad[0].$dbLoad[1]."_

".$date."_".$transMethod;

35 #print $currentTable."\n";

112

APPENDIX D. COVERAGE ANALYSIS 113

36 my $createTableQuery = $dbh->prepare("CREATE�TABLE�IF�NOT�EXISTS�

$currentTable�(

37 ��������‘id‘�bigint�primary�key�auto_increment,

38 ��‘estimate‘�real�signed�NOT�NULL,

39 ��‘delta‘�float�unsigned�NOT�NULL,

40 ��‘confidence‘�float�unsigned�NOT�NULL,

41 ��‘totalObs‘�bigint�unsigned�NOT�NULL,

42 ��‘transObs‘�int�unsigned�NOT�NULL,

43 ��‘seed‘�text�NOT�NULL,

44 ��‘BoolCI‘�int�NOT�NULL,

45 ��‘BoolLength‘�int�NOT�NULL

46)�ENGINE=InnoDB�DEFAULT�CHARSET=utf8�COLLATE=utf8_czech_ci;");

47 $createTableQuery->execute();

48 $createTableQuery->finish();

49 return;

50 }

51
52 sub ConnectToDatabase{

53 $dbh = DBI->connect("dbi:mysql:$DATABASE:$HOST:$MYSQLPORT",

54 $USERNAME,

55 $PASSWD,

56 { ’PrintError’ => 1, ’RaiseError’ => 1 }

57) or die $DBI::errstr;

58 return;

59 }

60
61 sub SaveIntoDatabase{

62 my ($estimate, $delta, $conf, $totalObs, $transObs, $pointerCI,

$pointerLenght) = @_;

63 my $insertQuery = $dbh->prepare("INSERT�INTO�$currentTable�(estimate

,delta,confidence,totalObs,

64 ��������transObs,�seed,�BoolCI,�BoolLength)�values�(?,�?,�?,�?,�?,�?,�?,�?)"

);

65 $insertQuery->execute($estimate, $delta, $conf, $totalObs, $transObs

, $seed, $pointerCI, $pointerLenght);

66 $insertQuery->finish();

67 return;

68 }

69
70 sub FirstRun{

71 $badCI = 0;

72 while($badCI < 200){

73 my $output = ‘akrun -n 1 -s -r $seed -D AnalysisMethod=

$method -D TransientMethod=$transMethod $model $load‘;

74 #print $output."\n";

75 my $regEx = "([+-]?\\d*\\.\\d+)(?![-+0-9\\.]).*?([+-]?\\d

\\.\\d+)(?![-+0-9\\.]).?([+-]?\\d*\\.\\d+)

(?![-+0-9\\.]).*?(\\d+).*?(\\d+)";

76 $output =~ m/$regEx/is;

77 my $estimate = $1;

78 my $delta = $2;

79 my $conf = $3;

80 my $totalObs = $4;

81 my $transObs = $5;

APPENDIX D. COVERAGE ANALYSIS 114

82 if(!defined($delta)){

83 my $regEx = "(\\d+)(\\s+)(\\d+).*?([+-]?\\d*\\.\\d+)

(?![-+0-9\\.]).*?([+-]?\\d*\\.\\d+)

(?![-+0-9\\.]).*?(\\d+).*?(\\d+)";

84 $output =~ m/$regEx/is;

85 $estimate = $3;

86 $delta = $4;

87 $conf = $5;

88 $totalObs = $6;

89 $transObs = $7;

90 }

91 if(($theoreticalMean >= ($estimate - $delta)) && (

$theoreticalMean <= ($estimate+$delta))){ #is covered

by the CI

92 SaveIntoDatabase($estimate, $delta, $conf, $totalObs

, $transObs, 1, 0);

93 } else { #is not covered by the CI

94 $badCI +=1;

95 SaveIntoDatabase($estimate, $delta, $conf, $totalObs

, $transObs, 0, 0);

96 }

97 $output =~ m/RandomNumberState: (\d.*)/;

98 $seed = $1;

99 $totalCI += 1; #keeps the total number of runs, will need to

be recalculated after some runs are rejected (not long

enuf)

100 }

101 CalculateStandardDeviation();

102 RejectShortRuns();

103 return;

104 }

105
106 sub RejectShortRuns{

107 my $selectQuery = $dbh->prepare("SELECT�*�FROM�$currentTable");

108 $selectQuery->execute();

109 my @row;

110 while (@row = $selectQuery->fetchrow_array())

111 {

112 if($row[4] < $lMin){

113 my $updateQuery = $dbh->prepare("UPDATE�

$currentTable�SET�BoolLength�=�?�WHERE�(id�=�?)

");

114 $updateQuery->execute(’0’,$row[0]);

115 $updateQuery->finish();

116 #print "update�id�=�$row[0]�with�lenght:�$row[4]�<�

$lMin�\n";

117 $badLength += 1;

118 } else {

119 my $updateQuery = $dbh->prepare("UPDATE�

$currentTable�SET�BoolLength�=�?�WHERE�(id�=�?)

");

120 $updateQuery->execute(’1’,$row[0]);

121 $updateQuery->finish();

122 #print "update�id�=�$row[0]�with�lenght:�$row[4]�>�

APPENDIX D. COVERAGE ANALYSIS 115

$lMin�\n";

123 $goodLength += 1;

124 }

125 }

126 $selectQuery->finish();

127 #print "now�we�have�good:�$countGood�and�bad:�$countBad��and�total:�

$totalCI�\n";

128 return;

129 }

130
131 sub CalculateStandardDeviation{

132 my $selectQuery = $dbh->prepare("SELECT�*�FROM�$currentTable");

133 $selectQuery->execute();

134 my @row;

135 $mean = 0;

136 my $sum = 0;

137 my $count = 0;

138 while (@row = $selectQuery->fetchrow_array())

139 {

140 $mean += $row[4];

141 $count++;

142 }

143 $selectQuery -> finish();

144 $mean = $mean/$count;

145 #print "Mean�is:�$mean�\n";

146 $selectQuery->execute();

147 while (@row = $selectQuery->fetchrow_array())

148 {

149 $sum += (($row[4] - $mean)**2);

150 #print "$sum�=�$row[4]�-�$mean�squared�\n";

151 }

152 $standardDeviation = sqrt((1/($totalCI-1))*($sum));

153 $lMin = $mean - $standardDeviation;

154 my $insertQuery = $dbh->prepare("INSERT�INTO�‘".$model."_results‘�(‘

model‘,‘load‘,‘analysisMethod‘,‘transientMethod‘,‘

standardDeviation‘,‘mean‘)�values�(?,�?,�?,�?,�?,�?)");

155 $insertQuery->execute($model, $load, "O_".$method, $transMethod,

$standardDeviation, $mean);

156 $insertQuery->finish();

157 #print "ST:�$standardDeviation�and�mean:�$mean�and�equals�to:�".

$lMin."\n";

158 $selectQuery -> finish();

159 return;

160 }

161
162 sub FirstCheckpoint{

163 #get 200 of good lenght, but not covering the mean and calculate

coverage

164 my $goodLengthBadCi = 0;

165 my $selectQuery = $dbh->prepare("SELECT�*�FROM�$currentTable");

166 $selectQuery->execute();

167 my @row;

168 my $count;

169 while (@row = $selectQuery->fetchrow_array())

APPENDIX D. COVERAGE ANALYSIS 116

170 {

171 if(($row[7] == 0) && ($row[8] == 1)){

172 $goodLengthBadCi +=1 ;

173 }

174 }

175 my $numOfRuns = 0;

176 while($goodLengthBadCi < 200){

177 my $output = 0;

178 if($numOfRuns < 1000000){

179 $output = ‘akrun -n 1 -s -r $seed -D AnalysisMethod=

$method -D TransientMethod=$transMethod $model

$load‘;

180 $numOfRuns += 1;

181 } else {

182 print "Run�length�achieved,�did�not�record�200�bad�

CI�with�good�length,�exiting.�\n";

183 exit;

184 }

185 #print $output."\n";

186 #parse the output of simulation

187 my $regEx = "([+-]?\\d*\\.\\d+)(?![-+0-9\\.]).*?([+-]?\\d

\\.\\d+)(?![-+0-9\\.]).?([+-]?\\d*\\.\\d+)

(?![-+0-9\\.]).*?(\\d+).*?(\\d+)";

188 $output =~ m/$regEx/is;

189 my $estimate = $1;

190 my $delta = $2;

191 my $conf = $3;

192 my $totalObs = $4;

193 my $transObs = $5;

194 if(!defined($delta)){

195 my $regEx = "(\\d+)(\\s+)(\\d+).*?([+-]?\\d*\\.\\d+)

(?![-+0-9\\.]).*?([+-]?\\d*\\.\\d+)

(?![-+0-9\\.]).*?(\\d+).*?(\\d+)";

196 $output =~ m/$regEx/is;

197 $estimate = $3;

198 $delta = $4;

199 $conf = $5;

200 $totalObs = $6;

201 $transObs = $7;

202 }

203 if($totalObs > $lMin){

204 if(($theoreticalMean >= ($estimate - $delta)) && (

$theoreticalMean <= ($estimate+$delta))){ #is

covered by the CI

205 SaveIntoDatabase($estimate, $delta, $conf,

$totalObs, $transObs, 1, 1);

206 } else { #is not covered by the CI

207 $goodLengthBadCi += 1;

208 SaveIntoDatabase($estimate, $delta, $conf,

$totalObs, $transObs, 0, 1);

209 }

210 } else {

211 $badLength += 1;

212 }

APPENDIX D. COVERAGE ANALYSIS 117

213 $output =~ m/RandomNumberState: (\d.*)/;

214 $seed = $1;

215 }

216 CalculateDeltaOfCoverage();

217 return;

218 }

219
220 sub CalculateDeltaOfCoverage {

221 my $selectQuery = $dbh->prepare("SELECT�*�FROM�$currentTable");

222 $selectQuery->execute();

223 my @row;

224 my $z = 1.96;

225 ($goodLBadCi, $goodLGoodCi, $goodLenghtTotal) = 0;

226 while (@row = $selectQuery->fetchrow_array())

227 {

228 if(($row[7] == 0) && ($row[8] == 1)){

229 $goodLBadCi +=1;

230 $goodLenghtTotal +=1;

231 } elsif(($row[7] == 1) && ($row[8] == 1)){

232 $goodLGoodCi += 1;

233 $goodLenghtTotal +=1;

234 }

235 }

236 $selectQuery->finish();

237 $coverage = $goodLGoodCi / $goodLenghtTotal;

238 if($goodLenghtTotal > 99){

239 $z = 1.96;

240 } else {

241 print "need�to�use�student�t�distro�\n";

242 $z = 1.96;

243 }

244 $deltaCoverage = $z * sqrt(($coverage * (1- $coverage))/(

$goodLenghtTotal));

245 #print "good�=�$goodLGoodCi,�total�=�$goodLenghtTotal,�coverage�=�

$coverage,�delta_coverage�=�$deltaCoverage�\n";

246 #print "delta�of�coverage�is:�".$deltaCoverage."\n";

247 return;

248 }

249
250 sub SequentialAnalysis{

251 while($deltaCoverage > 0.01) {

252 my $output = ‘akrun -n 1 -s -r $seed -D AnalysisMethod=

$method -D TransientMethod=$transMethod $model $load‘;

253 #parse the output of simulation

254 my $regEx = "([+-]?\\d*\\.\\d+)(?![-+0-9\\.]).*?([+-]?\\d

\\.\\d+)(?![-+0-9\\.]).?([+-]?\\d*\\.\\d+)

(?![-+0-9\\.]).*?(\\d+).*?(\\d+)";

255 $output =~ m/$regEx/is;

256 my $estimate = $1;

257 my $delta = $2;

258 my $conf = $3;

259 my $totalObs = $4;

260 my $transObs = $5;

261 if(!defined($delta)){

APPENDIX D. COVERAGE ANALYSIS 118

262 my $regEx = "(\\d+)(\\s+)(\\d+).*?([+-]?\\d*\\.\\d+)

(?![-+0-9\\.]).*?([+-]?\\d*\\.\\d+)

(?![-+0-9\\.]).*?(\\d+).*?(\\d+)";

263 $output =~ m/$regEx/is;

264 $estimate = $3;

265 $delta = $4;

266 $conf = $5;

267 $totalObs = $6;

268 $transObs = $7;

269 }

270 if($totalObs > $lMin){

271 if(($theoreticalMean >= ($estimate - $delta)) && (

$theoreticalMean <= ($estimate+$delta))){ #is

covered by the CI

272 #print "adding�good�CI�and�good�Length�\n";

273 SaveIntoDatabase($estimate, $delta, $conf,

$totalObs, $transObs, 1, 1);

274 } else { #is not covered by the CI

275 #print "Adding�Bad�CI�and�good�Length�\n";

276 SaveIntoDatabase($estimate, $delta, $conf,

$totalObs, $transObs, 0, 1);

277 }

278 CalculateDeltaOfCoverage();

279 } else {

280 $badLength += 1;

281 }

282 $output =~ m/RandomNumberState: (\d.*)/;

283 $seed = $1;

284 }

285 my $updateQuery = $dbh->prepare("UPDATE�‘".$model."_results‘�SET�‘

rejectedRuns‘�=�?,�‘totalRuns‘�=�?,�‘goodRuns‘�=�?,�‘badRuns‘�=

�?,�‘coverage‘�=�?,�‘deltaCoverage‘�=�?

286 ��������WHERE�(‘model‘�=�?�AND�‘load‘�=�?�AND�‘analysisMethod‘�=�?�AND�‘

transientMethod‘�=�?)");

287 $updateQuery->execute($badLength, $goodLenghtTotal, $goodLGoodCi,

$goodLBadCi, $coverage, $deltaCoverage, $model, $load, "O_".

$method, $transMethod);

288 $updateQuery->finish();

289 return;

290 }

291
292 #main function

293 if(@ARGV == 4){

294 InitializeVariables();

295 ConnectToDatabase();

296 CreateDatabase();

297 FirstRun();

298 FirstCheckpoint();

299 SequentialAnalysis();

300 $dbh->disconnect();

301 exit;

302 } else {

303 print "bad�syntax�use�-�perl�source.pl�<model>�<load>�<method�of�

output�analysis>�<trans�method>\n";

APPENDIX D. COVERAGE ANALYSIS 119

304 exit;

305 }

Appendix E

Tables of Results per Model

Model Load SOAM Transient M. Short Runs No. Runs No. Bad CIs Coverage Δz 1
2

σ(L̄) L̄

AR(1) 0.5 SA/HW Schruben 675 3795 200 0.947 0.00711 3219.231 8170.585

AR(1) 0.5 SA/HW CumulativeMeans 417 2699 200 0.926 0.00988 2983.592 6516.655

AR(1) 0.6 SA/HW Schruben 608 3570 200 0.944 0.00754 4893.289 12033.640

AR(1) 0.6 SA/HW CumulativeMeans 441 2751 200 0.927 0.00970 4602.059 10053.165

AR(1) 0.7 SA/HW Schruben 448 2956 200 0.932 0.00905 8747.356 20262.207

AR(1) 0.7 SA/HW CumulativeMeans 398 2667 200 0.925 0.01000 8318.180 17715.235

AR(1) 0.8 SA/HW Schruben 566 3378 200 0.941 0.00796 18767.171 42372.108

AR(1) 0.8 SA/HW CumulativeMeans 503 3033 200 0.934 0.00883 18483.988 39431.204

AR(1) 0.9 SA/HW Schruben 474 3036 200 0.934 0.00882 72681.411 155621.993

AR(1) 0.9 SA/HW CumulativeMeans 452 2679 202 0.925 0.01000 72567.916 153933.573

AR(1) 0.95 SA/HW CumulativeMeans 1072 5934 200 0.966 0.00459 1008.319 3231.425

AR(1) 0.95 SA/HW Schruben 1214 5819 200 0.966 0.00468 1143.345 3982.917

AR(1) 0.5 DPBM(k=50) Schruben 584 3744 200 0.947 0.00720 243.942 1691.676

120

A
P
P
E
N
D
IX

E
.
T
A
B
L
E
S
O
F
R
E
S
U
L
T
S
P
E
R

M
O
D
E
L

121

AR(1) 0.5 DPBM(k=50) CumulativeMeans 666 3751 200 0.947 0.00719 240.757 1476.700

AR(1) 0.6 DPBM(k=50) CumulativeMeans 599 3337 200 0.940 0.00805 235.852 1439.838

AR(1) 0.6 DPBM(k=50) Schruben 538 3327 200 0.940 0.00808 242.533 1641.858

AR(1) 0.7 DPBM(k=50) CumulativeMeans 595 2751 200 0.927 0.00970 216.761 1379.789

AR(1) 0.7 DPBM(k=50) Schruben 432 2876 200 0.930 0.00930 255.833 1550.156

AR(1) 0.8 DPBM(k=50) CumulativeMeans 156 5070 793 0.844 0.01000 156.161 1257.436

AR(1) 0.8 DPBM(k=50) Schruben 726 3968 464 0.883 0.01000 349.033 1224.055

AR(1) 0.9 DPBM(k=50) Schruben 704 9303 3828 0.589 0.01000 131.881 671.772

AR(1) 0.9 DPBM(k=50) CumulativeMeans 1356 9228 3700 0.599 0.01000 38.465 1217.382

AR(1) 0.95 DPBM(k=50) Schruben 586 9366 5421 0.421 0.01000 152.794 733.048

AR(1) 0.95 DPBM(k=50) CumulativeMeans 1591 9468 5298 0.440 0.01000 45.812 1306.443

AR(1) 0.5 DPBM(k=15) CumulativeMeans 807 3598 200 0.944 0.00749 404.457 1557.418

AR(1) 0.5 DPBM(k=15) Schruben 797 3869 200 0.948 0.00698 414.672 1772.412

AR(1) 0.6 DPBM(k=15) CumulativeMeans 855 3660 200 0.945 0.00736 400.568 1564.869

AR(1) 0.6 DPBM(k=15) Schruben 695 3722 200 0.946 0.00724 416.280 1759.768

AR(1) 0.7 DPBM(k=15) CumulativeMeans 816 3442 200 0.942 0.00782 394.017 1568.150

AR(1) 0.7 DPBM(k=15) Schruben 571 3365 200 0.941 0.00799 423.858 1748.707

AR(1) 0.8 DPBM(k=15) CumulativeMeans 705 3075 200 0.935 0.00872 390.444 1571.668

AR(1) 0.8 DPBM(k=15) Schruben 504 3107 200 0.936 0.00863 434.167 1717.864

AR(1) 0.9 DPBM(k=15) Schruben 1007 3610 379 0.895 0.01000 575.205 1366.529

AR(1) 0.9 DPBM(k=15) CumulativeMeans 2 5861 1101 0.812 0.01000 314.575 1440.952

AR(1) 0.95 DPBM(k=15) Schruben 1 9431 5350 0.433 0.01000 367.471 736.742

AR(1) 0.95 DPBM(k=15) CumulativeMeans 86 9490 5264 0.445 0.01000 105.005 1324.826

AR(1) 0.5 MSE-DPBM CumulativeMeans 839 3632 200 0.945 0.00742 402.417 1555.782

AR(1) 0.5 MSE-DPBM Schruben 801 3865 200 0.948 0.00698 414.725 1772.796

AR(1) 0.6 MSE-DPBM CumulativeMeans 853 3662 200 0.945 0.00736 400.543 1564.893

AR(1) 0.6 MSE-DPBM Schruben 693 3738 200 0.946 0.00721 416.130 1760.648

AR(1) 0.7 MSE-DPBM CumulativeMeans 814 3444 200 0.942 0.00781 393.882 1568.276

AR(1) 0.7 MSE-DPBM Schruben 571 3365 200 0.941 0.00799 423.839 1748.730

AR(1) 0.8 MSE-DPBM CumulativeMeans 705 3075 200 0.935 0.00872 390.444 1571.668

A
P
P
E
N
D
IX

E
.
T
A
B
L
E
S
O
F
R
E
S
U
L
T
S
P
E
R

M
O
D
E
L

122

AR(1) 0.8 MSE-DPBM Schruben 504 3107 200 0.936 0.00863 434.125 1717.915

AR(1) 0.9 MSE-DPBM Schruben 1007 3610 379 0.895 0.01000 575.205 1366.529

AR(1) 0.9 MSE-DPBM CumulativeMeans 2 5861 1101 0.812 0.01000 314.575 1440.952

AR(1) 0.95 MSE-DPBM Schruben 1 9431 5350 0.433 0.01000 367.471 736.742

AR(1) 0.95 MSE-DPBM CumulativeMeans 86 9490 5264 0.445 0.01000 105.005 1324.826

AR(1) 0.5 Mod. MSE-DPBM CumulativeMeans 747 2686 200 0.926 0.00993 44.182 4150.951

AR(1) 0.5 Mod. MSE-DPBM Schruben 108 3264 200 0.939 0.00823 23.447 4367.735

AR(1) 0.6 Mod. MSE-DPBM CumulativeMeans 729 3039 200 0.934 0.00882 46.350 4169.857

AR(1) 0.6 Mod. MSE-DPBM Schruben 132 3143 200 0.936 0.00853 26.415 4376.474

AR(1) 0.7 Mod. MSE-DPBM CumulativeMeans 471 2987 200 0.933 0.00896 44.146 4199.055

AR(1) 0.7 Mod. MSE-DPBM Schruben 173 3079 200 0.935 0.00871 30.011 4389.873

AR(1) 0.8 Mod. MSE-DPBM Schruben 254 2906 200 0.931 0.00920 36.606 4414.145

AR(1) 0.8 Mod. MSE-DPBM CumulativeMeans 348 2835 200 0.929 0.00943 39.056 4240.387

AR(1) 0.9 Mod. MSE-DPBM Schruben 305 2673 201 0.925 0.01000 66.061 4477.811

AR(1) 0.9 Mod. MSE-DPBM CumulativeMeans 335 2725 200 0.927 0.00979 42.040 4309.595

AR(1) 0.95 Mod. MSE-DPBM CumulativeMeans 391 2766 200 0.928 0.00965 53.902 4398.186

AR(1) 0.95 Mod. MSE-DPBM Schruben 189 2741 200 0.927 0.00974 156.266 4619.314

Table E.1: AR(1) Results Table

Model Load SOAM Transient M. Short Runs No. Runs No. Bad CIs Coverage Δz 1
2

σ(L̄) L̄

M/M/1 0.5 SA/HW Schruben 647 4006 200 0.950 0.00674 7208.586 16168.487

M/M/1 0.5 SA/HW CumulativeMeans 441 2936 200 0.932 0.00911 6984.198 13166.879

M/M/1 0.6 SA/HW Schruben 580 3493 200 0.943 0.00770 12616.678 27014.707

M/M/1 0.6 SA/HW CumulativeMeans 373 2757 200 0.927 0.00968 12635.658 23166.342

M/M/1 0.7 SA/HW Schruben 477 2976 200 0.933 0.00900 24943.584 51868.517

M/M/1 0.7 SA/HW CumulativeMeans 434 2797 221 0.921 0.01000 24395.357 45923.890

M/M/1 0.8 SA/HW Schruben 423 2760 215 0.922 0.01000 63237.041 125773.314

M/M/1 0.8 SA/HW CumulativeMeans 498 2909 240 0.917 0.01000 63400.331 121014.307

A
P
P
E
N
D
IX

E
.
T
A
B
L
E
S
O
F
R
E
S
U
L
T
S
P
E
R

M
O
D
E
L

123

M/M/1 0.9 SA/HW Schruben 418 2981 200 0.933 0.00898 291112.111 535423.103

M/M/1 0.9 SA/HW CumulativeMeans 414 2857 200 0.930 0.00936 286357.789 526884.095

M/M/1 0.95 SA/HW Schruben 405 2748 213 0.922 0.01000 1200026.279 2184140.667

M/M/1 0.95 SA/HW CumulativeMeans 410 2851 230 0.919 0.01000 1208585.396 2188953.118

M/M/1 0.5 DPBM(k=50) Schruben 725 4564 200 0.956 0.00594 3293.983 13188.417

M/M/1 0.5 DPBM(k=50) CumulativeMeans 732 4672 200 0.957 0.00580 3330.873 12889.818

M/M/1 0.6 DPBM(k=50) Schruben 775 4758 200 0.958 0.00570 5831.210 22970.244

M/M/1 0.6 DPBM(k=50) CumulativeMeans 870 5177 200 0.961 0.00525 5850.914 22628.886

M/M/1 0.7 DPBM(k=50) Schruben 688 4029 200 0.950 0.00671 11787.731 45475.396

M/M/1 0.7 DPBM(k=50) CumulativeMeans 749 4354 200 0.954 0.00622 11685.815 45002.962

M/M/1 0.8 DPBM(k=50) Schruben 617 3744 200 0.947 0.00720 31141.474 114391.614

M/M/1 0.8 DPBM(k=50) CumulativeMeans 615 3661 200 0.945 0.00736 31064.851 113756.911

M/M/1 0.9 DPBM(k=50) CumulativeMeans 437 3790 200 0.947 0.00712 155804.302 497605.707

M/M/1 0.9 DPBM(k=50) Schruben 479 4009 200 0.950 0.00674 151417.284 502411.503

M/M/1 0.95 DPBM(k=50) CumulativeMeans 563 2685 200 0.926 0.00993 957499.138 1772073.000

M/M/1 0.95 DPBM(k=50) Schruben 386 2874 200 0.930 0.00930 870420.577 1888071.570

M/M/1 0.5 DPBM(k=15) CumulativeMeans 633 3742 200 0.947 0.00721 4434.984 13131.513

M/M/1 0.5 DPBM(k=15) Schruben 704 4024 200 0.950 0.00671 4429.561 13404.649

M/M/1 0.6 DPBM(k=15) CumulativeMeans 497 3403 200 0.941 0.00790 7839.570 22987.054

M/M/1 0.6 DPBM(k=15) Schruben 547 3818 200 0.948 0.00707 7766.950 23334.039

M/M/1 0.7 DPBM(k=15) Schruben 442 3452 200 0.942 0.00779 15658.312 46622.590

M/M/1 0.7 DPBM(k=15) CumulativeMeans 425 3317 200 0.940 0.00810 15797.079 46339.172

M/M/1 0.8 DPBM(k=15) CumulativeMeans 531 3003 200 0.933 0.00892 40200.264 116946.390

M/M/1 0.8 DPBM(k=15) Schruben 554 3128 200 0.936 0.00857 40463.876 117964.435

M/M/1 0.9 DPBM(k=15) CumulativeMeans 466 2983 200 0.933 0.00898 221249.102 484340.515

M/M/1 0.9 DPBM(k=15) Schruben 576 3528 200 0.943 0.00763 193101.902 511076.351

M/M/1 0.95 DPBM(k=15) CumulativeMeans 1046 2920 242 0.917 0.01000 1132624.203 1582889.674

M/M/1 0.95 DPBM(k=15) Schruben 437 2821 225 0.920 0.01000 973657.420 1873689.061

M/M/1 0.5 MSE-DPBM CumulativeMeans 839 4021 200 0.950 0.00672 4409.576 13130.874

M/M/1 0.5 MSE-DPBM Schruben 700 3947 200 0.949 0.00684 4414.412 13407.614

A
P
P
E
N
D
IX

E
.
T
A
B
L
E
S
O
F
R
E
S
U
L
T
S
P
E
R

M
O
D
E
L

124

M/M/1 0.6 MSE-DPBM CumulativeMeans 535 3669 200 0.945 0.00735 7817.855 23009.636

M/M/1 0.6 MSE-DPBM Schruben 562 3894 200 0.949 0.00693 7703.258 23331.484

M/M/1 0.7 MSE-DPBM Schruben 517 3478 200 0.942 0.00774 15402.717 46621.981

M/M/1 0.7 MSE-DPBM CumulativeMeans 528 3509 200 0.943 0.00767 15553.193 46342.798

M/M/1 0.8 MSE-DPBM CumulativeMeans 539 3138 200 0.936 0.00855 39680.113 116769.455

M/M/1 0.8 MSE-DPBM Schruben 526 3139 200 0.936 0.00854 39836.457 117710.300

M/M/1 0.9 MSE-DPBM CumulativeMeans 363 2817 200 0.929 0.00948 219474.191 484102.308

M/M/1 0.9 MSE-DPBM Schruben 574 3579 200 0.944 0.00753 190757.628 511137.642

M/M/1 0.95 MSE-DPBM CumulativeMeans 1044 2915 241 0.917 0.01000 1121150.102 1578783.920

M/M/1 0.95 MSE-DPBM Schruben 429 2729 210 0.923 0.01000 966762.428 1869275.374

M/M/1 0.5 Mod. MSE-DPBM CumulativeMeans 808 3866 200 0.948 0.00698 4256.167 13017.297

M/M/1 0.5 Mod. MSE-DPBM Schruben 857 4267 200 0.953 0.00634 4231.421 13274.664

M/M/1 0.6 Mod. MSE-DPBM CumulativeMeans 507 3496 200 0.943 0.00770 7344.981 22682.353

M/M/1 0.6 Mod. MSE-DPBM Schruben 658 4112 200 0.951 0.00657 7253.206 23041.541

M/M/1 0.7 Mod. MSE-DPBM Schruben 490 3366 200 0.941 0.00799 14545.610 45840.963

M/M/1 0.7 Mod. MSE-DPBM CumulativeMeans 500 3453 200 0.942 0.00779 14652.814 45672.610

M/M/1 0.8 Mod. MSE-DPBM CumulativeMeans 604 3260 200 0.939 0.00824 36977.622 115407.086

M/M/1 0.8 Mod. MSE-DPBM Schruben 621 3346 200 0.940 0.00803 36945.963 116074.838

M/M/1 0.9 Mod. MSE-DPBM CumulativeMeans 715 4096 200 0.951 0.00660 161335.373 510614.788

M/M/1 0.9 Mod. MSE-DPBM Schruben 724 4138 200 0.952 0.00653 160673.174 510767.003

M/M/1 0.95 Mod. MSE-DPBM Schruben 516 3645 200 0.945 0.00739 674549.187 2091911.295

M/M/1 0.95 Mod. MSE-DPBM CumulativeMeans 510 3687 200 0.946 0.00731 678515.146 2108415.181

Table E.2: M/M/1 Results Table

Model Load SOAM Transient M. Short Runs No. Runs No. Bad CIs Coverage Δz 1
2

σ(L̄) L̄

M/D/1 0.5 SA/HW Schruben 650 3631 200 0.945 0.00742 1486.006 3508.210

M/D/1 0.5 SA/HW CumulativeMeans 464 3172 288 0.909 0.01000 1262.804 1973.141

M/D/1 0.6 SA/HW Schruben 488 3688 200 0.946 0.00731 3167.599 6561.700

A
P
P
E
N
D
IX

E
.
T
A
B
L
E
S
O
F
R
E
S
U
L
T
S
P
E
R

M
O
D
E
L

125

M/D/1 0.6 SA/HW CumulativeMeans 445 3103 275 0.911 0.01000 2894.693 4546.648

M/D/1 0.7 SA/HW Schruben 400 2855 200 0.930 0.00936 7255.593 14458.083

M/D/1 0.7 SA/HW CumulativeMeans 375 3000 256 0.915 0.01000 6918.226 11361.186

M/D/1 0.8 SA/HW Schruben 447 2990 200 0.933 0.00896 21049.368 41184.397

M/D/1 0.8 SA/HW CumulativeMeans 366 2698 205 0.924 0.01000 20609.424 36071.729

M/D/1 0.9 SA/HW Schruben 406 2698 200 0.926 0.00989 111401.877 213543.009

M/D/1 0.9 SA/HW CumulativeMeans 438 2768 200 0.928 0.00965 111922.580 208702.591

M/D/1 0.95 SA/HW Schruben 448 3035 200 0.934 0.00883 525311.870 994545.019

M/D/1 0.95 SA/HW CumulativeMeans 422 2860 200 0.930 0.00935 526499.593 984025.428

M/D/1 0.5 DPBM(k=50) Schruben 523 3138 200 0.936 0.00855 792.459 1918.795

M/D/1 0.5 DPBM(k=50) CumulativeMeans 1073 4154 200 0.952 0.00651 721.699 1723.519

M/D/1 0.6 DPBM(k=50) CumulativeMeans 632 3765 200 0.947 0.00716 1630.169 4015.720

M/D/1 0.6 DPBM(k=50) Schruben 565 3561 200 0.944 0.00756 1621.651 4280.669

M/D/1 0.7 DPBM(k=50) CumulativeMeans 609 3864 200 0.948 0.00699 3865.489 10470.801

M/D/1 0.7 DPBM(k=50) Schruben 703 4225 200 0.953 0.00640 3799.760 10771.656

M/D/1 0.8 DPBM(k=50) CumulativeMeans 829 5030 200 0.960 0.00540 11295.408 34572.847

M/D/1 0.8 DPBM(k=50) Schruben 858 4975 200 0.960 0.00546 11256.344 34973.221

M/D/1 0.9 DPBM(k=50) CumulativeMeans 627 4227 200 0.953 0.00640 60107.185 194673.975

M/D/1 0.9 DPBM(k=50) Schruben 689 4304 200 0.954 0.00629 58640.098 197600.655

M/D/1 0.95 DPBM(k=50) CumulativeMeans 402 3029 200 0.934 0.00884 379242.871 854543.868

M/D/1 0.95 DPBM(k=50) Schruben 322 3256 200 0.939 0.00825 346136.258 887291.218

M/D/1 0.5 DPBM(k=15) Schruben 421 2679 202 0.925 0.01000 913.979 2083.976

M/D/1 0.5 DPBM(k=15) CumulativeMeans 656 3326 200 0.940 0.00808 870.456 1870.811

M/D/1 0.6 DPBM(k=15) CumulativeMeans 562 3163 200 0.937 0.00848 1928.953 4275.320

M/D/1 0.6 DPBM(k=15) Schruben 520 3164 200 0.937 0.00848 1941.673 4543.456

M/D/1 0.7 DPBM(k=15) CumulativeMeans 401 2809 200 0.929 0.00951 4708.362 10955.683

M/D/1 0.7 DPBM(k=15) Schruben 441 2976 200 0.933 0.00900 4667.201 11242.866

M/D/1 0.8 DPBM(k=15) Schruben 683 3817 200 0.948 0.00707 13771.218 36106.431

M/D/1 0.8 DPBM(k=15) CumulativeMeans 636 3554 200 0.944 0.00758 13832.280 35514.696

M/D/1 0.9 DPBM(k=15) CumulativeMeans 396 3058 200 0.935 0.00876 79711.431 194515.089

A
P
P
E
N
D
IX

E
.
T
A
B
L
E
S
O
F
R
E
S
U
L
T
S
P
E
R

M
O
D
E
L

126

M/D/1 0.9 DPBM(k=15) Schruben 484 3373 200 0.941 0.00797 75303.398 201841.318

M/D/1 0.95 DPBM(k=15) CumulativeMeans 632 2915 241 0.917 0.01000 483124.939 789174.818

M/D/1 0.95 DPBM(k=15) Schruben 345 2866 200 0.930 0.00933 401747.787 906234.555

M/D/1 0.5 MSE-DPBM Schruben 421 2679 202 0.925 0.01000 913.979 2083.976

M/D/1 0.5 MSE-DPBM CumulativeMeans 656 3326 200 0.940 0.00808 870.485 1870.917

M/D/1 0.6 MSE-DPBM CumulativeMeans 561 3164 200 0.937 0.00848 1928.434 4278.186

M/D/1 0.6 MSE-DPBM Schruben 523 3172 200 0.937 0.00846 1937.244 4542.505

M/D/1 0.7 MSE-DPBM CumulativeMeans 403 2827 200 0.929 0.00945 4710.115 10967.461

M/D/1 0.7 MSE-DPBM Schruben 444 3020 200 0.934 0.00887 4663.016 11230.304

M/D/1 0.8 MSE-DPBM CumulativeMeans 627 3531 200 0.943 0.00762 13755.733 35532.354

M/D/1 0.8 MSE-DPBM Schruben 666 3760 200 0.947 0.00717 13750.568 36074.302

M/D/1 0.9 MSE-DPBM CumulativeMeans 392 3016 200 0.934 0.00888 80038.832 195303.320

M/D/1 0.9 MSE-DPBM Schruben 508 3536 200 0.943 0.00761 74750.247 202021.853

M/D/1 0.95 MSE-DPBM CumulativeMeans 601 2839 228 0.920 0.01000 477897.638 788486.261

M/D/1 0.95 MSE-DPBM Schruben 354 2975 200 0.933 0.00900 397839.569 903085.391

M/D/1 0.5 Mod. MSE-DPBM CumulativeMeans 0 2983 253 0.915 0.01000 220.794 4126.707

M/D/1 0.5 Mod. MSE-DPBM Schruben 0 2920 242 0.917 0.01000 221.257 4408.905

M/D/1 0.6 Mod. MSE-DPBM CumulativeMeans 0 3156 285 0.910 0.01000 1498.751 5050.176

M/D/1 0.6 Mod. MSE-DPBM Schruben 0 2955 248 0.916 0.01000 1461.769 5332.624

M/D/1 0.7 Mod. MSE-DPBM CumulativeMeans 382 2837 200 0.930 0.00942 4557.025 10929.803

M/D/1 0.7 Mod. MSE-DPBM Schruben 520 3314 200 0.940 0.00811 4443.292 11238.517

M/D/1 0.8 Mod. MSE-DPBM Schruben 689 4029 200 0.950 0.00671 13141.179 35571.430

M/D/1 0.8 Mod. MSE-DPBM CumulativeMeans 709 3995 200 0.950 0.00676 13226.494 35170.016

M/D/1 0.9 Mod. MSE-DPBM Schruben 842 4122 200 0.951 0.00656 66837.778 200173.155

M/D/1 0.9 Mod. MSE-DPBM CumulativeMeans 887 4395 200 0.954 0.00616 67403.132 199315.195

M/D/1 0.95 Mod. MSE-DPBM CumulativeMeans 686 3821 200 0.948 0.00706 304427.570 938234.761

M/D/1 0.95 Mod. MSE-DPBM Schruben 615 3611 200 0.945 0.00746 306503.560 943886.910

Table E.3: M/D/1 Results Table

A
P
P
E
N
D
IX

E
.
T
A
B
L
E
S
O
F
R
E
S
U
L
T
S
P
E
R

M
O
D
E
L

127

Model Load SOAM Transient M. Short Runs No. Runs No. Bad CIs Coverage Δz 1
2

σ(L̄) L̄

M/H2/1 0.5 SA/HW Schruben 452 2997 200 0.933 0.00893 57674.039 123912.116

M/H2/1 0.5 SA/HW CumulativeMeans 476 2885 200 0.931 0.00927 57175.554 122893.460

M/H2/1 0.6 SA/HW Schruben 418 2835 200 0.929 0.00943 87043.047 181578.977

M/H2/1 0.6 SA/HW CumulativeMeans 432 2720 200 0.926 0.00981 86317.419 182308.578

M/H2/1 0.7 SA/HW Schruben 417 2731 200 0.927 0.00977 149843.794 301715.945

M/H2/1 0.7 SA/HW CumulativeMeans 412 2766 200 0.928 0.00965 151528.966 305956.040

M/H2/1 0.8 SA/HW Schruben 388 2834 200 0.929 0.00943 312137.848 605675.193

M/H2/1 0.8 SA/HW CumulativeMeans 423 3006 200 0.933 0.00891 310540.479 612048.825

M/H2/1 0.9 SA/HW CumulativeMeans 479 3072 200 0.935 0.00872 1053390.608 2067673.817

M/H2/1 0.9 SA/HW Schruben 474 3034 200 0.934 0.00883 1060370.904 2059401.160

M/H2/1 0.95 SA/HW CumulativeMeans 407 2736 211 0.923 0.01000 4079278.549 7715059.357

M/H2/1 0.95 SA/HW Schruben 422 2757 200 0.927 0.00968 4031780.527 7711850.075

M/H2/1 0.5 DPBM(k=50) CumulativeMeans 691 4248 200 0.953 0.00637 22913.856 119351.333

M/H2/1 0.5 DPBM(k=50) Schruben 736 4436 200 0.955 0.00611 22762.455 119298.166

M/H2/1 0.6 DPBM(k=50) CumulativeMeans 756 4450 200 0.955 0.00609 36942.403 176712.288

M/H2/1 0.6 DPBM(k=50) Schruben 645 4082 200 0.951 0.00662 36773.776 176470.692

M/H2/1 0.7 DPBM(k=50) CumulativeMeans 747 3906 200 0.949 0.00691 62344.172 290181.687

M/H2/1 0.7 DPBM(k=50) Schruben 814 4131 200 0.952 0.00655 62800.599 289690.302

M/H2/1 0.8 DPBM(k=50) Schruben 658 4488 200 0.955 0.00604 137660.641 572127.241

M/H2/1 0.8 DPBM(k=50) CumulativeMeans 848 4536 200 0.956 0.00597 128089.001 578954.616

M/H2/1 0.9 DPBM(k=50) Schruben 311 3062 200 0.935 0.00875 727465.175 1834404.883

M/H2/1 0.9 DPBM(k=50) CumulativeMeans 292 3487 200 0.943 0.00772 602332.617 1928061.858

M/H2/1 0.95 DPBM(k=50) Schruben 795 2794 200 0.928 0.00956 3443150.693 5756450.401

M/H2/1 0.95 DPBM(k=50) CumulativeMeans 755 2949 200 0.932 0.00907 3299919.784 6028409.636

M/H2/1 0.5 DPBM(k=15) Schruben 626 3573 200 0.944 0.00754 34424.218 119374.135

M/H2/1 0.5 DPBM(k=15) CumulativeMeans 633 3621 200 0.945 0.00744 34284.229 119404.664

M/H2/1 0.6 DPBM(k=15) CumulativeMeans 474 3485 200 0.943 0.00772 51824.921 177562.611

M/H2/1 0.6 DPBM(k=15) Schruben 492 3561 200 0.944 0.00756 51577.711 177009.109

M/H2/1 0.7 DPBM(k=15) Schruben 590 3639 200 0.945 0.00740 91350.152 294166.985

A
P
P
E
N
D
IX

E
.
T
A
B
L
E
S
O
F
R
E
S
U
L
T
S
P
E
R

M
O
D
E
L

128

M/H2/1 0.7 DPBM(k=15) CumulativeMeans 559 3483 200 0.943 0.00773 90000.330 295151.194

M/H2/1 0.8 DPBM(k=15) Schruben 572 3985 200 0.950 0.00678 189633.769 579184.330

M/H2/1 0.8 DPBM(k=15) CumulativeMeans 601 3832 200 0.948 0.00704 181690.503 585626.484

M/H2/1 0.9 DPBM(k=15) Schruben 373 2716 200 0.926 0.00982 879138.899 1815273.908

M/H2/1 0.9 DPBM(k=15) CumulativeMeans 399 3002 200 0.933 0.00892 805121.742 1902458.539

M/H2/1 0.95 DPBM(k=15) Schruben 912 2892 237 0.918 0.01000 3845532.033 5788191.605

M/H2/1 0.95 DPBM(k=15) CumulativeMeans 846 2897 238 0.918 0.01000 3769066.259 6013705.553

M/H2/1 0.5 MSE-DPBM Schruben 598 3535 200 0.943 0.00762 33506.748 119182.978

M/H2/1 0.5 MSE-DPBM CumulativeMeans 592 3540 200 0.944 0.00761 33242.296 119161.481

M/H2/1 0.6 MSE-DPBM CumulativeMeans 492 3584 200 0.944 0.00752 50584.745 177731.099

M/H2/1 0.6 MSE-DPBM Schruben 515 3745 200 0.947 0.00720 49834.664 176970.053

M/H2/1 0.7 MSE-DPBM Schruben 570 3572 200 0.944 0.00754 88976.751 293612.637

M/H2/1 0.7 MSE-DPBM CumulativeMeans 636 3406 200 0.941 0.00790 88059.564 294792.345

M/H2/1 0.8 MSE-DPBM CumulativeMeans 596 3837 200 0.948 0.00703 178609.463 585953.650

M/H2/1 0.8 MSE-DPBM Schruben 694 4093 200 0.951 0.00660 185337.936 581580.049

M/H2/1 0.9 MSE-DPBM Schruben 384 2818 200 0.929 0.00948 870720.886 1806992.219

M/H2/1 0.9 MSE-DPBM CumulativeMeans 309 2869 200 0.930 0.00932 795247.946 1895587.158

M/H2/1 0.95 MSE-DPBM Schruben 861 2717 208 0.923 0.01000 3806777.815 5786733.224

M/H2/1 0.95 MSE-DPBM CumulativeMeans 813 2803 222 0.921 0.01000 3727494.191 6012581.196

M/H2/1 0.5 Mod. MSE-DPBM Schruben 661 3664 200 0.945 0.00736 30720.824 118061.258

M/H2/1 0.5 Mod. MSE-DPBM CumulativeMeans 656 3732 200 0.946 0.00723 30544.433 118893.504

M/H2/1 0.6 Mod. MSE-DPBM Schruben 479 3781 200 0.947 0.00713 46094.609 175255.109

M/H2/1 0.6 Mod. MSE-DPBM CumulativeMeans 438 3516 200 0.943 0.00766 45926.235 175854.039

M/H2/1 0.7 Mod. MSE-DPBM Schruben 556 3568 200 0.944 0.00755 79815.794 290849.409

M/H2/1 0.7 Mod. MSE-DPBM CumulativeMeans 528 3429 200 0.942 0.00784 78827.742 290876.727

M/H2/1 0.8 Mod. MSE-DPBM CumulativeMeans 722 4142 200 0.952 0.00653 153530.095 581265.281

M/H2/1 0.8 Mod. MSE-DPBM Schruben 648 4144 200 0.952 0.00653 156278.842 580833.611

M/H2/1 0.9 Mod. MSE-DPBM Schruben 702 4174 200 0.952 0.00648 548093.616 1980632.137

M/H2/1 0.9 Mod. MSE-DPBM CumulativeMeans 708 4367 200 0.954 0.00620 542823.044 1985828.711

M/H2/1 0.95 Mod. MSE-DPBM CumulativeMeans 500 3529 200 0.943 0.00763 2226171.426 7115973.626

A
P
P
E
N
D
IX

E
.
T
A
B
L
E
S
O
F
R
E
S
U
L
T
S
P
E
R

M
O
D
E
L

129

M/H2/1 0.95 Mod. MSE-DPBM Schruben 509 3549 200 0.944 0.00759 2237366.458 7151828.159

Table E.4: M/H2/1 Results Table

Model Load SOAM Transient M. Short Runs No. Runs No. Bad CIs Coverage Δz 1
2

σ(L̄) L̄

QNet 0.5 SA/HW Schruben 508 3225 200 0.938 0.00832 5381.268 12504.138

QNet 0.5 SA/HW CumulativeMeans 224 5266 350 0.934 0.00673 9179.315 17442.026

QNet 0.6 SA/HW Schruben 564 3489 200 0.943 0.00771 8603.445 19470.975

QNet 0.6 SA/HW CumulativeMeans 188 4888 338 0.931 0.00711 15006.602 27747.440

QNet 0.7 SA/HW Schruben 441 3073 200 0.935 0.00872 15916.497 33833.185

QNet 0.7 SA/HW CumulativeMeans 202 5110 328 0.936 0.00672 26535.484 48129.322

QNet 0.8 SA/HW Schruben 479 2899 200 0.931 0.00923 35360.852 72506.196

QNet 0.8 SA/HW CumulativeMeans 192 5648 348 0.938 0.00627 59114.796 101297.488

QNet 0.9 SA/HW Schruben 479 3221 200 0.938 0.00833 130138.562 251708.501

QNet 0.9 SA/HW CumulativeMeans 142 4934 336 0.932 0.00703 202153.624 325588.813

QNet 0.95 SA/HW Schruben 471 3005 257 0.914 0.01000 515755.430 931039.710

QNet 0.95 SA/HW CumulativeMeans 475 2969 200 0.933 0.00902 524835.146 1097713.116

QNet 0.5 DPBM(k=50) CumulativeMeans 611 3521 200 0.943 0.00765 2198.007 10601.130

QNet 0.5 DPBM(k=50) Schruben 630 3682 200 0.946 0.00732 2115.319 9635.670

QNet 0.6 DPBM(k=50) Schruben 697 3934 200 0.949 0.00686 3586.181 15441.116

QNet 0.6 DPBM(k=50) CumulativeMeans 646 3663 200 0.945 0.00736 3713.480 16958.936

QNet 0.7 DPBM(k=50) CumulativeMeans 620 3646 200 0.945 0.00739 7054.980 30296.156

QNet 0.7 DPBM(k=50) Schruben 589 3789 200 0.947 0.00712 6746.274 27699.527

QNet 0.8 DPBM(k=50) Schruben 753 3717 200 0.946 0.00725 15919.411 62351.794

QNet 0.8 DPBM(k=50) CumulativeMeans 752 3763 200 0.947 0.00717 16332.167 66918.458

QNet 0.9 DPBM(k=50) CumulativeMeans 647 4176 200 0.952 0.00648 62485.341 234035.325

QNet 0.9 DPBM(k=50) Schruben 739 4438 200 0.955 0.00610 61758.770 224066.710

QNet 0.95 DPBM(k=50) CumulativeMeans 469 3513 200 0.943 0.00766 272752.366 863012.857

QNet 0.95 DPBM(k=50) Schruben 455 3397 200 0.941 0.00792 270505.613 850299.943

A
P
P
E
N
D
IX

E
.
T
A
B
L
E
S
O
F
R
E
S
U
L
T
S
P
E
R

M
O
D
E
L

130

QNet 0.5 DPBM(k=15) CumulativeMeans 559 3261 200 0.939 0.00824 3169.202 11021.483

QNet 0.5 DPBM(k=15) Schruben 558 3435 200 0.942 0.00783 2994.940 10029.950

QNet 0.6 DPBM(k=15) CumulativeMeans 671 3508 200 0.943 0.00767 5349.467 18014.899

QNet 0.6 DPBM(k=15) Schruben 717 3946 200 0.949 0.00684 5086.901 16372.203

QNet 0.7 DPBM(k=15) Schruben 729 3721 200 0.946 0.00725 9405.755 29329.385

QNet 0.7 DPBM(k=15) CumulativeMeans 691 3652 200 0.945 0.00738 9516.081 31998.582

QNet 0.8 DPBM(k=15) CumulativeMeans 675 3446 200 0.942 0.00781 22528.595 71674.439

QNet 0.8 DPBM(k=15) Schruben 682 3471 200 0.942 0.00775 22145.206 66203.273

QNet 0.9 DPBM(k=15) CumulativeMeans 765 4041 200 0.951 0.00669 81591.996 249732.725

QNet 0.9 DPBM(k=15) Schruben 822 4115 200 0.951 0.00657 80564.666 239103.012

QNet 0.95 DPBM(k=15) CumulativeMeans 613 3347 200 0.940 0.00803 336205.897 914282.836

QNet 0.95 DPBM(k=15) Schruben 535 2909 200 0.931 0.00920 335193.558 901398.591

QNet 0.5 MSE-DPBM CumulativeMeans 560 3260 200 0.939 0.00824 3154.562 11014.078

QNet 0.5 MSE-DPBM Schruben 558 3447 200 0.942 0.00780 2987.629 10038.749

QNet 0.6 MSE-DPBM CumulativeMeans 667 3475 200 0.942 0.00774 5349.395 18009.959

QNet 0.6 MSE-DPBM Schruben 717 3927 200 0.949 0.00688 5063.519 16368.316

QNet 0.7 MSE-DPBM Schruben 721 3698 200 0.946 0.00729 9344.426 29246.952

QNet 0.7 MSE-DPBM CumulativeMeans 682 3613 200 0.945 0.00746 9489.436 32037.522

QNet 0.8 MSE-DPBM CumulativeMeans 675 3422 200 0.942 0.00786 22413.793 71660.471

QNet 0.8 MSE-DPBM Schruben 680 3489 200 0.943 0.00771 21868.271 66022.300

QNet 0.9 MSE-DPBM CumulativeMeans 763 4043 200 0.951 0.00668 81323.643 249584.312

QNet 0.9 MSE-DPBM Schruben 815 4122 200 0.951 0.00656 79809.554 238995.849

QNet 0.95 MSE-DPBM Schruben 500 2843 200 0.930 0.00940 331072.697 900649.050

QNet 0.95 MSE-DPBM CumulativeMeans 625 3398 200 0.941 0.00791 334472.527 914983.845

QNet 0.5 Mod. MSE-DPBM CumulativeMeans 583 3275 200 0.939 0.00820 3013.452 10923.571

QNet 0.5 Mod. MSE-DPBM Schruben 543 3419 200 0.942 0.00787 2884.290 9956.261

QNet 0.6 Mod. MSE-DPBM CumulativeMeans 640 3353 200 0.940 0.00802 4917.493 17635.350

QNet 0.6 Mod. MSE-DPBM Schruben 697 3943 200 0.949 0.00685 4820.327 16105.243

QNet 0.7 Mod. MSE-DPBM Schruben 688 3690 200 0.946 0.00731 8893.976 28723.943

QNet 0.7 Mod. MSE-DPBM CumulativeMeans 625 3470 200 0.942 0.00775 8981.217 31359.621

A
P
P
E
N
D
IX

E
.
T
A
B
L
E
S
O
F
R
E
S
U
L
T
S
P
E
R

M
O
D
E
L

131

QNet 0.8 Mod. MSE-DPBM Schruben 679 3284 200 0.939 0.00818 20441.343 63807.471

QNet 0.8 Mod. MSE-DPBM CumulativeMeans 637 3357 200 0.940 0.00801 20789.104 68852.867

QNet 0.9 Mod. MSE-DPBM CumulativeMeans 568 3380 200 0.941 0.00795 76787.854 228340.124

QNet 0.9 Mod. MSE-DPBM Schruben 578 3322 200 0.940 0.00809 78143.262 222201.519

QNet 0.95 Mod. MSE-DPBM CumulativeMeans 425 2915 241 0.917 0.01000 329586.959 810292.465

QNet 0.95 Mod. MSE-DPBM Schruben 457 3005 257 0.914 0.01000 332848.919 796225.680

Table E.5: QNet Results Table

Model Load SOAM Transient M. Batch Size m No. of Batces k Optimal Batch Size m∗

AR(1) 0.5 SA/HW Schruben 17.0792 153.483 0

AR(1) 0.5 SA/HW CumulativeMeans 13.5929 143.929 0

AR(1) 0.6 SA/HW Schruben 17.2308 154.344 0

AR(1) 0.6 SA/HW CumulativeMeans 14.2279 144.677 0

AR(1) 0.7 SA/HW Schruben 18.2316 151.037 0

AR(1) 0.7 SA/HW CumulativeMeans 15.1788 144.602 0

AR(1) 0.8 SA/HW Schruben 19.1383 146.508 0

AR(1) 0.8 SA/HW CumulativeMeans 16.2864 144.649 0

AR(1) 0.9 SA/HW Schruben 21.2128 142.427 0

AR(1) 0.9 SA/HW CumulativeMeans 18.2909 143.434 0

AR(1) 0.95 SA/HW Schruben 25.1023 142.105 0

AR(1) 0.95 SA/HW CumulativeMeans 20.9239 146.654 0

M/H2/1 0.5 SA/HW Schruben 888.112 144.25 0

M/H2/1 0.5 SA/HW CumulativeMeans 881.578 144.068 0

M/H2/1 0.6 SA/HW Schruben 1316.18 143.063 0

M/H2/1 0.6 SA/HW CumulativeMeans 1311.41 144.401 0

M/H2/1 0.7 SA/HW Schruben 2153.26 144.464 0

M/H2/1 0.7 SA/HW CumulativeMeans 2188.18 144.5 0

M/H2/1 0.8 SA/HW Schruben 4333.67 144.721 0

M/H2/1 0.8 SA/HW CumulativeMeans 4391.85 143.855 0

A
P
P
E
N
D
IX

E
.
T
A
B
L
E
S
O
F
R
E
S
U
L
T
S
P
E
R

M
O
D
E
L

132

M/H2/1 0.9 SA/HW Schruben 14923.7 143.694 0

M/H2/1 0.9 SA/HW CumulativeMeans 14973.9 144.028 0

M/H2/1 0.95 SA/HW Schruben 54640.8 145.627 0

M/H2/1 0.95 SA/HW CumulativeMeans 54508.2 145.398 0

M/D/1 0.5 SA/HW Schruben 22.9424 149.987 0

M/D/1 0.5 SA/HW CumulativeMeans 13.9227 145.388 0

M/D/1 0.6 SA/HW Schruben 45.1456 145.399 0

M/D/1 0.6 SA/HW CumulativeMeans 31.9914 145.362 0

M/D/1 0.7 SA/HW Schruben 101.899 145.009 0

M/D/1 0.7 SA/HW CumulativeMeans 81.1836 145.613 0

M/D/1 0.8 SA/HW Schruben 295.178 144.632 0

M/D/1 0.8 SA/HW CumulativeMeans 259.606 145.617 0

M/D/1 0.9 SA/HW Schruben 1536.63 144.759 0

M/D/1 0.9 SA/HW CumulativeMeans 1495.42 144.999 0

M/D/1 0.95 SA/HW Schruben 7182.94 144.827 0

M/D/1 0.95 SA/HW CumulativeMeans 7147.95 144.74 0

M/M/1 0.5 SA/HW Schruben 114.564 143.693 0

M/M/1 0.5 SA/HW CumulativeMeans 94.605 144.841 0

M/M/1 0.6 SA/HW Schruben 190.3 144.608 0

M/M/1 0.6 SA/HW CumulativeMeans 166.518 144.348 0

M/M/1 0.7 SA/HW Schruben 372.142 143.47 0

M/M/1 0.7 SA/HW CumulativeMeans 336.701 143.805 0

M/M/1 0.8 SA/HW Schruben 900.564 143.529 0

M/M/1 0.8 SA/HW CumulativeMeans 862.321 143.969 0

M/M/1 0.9 SA/HW Schruben 3808.96 145.18 0

M/M/1 0.9 SA/HW CumulativeMeans 3755.58 144.943 0

M/M/1 0.95 SA/HW Schruben 15767.1 144.081 0

M/M/1 0.95 SA/HW CumulativeMeans 15776.4 144.051 0

QNet 0.5 SA/HW Schruben 87.9731 144.192 0

QNet 0.5 SA/HW CumulativeMeans 114.314 144.018 0

A
P
P
E
N
D
IX

E
.
T
A
B
L
E
S
O
F
R
E
S
U
L
T
S
P
E
R

M
O
D
E
L

133

QNet 0.6 SA/HW Schruben 138.031 144.144 0

QNet 0.6 SA/HW CumulativeMeans 185.091 144.072 0

QNet 0.7 SA/HW Schruben 240.273 144.805 0

QNet 0.7 SA/HW CumulativeMeans 323.265 144.955 0

QNet 0.8 SA/HW Schruben 508.222 145.219 0

QNet 0.8 SA/HW CumulativeMeans 687.452 144.296 0

QNet 0.9 SA/HW Schruben 1775.51 145.203 0

QNet 0.9 SA/HW CumulativeMeans 2241.77 144.789 0

QNet 0.95 SA/HW Schruben 6717.11 144.578 0

QNet 0.95 SA/HW CumulativeMeans 7821.57 143.807 0

AR(1) 0.5 MSE-DPBM CumulativeMeans 68.9344 15.022 110.056

AR(1) 0.5 MSE-DPBM Schruben 68.9753 15.0224 110.131

AR(1) 0.6 MSE-DPBM CumulativeMeans 68.2947 15.0117 109.038

AR(1) 0.6 MSE-DPBM Schruben 68.2447 15.0128 108.978

AR(1) 0.7 MSE-DPBM Schruben 66.9611 15.0082 106.959

AR(1) 0.7 MSE-DPBM CumulativeMeans 66.9124 15.0071 106.896

AR(1) 0.8 MSE-DPBM Schruben 63.693 15.004 101.838

AR(1) 0.8 MSE-DPBM CumulativeMeans 63.9297 15.002 102.218

AR(1) 0.9 MSE-DPBM Schruben 43.6855 15.0003 70.2802

AR(1) 0.9 MSE-DPBM CumulativeMeans 44.8332 15.0002 72.0925

AR(1) 0.95 MSE-DPBM Schruben 9.18715 15 15.6686

AR(1) 0.95 MSE-DPBM CumulativeMeans 9.58601 15 16.302

M/H2/1 0.5 MSE-DPBM CumulativeMeans 5226.38 16.1656 8440.96

M/H2/1 0.5 MSE-DPBM Schruben 5224.79 16.1865 8440.73

M/H2/1 0.6 MSE-DPBM CumulativeMeans 7859.32 16.1238 12693.2

M/H2/1 0.6 MSE-DPBM Schruben 7877.7 16.1197 12719.8

M/H2/1 0.7 MSE-DPBM CumulativeMeans 13026.6 16.1044 21025.7

M/H2/1 0.7 MSE-DPBM Schruben 12946.3 16.1003 20899.2

M/H2/1 0.8 MSE-DPBM CumulativeMeans 25982.6 16.156 41991.8

M/H2/1 0.8 MSE-DPBM Schruben 25696.3 16.1564 41536.9

A
P
P
E
N
D
IX

E
.
T
A
B
L
E
S
O
F
R
E
S
U
L
T
S
P
E
R

M
O
D
E
L

134

M/H2/1 0.9 MSE-DPBM Schruben 79000.5 16.139 127859

M/H2/1 0.9 MSE-DPBM CumulativeMeans 82560.4 16.2119 133640

M/H2/1 0.95 MSE-DPBM Schruben 244123 16.0368 395709

M/H2/1 0.95 MSE-DPBM CumulativeMeans 252555 16.0765 409484

M/D/1 0.5 MSE-DPBM Schruben 85.7263 15.0109 136.591

M/D/1 0.5 MSE-DPBM CumulativeMeans 85.7823 15.0043 136.634

M/D/1 0.6 MSE-DPBM Schruben 200.131 15.0348 317.621

M/D/1 0.6 MSE-DPBM CumulativeMeans 201.172 15.0329 319.332

M/D/1 0.7 MSE-DPBM CumulativeMeans 514.745 15.1208 816.871

M/D/1 0.7 MSE-DPBM Schruben 514.093 15.1348 815.962

M/D/1 0.8 MSE-DPBM CumulativeMeans 1646.54 15.3202 2620.56

M/D/1 0.8 MSE-DPBM Schruben 1642.83 15.3422 2615.38

M/D/1 0.9 MSE-DPBM CumulativeMeans 8786.39 15.7422 14093.4

M/D/1 0.9 MSE-DPBM Schruben 8939.04 15.8303 14360.1

M/D/1 0.95 MSE-DPBM CumulativeMeans 35264.9 15.9532 56955.2

M/D/1 0.95 MSE-DPBM Schruben 39460.8 16.0547 63706.9

M/M/1 0.5 MSE-DPBM Schruben 599.217 15.3205 954.466

M/M/1 0.5 MSE-DPBM CumulativeMeans 601.663 15.3282 958.152

M/M/1 0.6 MSE-DPBM CumulativeMeans 1049.2 15.4591 1674.55

M/M/1 0.6 MSE-DPBM Schruben 1059.95 15.4475 1691.58

M/M/1 0.7 MSE-DPBM Schruben 2085.48 15.629 3337.78

M/M/1 0.7 MSE-DPBM CumulativeMeans 2097.75 15.6173 3356.94

M/M/1 0.8 MSE-DPBM CumulativeMeans 5199.61 15.8172 8350.47

M/M/1 0.8 MSE-DPBM Schruben 5198.41 15.8728 8352.72

M/M/1 0.9 MSE-DPBM CumulativeMeans 21208.2 15.9916 34192.5

M/M/1 0.9 MSE-DPBM Schruben 22494.6 16.067 36297.3

M/M/1 0.95 MSE-DPBM CumulativeMeans 70269.9 15.9672 113849

M/M/1 0.95 MSE-DPBM Schruben 83345.7 16.104 134871

QNet 0.5 MSE-DPBM CumulativeMeans 440.692 15.1632 700.732

QNet 0.5 MSE-DPBM Schruben 459.65 15.1936 731.014

A
P
P
E
N
D
IX

E
.
T
A
B
L
E
S
O
F
R
E
S
U
L
T
S
P
E
R

M
O
D
E
L

135

QNet 0.6 MSE-DPBM CumulativeMeans 729.66 15.1796 1159.63

QNet 0.6 MSE-DPBM Schruben 744.113 15.257 1183.7

QNet 0.7 MSE-DPBM Schruben 1352.79 15.2942 2152.89

QNet 0.7 MSE-DPBM CumulativeMeans 1336.02 15.2231 2123.85

QNet 0.8 MSE-DPBM Schruben 3041.91 15.3363 4843.26

QNet 0.8 MSE-DPBM CumulativeMeans 3056.53 15.2369 4859.35

QNet 0.9 MSE-DPBM CumulativeMeans 11081 15.2308 17607

QNet 0.9 MSE-DPBM Schruben 10910.8 15.3586 17372.7

QNet 0.95 MSE-DPBM Schruben 41636 15.4084 66384.7

QNet 0.95 MSE-DPBM CumulativeMeans 42130.4 15.2622 66949.4

AR(1) 0.5 Mod. MSE-DPBM Schruben 253.227 15.0217 391.575

AR(1) 0.5 Mod. MSE-DPBM CumulativeMeans 252.759 15.0253 393.528

AR(1) 0.6 Mod. MSE-DPBM Schruben 252.673 15.026 391.039

AR(1) 0.6 Mod. MSE-DPBM CumulativeMeans 252.691 15.0259 394.304

AR(1) 0.7 Mod. MSE-DPBM Schruben 252.291 15.029 391.337

AR(1) 0.7 Mod. MSE-DPBM CumulativeMeans 252.764 15.0253 394.061

AR(1) 0.8 Mod. MSE-DPBM Schruben 252.788 15.0251 390.937

AR(1) 0.8 Mod. MSE-DPBM CumulativeMeans 252.643 15.0262 392.524

AR(1) 0.9 Mod. MSE-DPBM Schruben 251.543 15.0348 388.471

AR(1) 0.9 Mod. MSE-DPBM CumulativeMeans 252.175 15.0299 388.809

AR(1) 0.95 Mod. MSE-DPBM Schruben 250.282 15.0447 386.994

AR(1) 0.95 Mod. MSE-DPBM CumulativeMeans 250.289 15.0446 385.812

M/H2/1 0.5 Mod. MSE-DPBM Schruben 4236.53 29.9283 6650.87

M/H2/1 0.5 Mod. MSE-DPBM CumulativeMeans 4173.45 30.2809 6556.81

M/H2/1 0.6 Mod. MSE-DPBM Schruben 6225.53 30.2033 9858.64

M/H2/1 0.6 Mod. MSE-DPBM CumulativeMeans 6036.69 30.9591 9616.42

M/H2/1 0.7 Mod. MSE-DPBM Schruben 9702.76 33.1762 15446.5

M/H2/1 0.7 Mod. MSE-DPBM CumulativeMeans 9508.02 33.6749 15183.5

M/H2/1 0.8 Mod. MSE-DPBM Schruben 18539.6 37.1869 30088.6

M/H2/1 0.8 Mod. MSE-DPBM CumulativeMeans 18295.6 37.0463 29673.1

A
P
P
E
N
D
IX

E
.
T
A
B
L
E
S
O
F
R
E
S
U
L
T
S
P
E
R

M
O
D
E
L

136

M/H2/1 0.9 Mod. MSE-DPBM Schruben 53294 52.3898 90451.7

M/H2/1 0.9 Mod. MSE-DPBM CumulativeMeans 54344.9 48.0373 92507

M/H2/1 0.95 Mod. MSE-DPBM Schruben 155423 82.3599 273302

M/H2/1 0.95 Mod. MSE-DPBM CumulativeMeans 158084 78.9475 275922

M/D/1 0.5 Mod. MSE-DPBM Schruben 245.611 15.0904 393.685

M/D/1 0.5 Mod. MSE-DPBM CumulativeMeans 245.573 15.0945 392.33

M/D/1 0.6 Mod. MSE-DPBM Schruben 257.906 15.3882 421.386

M/D/1 0.6 Mod. MSE-DPBM CumulativeMeans 257.947 15.3951 419.633

M/D/1 0.7 Mod. MSE-DPBM Schruben 469.86 17.1621 748.13

M/D/1 0.7 Mod. MSE-DPBM CumulativeMeans 463.395 17.5647 736.715

M/D/1 0.8 Mod. MSE-DPBM Schruben 1363.77 21.7975 2145.86

M/D/1 0.8 Mod. MSE-DPBM CumulativeMeans 1363.01 21.5574 2127.63

M/D/1 0.9 Mod. MSE-DPBM Schruben 6693.37 30.4543 10832.8

M/D/1 0.9 Mod. MSE-DPBM CumulativeMeans 6609.11 31.4588 10715.5

M/D/1 0.95 Mod. MSE-DPBM Schruben 27852 42.6348 46580.2

M/D/1 0.95 Mod. MSE-DPBM CumulativeMeans 27523.8 42.586 45954.4

M/M/1 0.5 Mod. MSE-DPBM Schruben 543.303 17.9296 841.269

M/M/1 0.5 Mod. MSE-DPBM CumulativeMeans 541.538 18.0376 833.442

M/M/1 0.6 Mod. MSE-DPBM Schruben 914.787 20.4575 1412.13

M/M/1 0.6 Mod. MSE-DPBM CumulativeMeans 908.424 20.3704 1417.33

M/M/1 0.7 Mod. MSE-DPBM Schruben 1714.02 24.0853 2674.49

M/M/1 0.7 Mod. MSE-DPBM CumulativeMeans 1717.45 24.1355 2678.25

M/M/1 0.8 Mod. MSE-DPBM Schruben 4111.96 28.2705 6535.01

M/M/1 0.8 Mod. MSE-DPBM CumulativeMeans 4081.07 27.8652 6471.03

M/M/1 0.9 Mod. MSE-DPBM Schruben 15976.9 36.6498 26279.7

M/M/1 0.9 Mod. MSE-DPBM CumulativeMeans 15907.7 37.0128 26106.1

M/M/1 0.95 Mod. MSE-DPBM Schruben 54790.7 57.9878 92587.8

M/M/1 0.95 Mod. MSE-DPBM CumulativeMeans 55414.3 55.0286 92879.8

QNet 0.5 Mod. MSE-DPBM Schruben 428.068 16.7505 632.463

QNet 0.5 Mod. MSE-DPBM CumulativeMeans 396.948 17.285 550.754

A
P
P
E
N
D
IX

E
.
T
A
B
L
E
S
O
F
R
E
S
U
L
T
S
P
E
R

M
O
D
E
L

137

QNet 0.6 Mod. MSE-DPBM Schruben 656.925 18.8729 961.55

QNet 0.6 Mod. MSE-DPBM CumulativeMeans 614.186 19.7247 846.012

QNet 0.7 Mod. MSE-DPBM Schruben 1113.41 22.3059 1618.1

QNet 0.7 Mod. MSE-DPBM CumulativeMeans 1047.29 23.6548 1478.59

QNet 0.8 Mod. MSE-DPBM Schruben 2238.68 28.3639 3319.08

QNet 0.8 Mod. MSE-DPBM CumulativeMeans 2165.23 29.8233 3156.1

QNet 0.9 Mod. MSE-DPBM Schruben 6564.88 42.3196 9995.59

QNet 0.9 Mod. MSE-DPBM CumulativeMeans 6415.36 43.4503 9927.61

QNet 0.95 Mod. MSE-DPBM Schruben 20286.4 59.2605 32638.3

QNet 0.95 Mod. MSE-DPBM CumulativeMeans 19427.1 60.7532 31389.8

Table E.6: Avearge batch size and number of batches per method

Appendix F

Akaroa2 Method
Registration

In order to use the methods of simulation output analysis they have to reg-
ister themselves as available methods under Akaroa2 and be compiled with
the whole application. The code in Appendix A, Appendix B and Appendix
C are necessary. Their object file path have to be added to AKANAL OBJ
in Makefile.main.

138

