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ABSTRACT

ASSESSING THE IMPACT OF BICYCLE TREATMENTS ON BICYCLE 
SAFETY: A MULTI-METHODS APPROACH

FEBRUARY 2022

AIKATERINI DELIALI

B.Sc. and M.Eng., NATIONAL TECHNICAL UNIVERSITY OF ATHENS
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Dr. Eleni Christofa

Compared to other modes, bicyclists are disproportionally affected by crashes 

considering their low mode share. There is evidence that crashes between bicyclists 

and motorized vehicle take place at road segments and signalized intersections where 

bicycle treatments (e.g., bike lanes) are present, urging for in-dept analysis of the 

safety impact of the various bicycle treatment types. Additionally, it is important 

to identify sensor types that have the potential to advance field data collection and 

traffic monitoring in multi-modal road environments. In this dissertation, three 

approaches, namely crash analysis, traffic conflict analysis, and analysis of driver 

speeding and glancing behavior, were implemented to investigate the safety impact 

of bicycle treatments at the segment- and the intersection-levels on bicycle safety. 

Prediction models were developed to predict bicycle-motorized vehicle crashes at road 

segments and signalized intersections, and traffic conflicts between straight-going 

bicyclists and right-turning vehicles at signalized intersections. Driver speeding and 

glancing behavior was analysed for the segment and the intersection levels. A mode 

classification framework to classify trajectories recorded using a radar-based sensor

v



was developed to test the feasibility of using radar-based sensors in field studies. The

findings of this dissertation contribute to bicycle safety research in terms of quantifying

the safety impact of various bicycle treatment types and how to assess and also, by

showing how to assess bicycle safety. The findings of this research have the potential

to stand as a valuable tool for transportation policymakers and officials in charge of

establishing safe bicycle networks.
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1 Introduction

1.1 Motivation

In an effort to set the ground for a “more sustainable future for all”, the United

Nations (U.N.) established the Sustainable Development Goals in 2015. These rep-

resent a set of seventeen interconnected goals that aim to address major societal

and environmental issues. In particular, Goal 11 “Sustainable Cities and Commu-

nities” highlights the role of bicycling, walking and use of public transportation, to

the creation of sustainable, livable, and resilient cities and communities. Increased

bicycle mode share is recognized as a means of improving public health and well-being,

ensuring access to multiple activities and amenities in an emission-free, energy-saving,

and affordable manner.

Governments seek to implement policies that simultaneously address bicycle mo-

bility, i.e., policies to establish bicycle as a viable mode of transportation, and safety

[221]. The most common strategy is the allocation of roadway space to bicyclists, so

that they have a designated space to ride. Several studies confirm that the existence

of bicycle infrastructure treatments affects the number of people bicycling [22]. Exten-

sive research has been conducted to understand people’s perceptions with respect to

bicycling and identify factors that deter people from or attract people to bicycling.

Bicyclists feel safer when bicycle treatments are present [19, 213, 224, 232, 247]. At

the same time, the majority of drivers are in favor of bicycle treatments and designated

roadway space for bicyclists, which can improve driver awareness of bicyclists and

bicyclist movement predictability. [213].

In addition to understanding bicyclist and driver preferences with respect to the

types of bicycle treatments (or bicycle infrastructure treatments or bicycle facilities), it
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is of high importance to identify the factors that affect bicyclist safety, i.e., factors that

are responsible for crashes between bicyclists and motorists, and use that information

to develop countermeasures. In the U.S. bicyclist fatalities caused by bicycle-motorized

vehicle crashes saw a 6.3% increase from 2017 to 2018; during the same period the

overall motorized vehicle crashes decreased by 2.3% [170]. Bicycle safety improves at

locations where bicycle treatments are present [54]; yet, crashes still take place when

bicycle treatments are present, highlighting the need to further investigate the safety

benefits of the various bicycle infrastructure treatment types.

Bicycle treatments can be broadly separated into two categories; those for the

segment-level, such as bike lanes, and those for the intersection-level, such as intersection-

crossing pavement markings. Segment-level treatments indicate where bicyclists should

ride while at the segment and provide no information on how bicyclists should navigate

an intersection, despite the fact that segment-level treatments are often present at

the intersection area (i.e., upstream and downstream an intersection). On the other

hand, intersection-level treatments are present only at the intersection. It should be

noted that compared to segment-level treatments, intersection-level treatments are not

frequently and consistently implemented [176]. Road user movements and interactions

at the segment-level differ from those at the intersection-level. In addition, intersection

behavior could be affected by upstream segment conditions and infrastructure. As a

result, there is a need to study the impact of segment-level bicycle treatments at both

the segment and intersection. For example, protected bike lanes provide separation

between bicyclists and motorists along the segment; however, this separation is not

maintained at the intersection which might affect drivers’ awareness of bicyclist pres-

ence during potential interactions of both user types at the intersection. Moreover,

it is unclear whether there are safety benefits related to specific combinations of

segment-level and intersection-level treatments.
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Traditionally, traffic safety research employs crash analysis to associate crash

outcomes with various crash contributing factors and identify high-risk sites, i.e.,

locations that are more prone to crashes. However, crash analysis is not always

the most appropriate way to assess safety; limited bicycle crash data availability or

reliability (e.g., crash location or severity is not precisely recorded) could limit the

analysis. At the same time, crashes are not the best proxy for assessing road user

behavior and this applies to both bicyclists and motorists. For example, crash analysis

cannot reveal which road user started braking during a collision course. Therefore,

additional quantitative methods have been developed to assess traffic safety. These

methods focus on road user behavior and interactions and mainly aim to associate

unsafe behaviors and/or interactions with various aspects such as traffic conditions,

road environment characteristics, etc. Road user behavior and interactions are usually

measured in terms of kinematics, e.g., speed or acceleration data, or proximity metrics,

e.g., the distance between two road users or a road user and an object. Proximity

metrics are often coupled with time-based information, to indicate how close two road

users approached in time and space.

In bicycle safety research methods that assess road user behavior and interactions

are particularly beneficial as they provide insights on unsafe situations that might

lead to a crash. Despite the issue of under-reporting, focusing on a particular crash

type reduces the number of crashes to be analyzed, and in turn, the analysis might

be inconclusive. For example, there is evidence that right-hook crashes at urban

intersections are frequent [25, 73, 103]. Those crashes involve a right-turning vehicle

and a straight-going bicyclist at an intersection. The vehicle driver might have

not seen the bicyclist or have assumed that the bicyclist will yield, and so he/she

continues turning right and collides with the bicyclist. As road user behavior and

interactions data can be obtained more easily, especially nowadays with the current
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technological advancements, e.g., video cameras, GPS data, etc., it is more feasible to

study right-hook conflicts instead of right-hook crashes.

Road user behavior and interactions data can be obtained from (1) field or natural-

istic studies, where various sensing technologies are used to record road users in real

time while are traveling along a segment or an intersection, and (2) driving simulator

studies, where human drivers are exposed to simulated road environments. Both study

types allow for the acquisition of kinematic data (e.g., speed and acceleration) as

well as vehicle position data. Field studies aimed at capturing and analyzing road

user interactions are primarily performed with video cameras that collect traffic data.

There are other types of field studies, e.g., analysis of vehicle trajectories, but those

are not appropriate for studying interactions, as data from only some vehicles/ road

users are obtained. In field studies one can assess multiple types of unsafe behaviors,

such as speeding, red-light crossing, etc. For bicycle safety purposes, bicyclist behavior

when navigating an intersection and interacting with motorized vehicles and the

infrastructure (e.g., bicycle treatments and traffic signals) can be analyzed and has

the potential to reveal and quantify unsafe traffic events. In driving simulator studies,

the researcher can study all the above when exposing human drivers in a simulated

environment. Additionally, in driver simulator studies the researcher can also be

benefited by using additional equipment such as an eye-tracking device that captures

driver glancing patterns; this is a way of evaluating driver attention and response in

road-related stimuli.

The main difference between field studies and driving simulator studies is that the

former capture road users in real time and thus, in realistic traffic conditions while driver

simulator studies expose human drivers to a set of controlled and predefined conditions.

Depending on the case, these differences may appear beneficial for studying a particular

problem. Field studies are advantageous in that they can capture multiple bicyclists
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interacting with motorized vehicles in real traffic conditions. Driving simulator

experiments allow the development of multiple scenarios where only one variable

changes per scenario and so, the individual impact of that variable on driver behavior

is captured.

In the case of field studies conducted with video cameras there might be a few

additional disadvantages. Video cameras underperform in adverse lighting and weather

conditions and thus, their ability to detect and track road users is reduced. Additionally,

detection and tracking of non-motorized users can be problematic due to the dimension,

shape, and color of those road users. Therefore, considering alternative data collection

sensor types, such as radar-based sensors, that remain unaffected from lighting and

weather conditions has the potential to improve traffic monitoring and in turn, non-

motorized user safety. Lastly, radar-based sensors are not related with data privacy

issues as video cameras, and are expected to be more favored from the public.

1.2 Research questions

This dissertation aims to answer the following research questions with respect to

bicycle safety and alternative technologies for traffic monitoring:

1. How do various bicycle treatment types contribute to bicycle safety at the

segment- and the intersection-levels?

2. Are radar-based sensors a feasible data collection tool for traffic monitoring

purposes in multimodal environments?

1.3 Research contributions

The two research questions are answered through four studies. The first three

studies (Chapters 3-5) are related to the bicycle safety aspect expressed by Questions
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1 while Question 2 is addressed by the study presented in Chapter 6. With respect

to bicycle safety, more than one type of studies are needed to better understand

and quantify the safety impact of various bicycle treatments at the segment- and

the intersection-levels. This is because each study is associated with a number of

limitations and therefore, another approach is needed to address those limitations as

explained below.

In Chapter 3 a crash analysis explores whether crashes between bicyclists and

motorized vehicles at the segment and the intersection are associated with the type of

the bicycle treatment. Crash analysis has certain limitations, e.g., does not provide

insights regarding the underlying crash mechanism, and therefore, the field study in

Chapter 4 as well as the driver simulator study in Chapter 5 have the potential to

bridge this gap as they allow to assess road user interactions and capture those unsafe

interactions that can possibly lead to crashes. The driver simulator study (Chapter 5)

assesses driver behavior in the presence of several treatments that have also been

studied in Chapters 3 and 4, but allows to assess innovative bicycle treatments that are

not widely implemented and thus, cannot be assessed through crash records or a field

study. The studied bicycle treatments as well as the utilized method to assess safety

are summarized in Table 1.1. Chapter 6 is connected with the rest of the dissertation

as it demonstrates the capabilities of an alternative to video cameras sensor type, i.e.,

radar-based sensor, for collecting data for field studies.

The contributions of each study are presented below:

1. Crash prediction models for road segments and signalized intersec-

tions

The objective of this study is to develop crash prediction models for midblock road

segments (i.e., between two intersections) and signalized intersections, considering
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Table 1.1: Summary of studied bicycle treatments

Performance metric Site Bicycle treatments for
Segments Intersections

Crash frequency Segment CBL1, PBL2, Sharrows n/a∗

(Chapter 3) Signalized int. CBL, PBL, Sharrows BB3, crossings4

Traffic conflict frequency Signalized int. CBL, PBL, Sharrows BB3, crossings
(Chapter 4)
Driver speed and glance Segment CBL, PBL n/a
(Chapter 5) Signalized int. CBL, PBL PI5, crossings
1conventional bike lanes; 2protected bike lanes;
3bike box; 4intersection-crossing pavement markings; 5protected intersection
∗not applied

the presence of bicycle treatments for the segment-level such as conventional bike

lanes, protected bike lanes, and sharrows as well as intersection-level treatments such

as bike boxes and intersection-crossing pavement markings. Up to date there is no

research that connects all three different types of bicycle treatments to crash outcomes

on midblock road segments. For signalized intersections there are several studies

that have considered the presence and type of bicycle treatments, however, none of

them have compared all three treatment types. Moreover, there is no study that has

emphasized on the combination of treatments, e.g., an intersection where one road has

conventional bike lanes and the other has protected bike lanes versus an intersection

where both streets have conventional bike lanes. Lastly, intersection-level bicycle

treatments, such as bike boxes and intersection-crossing pavement markings, have

not been incorporated in any of the existing crash prediction models for intersections.

This work will be the first one to relate the presence of various bicycle treatments to

crash frequency at both the segment- and (signalized) intersection-levels. Specifically

for signalized intersections, this is the first study to relate different combinations

of segment-level treatments at the intersection with crash frequency and explore the

effect of intersection treatments such as bike boxes and intersection-crossing pavement
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markings on crash frequency.

2. Right-hook traffic conflicts between motorists and bicyclists at signal-

ized intersections

The objective of this study is to develop prediction models for right-hook conflicts at

signalized intersections where one of the following treatments: conventional bike lanes,

protected bike lanes, or sharrows, is present at the segment upstream the intersection

and bike boxes or intersection-crossing pavement markings are present at the intersec-

tion. Right-hook crashes are a common type of crash between bicyclists and motorists

at signalized intersections. Studying traffic conflicts between these road users has the

potential to reveal the underlying mechanism of right-hook crashes and help develop

countermeasures to prevent those crashes. Existing research on right-hook conflicts

has only compared intersections with protected bike lanes and those with no bicycle

treatments, without considering the presence or type of intersection treatments such as

bike boxes or intersection-crossing pavement markings. This dissertation contributes

to the literature by comparing the impact of the five bicycle treatment types on the

frequency of right-hook conflicts between motorized vehicles and bicyclists at signalized

intersections.

3. Assessing driver speeding and glancing behavior in the presence of

protected bicycle treatments

A driving simulator experiment has been conducted to investigate driver speeding

and glancing behavior at the segment-level while driving next to conventional and

protected bike lanes and at the intersection-level while making a right turn when

intersection-crossing pavement markings or protected intersection design elements

have been implemented. Driver behavior has not been assessed while traveling next to

conventional and protected bike lanes in order to allow for a comparison between the
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different treatments. Moreover, there is limited research on protected intersections and

no previous study has examined whether the segment-level treatment type upstream

the protected intersection affects driver behavior. This is the first study to capture

and compare driver behavior in the presence of protected and not protected segment-

and intersection-level treatments, while at the same time accounting for the different

combinations of segment- and intersection-levels treatments.

4. A framework for mode classification in multimodal environments us-

ing radar-based sensors

The objective of this chapter is to develop a mode classification framework that can be

used to assign mode class to trajectories recorded by radar-based sensors. This is the

first step in the deployment of radar-based sensors for traffic monitoring in multimodal

road environments, i.e., where motorized and non-motorized road users are present.

Previous efforts have demonstrated the feasibility of utilizing radar-based sensors in

motorized user-only road environment. Therefore, it is uncertain whether these sensor

are capable of detecting and recording non-motorized user trajectories in addition to

motorized ones. Then, it is unclear whether it is feasible to assign the correct mode

class to the recorded trajectories. The proposed mode classification framework is the

first one to classify trajectories that have been recorded by a radar-based sensor to three

different classes, namely: pedestrians, bicyclists, and motorized vehicles. The proposed

approach achieves high accuracy and can perform well in various traffic scenes that

vary in terms of traffic control.

1.4 Dissertation organization

The second chapter of this dissertation reviews and synthesizes the literature

related to bicycle safety. First, the chapter presents different methods that are used
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to assess traffic safety. Strengths and limitations of each approach are discussed,

focusing specifically on bicycle safety. The different bicycle treatment types for the

segment- and the intersection-levels are presented followed by a synthesis of the

existing literature regarding their safety benefits. Lastly, literature on traffic sensing

technologies is presented, focusing on those technologies that can be used in studies

that aim to assess bicycle safety.

Chapters 3-5 present the three bicycle safety-related studies. Chapters 3 centers

on the development of crash prediction models as a means of identifying the impact of

bicycle treatments on crash occurrence. Chapter 4 presents an analysis of right-hook

traffic conflicts between bicyclists and motorized vehicles at signalized intersections

where bicycle treatments are present. Chapter 5 refers to a driving simulator experi-

ment, designed to capture and assess driver speeding and glancing behavior in the

presence of bicycle treatments while turning right at a signalized intersection. Chap-

ter 6 presents the mode classification framework. These four chapters are organized

in (scientific) paper-format meaning that each one of them consists of sections that

correspond to introduction, literature review, methodology, results, discussion, and

conclusions.

Lastly, Chapter 7 summarizes the findings and contributions of this dissertation.

Practical implications as well as future extensions are also discussed.
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2 Literature Review

Traffic safety can be objectively quantified as long as one or more of the following

data types are available: injuries, crashes, or conflicts [202]. In addition to injuries,

crashes, or conflicts, the present literature review includes studies that have emphasized

on other measures such as speed, acceleration, deceleration, glancing behavior, vertical

or lateral distance between two road users or one road user and a fixed object, to

assess traffic safety as these are objective measures that have been associated with

unsafe road behavior. Studies that have been excluded from the present literature

review are the ones that focus on road user preference and perception, which are

subjective measures. For example, bicycle route choice studies offer invaluable input

with respect to bicyclists (or potential bicyclists) preferences on road environments that

appear safe and convenient, however, from these studies we cannot extract input on

countermeasures. Lastly, it should clarified that the reviewed bicycle safety literature

is about bicyclists and motorized vehicles; bicyclists might also be involved in collisions

with fixed objects, animals, pedestrians, and other bicyclists however, these collision

types have different consequences for bicyclists in terms of injury severity and are

subject to different countermeasures.

Regarding the objective approach of studying safety, injury data is essentially a

sub-category of crash data as explained in more detail in the following sections, and

therefore, traffic safety studies can be grouped in two categories based on the needed

data: those that utilize crash records and those that rely on road user interaction to

assess safety. Crash-based studies are reviewed in Section 2.1 and non-crash-based

studies are reviewed in Section 2.2. The different bicycle infrastructure treatment

types are reviewed with respect to their safety impact in Section 2.3.
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2.1 Crash-based safety metrics

In the past, the term accident was used to describe the collision (i.e., crash) between

two (or more) vehicles or road users. However, it has been argued that this term

infers that the event was attributed to chance, while a crash is the output of an array

of factors that can be identified and in turn, modified [202]. This concept aligns

with Vision Zero principles in stating that traffic fatalities and severe injuries are

preventable [257]. Therefore, the term crash and/or collision can be used instead of

the term “accident” [202]. When one or more of the involved users is injured, the

event can also be referred as injury. For this dissertation the terms collision and crash

are used interchangeably and refer to an event that involves (at least one) bicycle and

a motorized vehicle, unless it is otherwise specified. The term injury used to refer to a

crash between a bicyclist and a motorized vehicles that resulted in the injury of the

bicyclist.

Crashes that involve bicyclists and motorized vehicles can be recorded by the police

but also from medical professors in hospitals. Compared to crashes between motorized

vehicles that are primarily recorded by the police and undereporting is not significant,

crashes between bicyclists and motorists may be undereported. Several studies have

compared records from (a) hospital admissions related to bicycling crashes and (b)

police registrations of such crashes and have found that police records covered 10-50%

of the crashes that were recorded in hospitals [52, 57, 195, 237].

The following subsections summarize the research on bicycle crashes that occurred

with the involvement of a motorized vehicle. Some studies may be exclusive focus on

crashes in which the bicyclist was injured and/or killed, while other studies might

include non-injury crashes as well. In addition to differentiate between the injury

severity level, the reviewed studies may have as dependent variable the number of
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events (e.g., crashes or injuries), the rate of an event, the type of crash in terms of

injury severity level, or the probability of the latter. The following subsections have

been structured in a way that reflects the different ways that the dependent variable,

i.e., crash outcome, has been modeled in the literature and the objective is to identify

which is the most effective way to study the impact of bicycle treatments on crash

occurrence.

2.1.1 Injury severity

On a worldwide level different scales have been developed in the medical field to

assess injury severity. Practitioners and researchers in the traffic safety field are in

turn using these scales when it comes to assess the level of injury that was caused to

a person that sustained a crash. The scales that most common in practice are: the

Abbreviated Injury Scale (AIS), the Injury Severity Score (ISS), and the US-based

KABCO Injury Classification Scale [69]. It should be highlighted that AIS and ISS

are used by medical professionals to assess injuries caused by a variety of factors,

while KABCO is only used by law enforcement professionals in traffic-related injuries.

The following paragraphs present these scales, findings from studies that have utilized

either scale, and lastly, findings from studies that examined the underlying causes

behind severely injured bicyclists.

Methods to measure injury severity

AIS was initially developed during the 70s by the American Association for the

Automotive Medicine [177]. This scale is being used on a global level and is defined

as: ”an anatomically-based, consensus-derived, global severity scoring system that

classifies each injury by body region according to its relative importance on a 6 point

ordinal scale”, [177]. Injury is rated on a scale from 1 to 6, where 1 is minor injury, 2
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is a moderate injury, 3 is a serious injury, 4 is a severe injury, 5 is a critical injury,

and 6 is a maximum injury. Injuries that fall under the sixth category are the ones

that result in a fatality. This scoring is determined for eight body regions namely

head, face, neck, thorax, abdomen, spine, and upper and lower extremity. Essentially,

AIS includes information on trauma location and extent of injury and then assigns a

score between one and six, with one corresponding to the most severe injuries. Since

its creation AIS has undergone through several updates with the most recent one

finalized in 2015. These updates usually aimed in improving either the content or

the way information is either gathered or presented. For example, the 1980 revision

acknowledged and incorporated the need to account for consciousness [187].

According to AIS a person with a head injury falls under a different category versus

a person with a thorax injury. ISS was developed [14] to allow for these comparisons;

it combines the separate AIS ratings for each of the person’s injuries into a single

measure of overall injury severity. ISS represents the sum of squares of the highest

values in each of the three most severely injured body regions. As it is inferred in the

previous sentence ISS relies on the AIS scale. Since the maximum AIS score is 6, then

the maximum ISS number assigned is 108 (62 by 3).

In various parts of the world, research has been conducted to understand how

bicyclists involved in a crash are being injured. The majority of these studies has

concluded that bicyclists are more likely to hit their head and therefor, helmet use

would really reduce the chances of getting severely injured [85, 139, 181, 263]. Apart

from head injuries, a recent study that analyzed bicyclist-motorized vehicle crashes

from the Netherlands and Sweden found that upper and lower extremities are as likely

to be affected after a crash [139].

Both AIS and ISS were developed and are being used by medical professionals.

When it comes to traffic safety and related injuries, these scales are used once people
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affected by a crash are being hospitalized. This is why these methods are more

detailed in evaluating the effects of an injury and thus, understanding its severity. For

traffic-related injuries in the US law enforcement professionals (e.g., the police) classify

crashes based on their severity using the KABCO Injury Classification Scale [69].

The scale was developed in the US in the late 1960s by the National Safety Council

(NSC) [10] and denotes five different categories for injury [47]: K – corresponds to

a fatal injury; A – corresponds to an incapacitating injury; B – corresponds to a

non-incapacitating injury; C – corresponds to a possible injury; and O – corresponds

to Property Damage Only (PDO) or no injury. The KABCO scale defines injury as

bodily harm to a person, however several conditions, e.g., stroke or heart attack, are

excluded. It should be highlighted that KABCO scale scoring is not applied in a

consistent manner among the 50 states, in the sense that there are different definitions

per state on what is considered an incapacitating injury for example [34] therefore,

severity analysis between different states is not necessarily comparable.

As it was clarified earlier, the most important difference between the two scales

is that in practice they are used by different disciplines. KABCO is used by law

enforcement officers while AIS/ISS by medical practitioners. Therefore, it is expected

the latter is considered as more accurate. Several researchers have elaborated on

the differences and similarities of each scale, focusing on crashes between motorized

vehicles [23, 34]. Their objective was to understand the relationship between them.

As AIS is a scale used by medical practitioners they tend to be more precise when

assigning a score to the patient. Additionally, KABCO scoring is given at the site

of the injury and the true effects are not known yet. Other disadvantage regarding

KABCO is that it overestimates more severe events such as crashes between bicyclists

and drivers that have not resulted in neither property damage nor injury are under-

reported [173]. However, it should be noted that there is no research relating these
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two scales for crashes that involve bicyclists.

Factors that increase injury severity

Regardless the method used to classify bicycle-motorized vehicle crashes, a range of

studies has tried to link the occurrence of severe crashes with driver, bicyclist, or road

characteristics, weather and environmental conditions by using econometric models,

regression models, or Bayesian analysis [4, 5, 64, 114, 122, 126, 163, 233]. Severe

crashes are the ones that result in severe injuries or fatalities and are the ones that

need to be eliminated according to Vision Zero framework that has been adopted by

many cities globally [257]. Therefore, these studies shed light to factors that have

been found associated with these crash types.

Factors that are impacting severe crashes can be grouped in the following categories:

driver and bicyclist characteristics (e.g., gender, age, alcohol or drug use), motorized

traffic characteristics (e.g., percentage of heavy vehicles), roadway (e.g., presence

of control at intersections, horizontal curves, intersection or road segment) and

environment characteristics (e.g., lighting and weather conditions). It was found

that older bicyclists are more likely to be involved in crashes that results in fatalities or

severe injuries compared to younger ones [64, 122, 163]. Children are also vulnerable

to severe crashes [114]. Alcohol or drug consumption either by the bicyclist or the

motorist have been positively associated with higher injury severity levels [114, 163].

Higher volume of turning vehicles as well as higher percentages of heavy vehicles were

found to increase injury severity levels [4, 163]. Regarding the road geometry, grades

and horizontal curves tend to elevate injury severity levels [163]. Lastly, lighting and

weather conditions have been associated with bicyclist injury severity as lack of light

and adverse weather increase the frequency of severe crashes [4, 126, 233]. Risk of

severe injuries can be lower when bicycle infrastructure is present, the crash has taken
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place in urban zones (but not at major roads within these zones), and when traffic

calming measures have been implemented such a speed limit of 30 kph [4].

These studies offer valuable insights regarding the factors that increase either the

total number of severe crashes at a site or the injury severity levels and have to a

certain extend influenced policies that aim to prevent severe crashes; for example, in

several countries bicyclists are subject to alcohol tests or they are required to wear

helmets and/or have lights during the night time. Only one of the aforementioned

studies considered the presence of bicycle treatments [4].

There is limited research on the association of the occurrence of injury crashes

and the bicycle treatment types. Three studies overall have focused on this topic, two

of them took place in Canada [94, 244] and one was conducted in the U.S. [40]. The

U.S. study followed the study design of the Canadian studies in terms of participants

recruitment, dependent and independent variables and modeling. The crashes that

were included in all of the studies correspond to bicyclists that were injured during

bicycling and hospitalized. Therefore, not all crashes were included and specifically,

non-injury and well as fatal crashes were excluded. Most importantly though among

the included crashes there were cases that the bicyclist was injured without interacting

with or trying to avoid a motorized vehicle; e.g., participants fell and injured because

of an animal or another bicyclist. Despite these limitations, these three studies are

among a very limited number of studies that have considered the impact of the different

bicycle treatment types. At road segments, much lower injury risk was found when

protected protected bike lanes or traffic diverters are present compared to bike lanes,

bike paths, or the use of signage [94]. On the contrary, the U.S. study found that

one- or two-way protected bike lanes pose either the same or higher risk for bicyclists

compared to major streets with no bicycle treatments [40]. These differences might be

related to the different design policies each country is following with respect to bicycle
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treatments, e.g., where they choose to implement protected bike lanes or regarding

the width of these treatments.

Aldred et al. (2018) were the first ones to consider bicycle and motorized vehicle

demand as independent variables in addition to other factors related to user, roadway

environment, etc. with an injury severity level outcome. [5]. This addition allows to

more effectively compare case and control sites (i.e., sites where a crash has taken

place vs a site used for comparison purposes) and in turn, understand the contribution

of the rest factors. The need for accounting for traffic and bicycle demand when

assessing bicycle crashes is discussed in the following subsection.

2.1.2 Crash rates

Bicyclists may be involved in a crash with a motorized vehicle, which in turn may

or may not result in an injury. The previous section reviewed studies that investigated

whether crashes of various injury severity levels can be associated with user, roadway

environment, traffic, etc., characteristics. One main limitation of these studies is that

they provide no information on how likely is for a bicyclist to be involved in such a

crash, e.g., a fatal crash, at a specific roadway environment.

Existing research on motorized vehicle crashes has already shown that crash

frequency can misleading as a metric of traffic safety. A highway segment is used by

thousands of people on a daily basis, in contrast to a residential street that is probably

used only by the people who live in the neighborhood. Therefore, a highway driver is

exposed to more cars compared to the residential street driver and is in turn, more

likely to be involved in a crash. We might also say that for the highway driver driving

is more risky.

Risk expresses the probability of a crash to occur given exposure to potential

crash events. Essentially, risk consists of two factors: crash frequency and exposure
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to crashes. More broadly, risk of an event is the frequency of that event over the

exposure to it. This ratio is known as crash rate. Exposure acts as normalization

factor, i.e., denominator, to equalize for differences in the quantity of potential crash

events in different road environments [88].

In crash rates the form of the nominator, i.e.,crash frequency, is straightforward and

it is always in the form of crashes over a time period at a specific location. Exposure

has to correspond to the exact same time period and location. As crashes are rare

events a reasonable time period for the analysis should be three to five years. More

years could also be used provided that major chances in the area of interest have not

taken place. The location component of crashes is the one that affects the exposure.

Does the analysis focus on crashes in an area, such as a county, a city, or a block?

Or does it focus on specific sites such as intersections or segments? The geographical

scale of the analysis will determine the exposure metrics as well. Geographical scales

can be split in three groups [249]: 1. regional level, that includes an area like a county,

city, metropolitan statistical area; 2. block level, that includes a traffic analysis zone,

Census tract, or Census block group; 3. site-level that includes specific parts of the

road network like segments or intersections. The following subsections discuss the

differences among these three categories.

Region–level exposure metrics - Case 1

The scale of geographical resolution defines the data needs to account for exposure.

For the first two cases, i.e., regional and block level, travel or mobility data is used

as exposure. This is because when we try to answer the question “how likely is for a

bicyclist to be involved in a crash in a given area, e.g., a census block” we need to know

how much the average bicyclist is exposed in that specific census block. Appropriate

exposure metrics for this case express the area population travel patterns and they may
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be a) average distance travelled per day by mode (bicycle in this example), average

hours travelled per day per mode, c) percentage of people commuting per mode, or d)

number of trips taken per mode.

These metrics can be derived from different types of travel surveys. In the U.S.

the following travel surveys are used and the resolution is census block or tract:

1. National Household Travel Survey (NHTS)

2. American Community Survey (ACS)

3. Regional household travel survey

Each survey collects different types of information, which may be restricting for

the exposure data. For example, ACS does not have information for non-commute

trips. There have been cases that more than one sources were combined in order to

create a more complete set of information [249], [16].

Travel data as derived from the aforementioned sources allows for estimating crash

risk for the entire population of an area. It is more common to deploy distance-related

exposure metrics such as number of crashes per 100 kilometres or miles [16, 65, 195].

However, Blaizot et al. (2013) estimated exposure using other metrics such as average

number of hours traveled per day as well as average number of trips taken per day. The

authors concluded that overall, time-based exposure is more objective in the sense that

people tend to spend similar time traveling per day, while miles covered vary depending

on the mode [16]. However, bicycle advocates have expressed an opposite opinion [88];

they have argued that people drive their cars for longer distances compared to bicycles

but car trips tend to be shorter in time as speeds are higher (assuming non-congested

conditions). Consequently, when distance is used as normalizer of crash frequency can

show that bicycle is less safe [88]. Overall, there is not a consensus in the literature

on which metric better reflects exposure for an area.
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Region-level crash (or injury) analysis provided a high-level information on either

which areas concentrate more crashes or which user types are more prone to be involved

in a crash. They are limited in the sense that they do not indicate which specific

parts of a road network, i.e., segments and intersections, should be prioritized for

improvement as they are related with higher number of crashes.

Region–level exposure metrics - Case 2

In addition to household travel surveys, other forms of surveys have been developed

to retrieve travel data for bicyclists and allow for region-level crash analysis. Though

these surveys are similar to household travel surveys in the sense that respondents

report their travel patterns, they are different in the following ways. First, respondents

choose to participate in a research study, instead of going through a mandatory process

initiated by the government (authorized? I am saying that you have by the authorities

to participate in HH surveys). Therefore, the objective of the study is to collect

data for traffic safety analysis instead of collecting data that could also be used in

a traffic safety study. Second, researchers collect travel diaries, i.e., a multi-days

series of travel-related information, including distance of travel, trip purpose, chosen

routes, and most importantly, the times during the study period that a participant

was involved in a crash with a motorized vehicle [51, 98, 193]. It is important to note

that the analyzed crashes (or near misses) involve the study participants.

The safety metric used in those studies is number of crashes per 100 km traveled.

The detailed list of information allows to study a variety of factors related to bicycle

safety. Researchers have route-related information such as bicycle infrastructure

treatments that participants tend to encounter during their bicycle trip and so, they

can test for relationships between treatments and crashes. Additionally, researchers

can obtain participant demographics and assess which population groups are more
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vulnerable to crashes.

Instead of travel diaries, technology has allowed for different ways for conducting

similar studies. Recruited participants (they are bicyclists) are equipped with video

cameras and through them they create logs of their bicycle trips. These studies are

analyzed in the surrogate safety section (2.2) as up to date different performance

metrics rather that crash rates are used to assess safety.

Overall, assessing safety through travel diaries pertains a main shortcomings. It

only represents part of the bicycling population. All these studies recruit adults while

teenagers and young kids are also actively cycling. Second, this is a group of relatively

frequent bicyclists, that might be more familiar with a route and have a adapted to

the roadway environment.

Site-level exposure metrics

Site–level crash analysis focuses on either segments, intersections, or corridors. Appro-

priate exposure metrics should capture the vehicle flows from these locations during

the same period of time as the crashes. For motorized vehicle traffic, FHWA proposes

two formulas to estimate motorized vehicle crash rates at segments and intersections,

respectively [84]. Both ratios have as nominator crash frequency at the given site.

Segment exposure is the product of two terms (a) an estimation of the segment’s

traffic volume and (b) the length of it. Intersection exposure is only the traffic volume.

Given that crash frequency is expresses in average number of crashes per year (i.e., 365

days), traffic volume should be expressed in Annual Average Daily Traffic (AADT).

Note that for intersections, the denominator of crash rates is the total AADT, i.e.,

the sum of AADT of all intersecting corridors.

While for motorized vehicle crashes exposure is straightforward, i.e., AADT, this

has not been the case for bicycle-motorized vehicle crashes. Exposure for bicycle-
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motorized vehicle crashes has taken the form of Average Daily Traffic (ADT) [197],

Annual Average Daily Bicycles (AADB) [149] but also volume metrics in periods of

time other than the annual average day. For example, hourly volume data has been

used to estimate crash rates across segments [159, 206]. In both cases, crash rates

are estimated as annual crash frequency over hourly volume and the authors note

that this methodology is not ideal, but they chose to follow it as exposure should be

considered and they lacked more adequate and accurate bicycle demand estimation.

In both studies it is mentioned that hourly volumes should be collected in a consistent

manner from each site in order to allow for reliable comparisons. In particular, Minikel

(2012) collected bicycle demand data only between 4:00-6:00 PM on weekdays for a

period of January to March in Berkeley, CA [159]. Rothenberg et al. (2016) analyzed

separately sites for which they had (a) peak hour bicycle volume and (b) sites for

which the average hourly bicycle volume was available [206].

As it mentioned earlier, for the case of motorized vehicle crashes that occur at a site

understanding what is an appropriate exposure metric is straightforward. motorized

vehicles are exposed to motorized vehicles and higher volumes have been related to

higher crash risk [146]. It is not so straightforward in the case of bicycle-motorized

vehicle crashes. Bicycle demand as the single exposure metric for crashes between

bicycle and motorized vehicles is not representing the actual risk as it does not

account for motorized vehicle traffic, that correspond to the second component of

a bicycle-motorized vehicle crash. Such a crash could not occur in a bicycle trail

for example, where automobiles have no access. Therefore, bicycle demand is not a

complete exposure metric. Similarly, motorized vehicle demand is not a complete

exposure metric on its own either. A segment or an intersection that are parts of

popular bicycle routes are more likely to have more bicycle-motorized vehicle crashes

as more bicyclists are present. Not accounting for bicycle demand has been reported
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as a main problem in before-after studies that test for example whether cycle tracks

have improved bicycle safety; several studies concluded that cycle tracks were not

safe while what they were missing is the fact that more people used a route where

cycle tracks were implemented [246]. Crash rates for bicycle-motorized vehicles should

account for both bicycle and automobile demand [76]; otherwise, crash risk is either

underestimated or overestimated.

Overall, crash rates stand as a straightforward method for assessing bicycle safety

at a site. In contrast to crash frequency, crash rates allow for comparisons between

different sites and time periods provided that they have been correctly estimated

[76]. However, this method of is associated with several limitations. First, it assumes

that there is a linear relationship between number of crashes and traffic volume, but

researchers have found that this relationship is not linear [173]. Additionally, crash

rates cannot account for different factors that might be associated with crash, e.g.

speed limit and number of lanes. Actually FHWA suggests that crash rates method

should be used to compare sites with similar volumes and operation (e.g., control

type) and design (e.g., number of intersection legs) [167]. The latter note refers to

motorized vehicle crashes but is should be interpreted as a general principle, and so

considered for the case of bicycle-motorized vehicle crashes.

2.1.3 Crash prediction models

In the traffic safety literature it was found important to develop statistical models

that can estimate the number of expected crashes at a site, i.e., road segment or

intersection, given a set of predictors. This can be considered as a proactive safety

approach in the sense that it can inform road authorities, designers, and road safety

practitioners on the potential crash occurrence at a site before any of those crashes

took place. Crash prediction models are either stand-alone and multivariate, i.e.,
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have been developed for a specific, relatively small area and contain multiple road-

and traffic-related parameters, or they are based on the U.S. Highway Safety Manual

Predictive method.

In the U.S. there is a specific methodology on how to develop crash prediction

models and then, how to account for additional road elements that affect traffic

safety. The American Association of Highway Transportation Officials (AASHTO)

has developed the Highway Safety Manual (HSM) where Parts C and D are dedicated

on the prediction of expected crashes. The models are known as Safety Performance

Functions (SPFs) and predict the expected number of crashes based on the site’s

traffic volume and segment length (for segments only); this process is described in

Part C of the manual. SPFs exist for road segments and intersections and describe

the base conditions (SPFsbase). The following equation is the SPF for rural two-lane

highways [9]:

Ni = eβ0AADT β1i lengthβ2i (1)

where N is the number of crashes per year, AADTi is the motorized vehicle traffic for

segment i in Annual Average Daily Traffic values, lengthis is the length of segment i,

and βnXn is a vector of explanatory variables other than traffic volume that might

affect the number of crashes. The β values are estimated using regression modeling.

Crash Modification Factors (CMFs) have been developed to allow for the incorpo-

ration of additional variables (i.e., more that traffic volume and segment length); the

available CMFs are presented in Part D of the manual [9]. CMFs are developed using

before-after or case-control analysis and capture the impact of a specific road element

on crash frequency (see Equation 2.
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CMF =
Predicted crashes WITH treatment

Predicted crashes WITHOUT treatment
(2)

where in each case the number predicted crashes have been estimated through a SPF.

The difference between the two SPFs is on the extra term that corresponds to the

treatment. If CMF is lower than 1 it means that the treatment has safety benefits for

the site, otherwise it increases the crash risk.

In practice CMFs are used to multiple the SPFsbase so that there is a more detailed

prediction of crashes:

Npred,i = SPFbase,i ∗ CMF1 ∗ CMF2 ∗ ... ∗ CMFn ∗ C (3)

where Npred,i is the number of predicted crashes at site i and is the product of the base

SPF developed for the same type of sites (e.g., rural two-lane highway segments), e set

of CMFs, and the factor calibration factor C. The later is used to adjust a HSM-based

SPF and the respective CMFs to local conditions.

The HSM predictive method can be used for three discrete purposes [171, 231],

namely: (1) Network Screening where the objective is to determine the most unsafe

locations across a road network, (2) Expected Changes at the Project Level, where

different SPFs will be developed for the “base” condition and then for the alternative

in an effort to estimate the change in expected crash frequency, and (3) Evaluating the

Effect of Engineering Treatments, where before-after studies take place to determine

the effect of safety countermeasures that have taken place at a location. While the

HSM has multiple SPFs for road segment and junctions types and at the same time

there are CMFs for those facilities, the manual has no capability of predicting bicycle

crashes.

In addition to the HSM Predictive Method, there are other efforts in the existing

26



literature to develop mathematical functions that predict crash frequency at a site.

These models are different from those in the HSM in several ways. First, the SPF is

multivariate instead of having traffic volume variables only. Therefore, the impact

of road elements is considered as model variable instead of a factor that multiplies

the model. HSM models are developed using data from five States to enhance

transferability and generalizability. Existing multivariate crash prediction models are

(in most cases) developed for certain states, regions, or cities. In contrast to HSM that

provides models and CMFs for motorized vehicles only, multivariate crash prediction

models have been developed for bicycle safety. The following subsections present the

mathematical framework for crash prediction models and then, a summary of the

literature on the existing crash prediction models for bicycle-motorized vehicle crashes.

Count data models

Traditionally, these statistical models fall under the category of count data models

however few more frameworks have been proposed in the literature as listed in the

review of Lord & Mannering [146]. Counts are non-negative integers and represent the

number of occurrences of an event within a fixed period. As such certain regression

frameworks, such as linear or logistic regression that have myriads of application are

not appropriate for count data. Modeling count data with linear regression would

allow the dependent variable to take negative as well as non-integer values which has

not physical meaning. Additionally, linear regression assumes that the dependent

variable is normally distributed a condition that has found to be false for the case

of crash data [115]. Logistic regression is suggested for cases where the dependent

variable can only take values between zero and one.

There is another category of models known as “count data models” that are ideal

for modeling count data. These models rely on the theory behind a Bernoulli trial
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and thus, the binomial distribution. Assuming that there are N independent trials,

where in the field of traffic safety “trials” refer to the number of vehicles crossing a

site, p denotes the probability of successes, or the probability of crash occurrence in

traffic safety. Consecutive Bernoulli trials are assumed to be characterized by the

same failure process. The binomial distribution represent the probability model and

is given by the following formula 4:

P (X = n) =

(
N

n

)
pn(1− p)N−n (4)

where n = 1,2,3,..., N , and corresponds to the number of successes (or crashes).

Binomial distribution has mean and variance are E(X) = Np and V AR(X) =

Np(1− p) respectively.

Crashes are events with low probability to occur, and it is appropriate to consider

very large values for the parameter N while at the same time p is small. A Poisson

distribution is can better approximate the probability of crashes, but essentially

Poisson distribution can be derived from binomial if we set p = λ/N where λ is the

mean of Poisson distribution.

P (X = n) =

(
N

n

)
λ

N

n

(1− λ

N
)N−n ≈ λn

n!
exp(−λ) (5)

where, n = 0,1,2,K, N and λ is the mean of a Poisson distribution.

In a Poisson regression model, the probability of site i having ni crashes per year

is given by:

P (ni) =
λnii
ni!

exp(−λi) (6)

In these models the expected frequency lambdai is specified as a function of the

explanatory variables (i.e., predictors). The most common relationship between the

28



explanatory variables and the Poisson parameter is the log-linear model shown in 7,

as it has the ability to produce non-negative values. Given that lambdai expresses

the expected frequency, i.e., mean value that fluctuates based on the variance, it is

allowed to take non-integer values; it is the number of crashes per site per year that

cannot be anything but positive integers or zero due to the physical meaning.

λi = exp(βXi) (7)

where Xi is a vector of explanatory variables and β is a vector of estimable parameters;

the latter are estimated by standard Maximum Likelihood methods.

Poisson regression assumes equality of the variance and mean of the dependent

variable, a condition that does not hold for all cases when dealing with crash frequency

data. It is quite common to have the variance of the data substantially higher than

the mean [146], a phenomenon called “overdispersion.” This leads to invalid t-tests

of the estimated parameters and therefore, it produces inaccurate models [115]. The

restriction regarding the relationship between the variance and mean imposed by the

Poisson model can be overcome with the use of Negative Binomial (NB) regression,

which allows the variance of the dependent variable to be larger than the mean.The

NB model can be derived by simply rewriting Equation 8:

λi = exp(βXi + εi) (8)

where the error term EXP (εi) is a gamma-distributed with mean 1 and variance

equal to α2. The latter is known as the overdispersion parameter. The addition of

this error term in 8 allows variance to be greater than the mean as shown below in

equation 9:
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V AR[ni] = E[ni][1 + αE[ni]] = E[ni] + αE[ni]
2 (9)

The NB distribution has the form:

P (ni) =
Γ(1/α + ni)

Γ(1/α)ni!
(

1/α

(1/α) + λi
)
1/α(

λi
1/α + λi

)ni (10)

where Γ(.) is a gamma function.

Essentially the relationship between the variance and the mean will determine

whether Poisson or NB regression should be used to model crash frequency. In the

recent traffic safety literature, there is another category of models that can be well

applied in either the Poisson or NB regression. These fairly recent models have

been developed to deal with datasets where there is a predominance of zeros, or in

other words, datasets that are zero-inflated. Hence, the models have been named

Zero-Inflated models and depending on the mean-variance criterion, we may have

Zero-Inflated Poisson (ZIP) or Zero-Inflated NB (ZINB) models [146].

Zero-inflated models assume that there are two states that produce zeros in a

dataset. Some zeros might be due to lack, while in other cases which actually include

the majority of zeros, there is a different underlying process. A common example

often given in transportation-related research papers is that of a commuter and their

mode choice over a week [262]. Within a week a commuter did not use the transit at

all, i.e., use = 0. This can be either because they never use transit as they commute

with car, or because that specific week they commuted by bike. In the first case we see

a generic state while in the second case a random behavior. These are the zero-count

and normal count states, respectively [262]. It is essential for each study to be clear

whether there are two states related to the zeros in the dataset or not. The following

equations present the ZIP (11) and ZINB models:
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ni = 0 with probability pi + (1− pi) exp(−λi)

ni = n with probability
(1− pi) exp(−λi)λnii

n!

(11)

ni = 0 with probability pi + (1− pi)(
1/α

(1/α) + λi
)
1/α

ni = n with probability (1− pi)
[

Γ(1/α + n)

Γ(1/α)n!
(

1/α

(1/α) + λi
)
1/α(

λi
1/α + λi

)ni
] (12)

Safety Performance Functions and crash prediction models for bicycles

The development of SPF for motorized vehicle-bicycle crashes is rather premature

compared to the significant work that has been accomplished to estimate the respective

functions for motorized vehicle crashes. Actually there are only one paper [173] that

followed the methodology described in HSM and so the developed model can be

considered SPF. The rest of the literature includes multivariate crash prediction

models that relate crash frequency to several factors.

Nordback et al. created the first bicycle-specific SPF in the US for the intersections

in Boulder, Colorado [173]. The proposed model follows a NB distribution and the

independent variables are intersection AADT and AADB. This work emphasizes

the need to incorporate bicycle volume when estimating crashes and confirms the

safety-in-number effect, i.e., when more bicyclists are present then, the per bicyclist

crash risk is lower [65]. One limitation of this work is that does not associate crashes

with any factor related to the road environment.

On the segment level, Park et al. assess the effect of bike lanes on urban arterials

by developing before and after SPF and estimating the respective CMF [183]. Overall

it was shown that bike lanes are associated with improved safety for road segments.
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A more recent work was also focus on the development of CMF for various roadway

components in addition to motorized vehicle and bicycle demand [200].

Other studies have conducted crash analysis by developing Poisson or NB models.

For intersection crashes there have been U.S. studies [29, 211], European studies

[144, 220], Australian [250], and Korean ones [178]. They all into account various

factors besides bicycle and motorized vehicle volumes, such as number and width

of traffic lanes, presence of bicycle infrastructure treatments, presence and width of

sidewalk, direction of the motorized vehicle traffic, intersection size and number of legs.

Some of these studies are dedicated to signalized intersections [200, 249] while Schepers

et al. studied intersections without traffic signals [220]. Findings indicate that when

speed limit, number of traffic lanes, number of intersection legs, and intersection size

increase then more crashes are expected. Similarly, at signalized intersections number

of crashes are expected to be higher than the ones with no control. On the contrary,

presence of bike lanes was found to decrease the number of crashes.

A main shortcoming of these studies is the lack of detail regarding bicycle in-

frastructure treatments. They all consider the presence of bicycle infrastructure

treatments, either on the segment or the intersection approach, however they do not

differentiate on their type, e.g., buffered versus protected bike lanes. Additionally, for

the intersection-specific SPFs, other infrastructure treatments, such as bike box or

bike signal might impact the intersection safety. Nonetheless such level of detail is

ignored.

2.2 Surrogate safety metrics

Surrogate safety metrics (SSM) stand as an alternative approach to the tradi-

tional crash-based traffic safety assessment. They were developed to address several

shortcomings related to that approach. First, crash-based approach requires several
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years of crash data per location in order to get representative crash frequency and

draw conclusions regarding traffic safety. Second, crash data cannot be used to assess

potential benefits of non-existing facilities, therefore other metrics were needed [82].

It is assumed that there is a relationship between the frequency and severity of

traffic events. In this case, the term “traffic event” denotes an interaction between

road users. While there is a high number of interactions, only portion of them ends up

in crashes. Hyden represented this relationship with a pyramid, as shown in Figure

2.1 [104]. Crashes (or accidents, as denoted in the figure) represent less frequent and

less severe events.

There are two noteworthy categories regarding traffic events: 1) traffic conflicts

that are defined as “an observable situation in which two or more road users approach

each other in time and space to such an extent that there is risk of collision if their

movements remain unchanged” [11], and 2) near misses that were defined by Laureshyn

as: “situation when two road users unintentionally pass each other with a very small

margin, so that the general feeling is that a collision was “near”, [138]. Surrogate safety

methods claim that by studying the more frequent traffic events, i.e., traffic conflicts

and near misses, one may understand the factors that lead to severe events. There are

certain metrics that have been developed to identify traffic conflicts in an objective

manner and assess their severity; they are know as Traffic Conflict Indicators and were

initially implemented in Sweden in the the 70s [11]. As technology has allowed for

automating the process of collecting and processing field data traffic conflict analysis

has become more popular.

In addition to traffic conflicts, FHWA denotes several surrogate safety metrics

such as STOP bar encroachments, red-light violations, percentage of left turns, speed

and deceleration distributions, etc. [82]. All the aforementioned metrics are used in

surrogate safety studies as they have the ability to indicate unsafe road user behavior.
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This section reviews the literature on surrogate safety emphasizing on the use of

objective traffic conflict indicators; the most frequently used ones are compared in

terms of benefits and limitations. Additionally, different studies centered on bicycle

safety that fall under the category of surrogate safety are presented and the advantages

and disadvantages of each study type are discussed.

2.2.1 Traffic conflict indicators

Traffic conflict indicators are metrics that identify conflicts and assess their severity.

They have been developed under the umbrella of traffic conflict techniques (TCTs).

Essentially, a TCT refers to a set of procedures that have been established to classify

traffic events based on their severity. Different countries have developed their own

TCTs and have published manuals or handbooks to guide this process. The most

popular ones are: the Swedish Traffic Conflict Technique (STCT) [104], Dutch Traffic

Conflict Technique (DOCTOR) [130], and U.S. Traffic Conflict Technique (USTCT)

[184]. The focus, the observational method, and the way to define a conflict are

different for these standard techniques, however, there are similarities among the used

indicators and therefore they can be grouped regarding their context.

There are two main groups of TCIs: 1) Time-to-Collision (TTC) and 2) the

Post-Encroachment Time (PET) indicators. The order that the indicators are listed

corresponds to the frequency they have been appeared in the literature as identified

by de Ceunynck [50]. Additionally, there are other metrics that assess the severity of

a traffic conflict, however the latter needs first to be identified using TTC or PET,

based on the kinematics between the involved road users. These metrics rely on 1)

Deceleration and 2) Speed deferential evaluation and essentially, associate braking

rate or speed with severity [50]. However, Deceleration metrics can also be used in

studies that do not focus on user interaction as shown in Strauss et al. [235].
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Figure 2.1: Safety pyramid (adopted from Hyden, 1987)

Time-to-Collision

TTC is the time required for two users (i.e., motorized vehicles, bicycles, etc.) to

collide if they both maintain their present speed and path [95]. While it is not always

clarified in the literature, both the Dutch and the Swedish TCTs share the same

definition for TTC [136]. However, there is a difference in the phrasing. In the Swedish

traffic conflict technique, TTC corresponds to the time difference between t0, which is

the moment that an evasive maneuver takes place, and the estimated collision moment,

t1 [104]. The latter is estimated assuming that the two users maintain their speed

and path [104], and is the time that the second user would arrive at the collision

point, and so, a collision would occur. In the Swedish TCT, the actual name for

TTC is Time-to-Accident (TA). The Dutch TCT uses the minimum value of the

Time-to-Collision (TTCmin) during an encounter [130–132]. If a collision had occurred,

TTCmin would be equal to zero; therefore, we can see that the Dutch TCT relies as

well in the existence of an evasive maneuver. After one of the users takes an evasive

maneuver they stop being in a collision course, stop approaching each other in time

and space, and TTC can no longer been estimated. Therefore, we have again the time

35



difference between time moments t0, t1.

A minimum TTC during an interaction (TTCmin) of 1.5 seconds or less is considered

as critical [137]. In bicycle-motorized vehicle interactions researchers deal with events

that found to have a TTC less or equal to 4 seconds [198].

TTC identifies traffic conflict in an objective way, but at the same has the ability to

assess their severity. The smaller the TTC value the higher the severity of a potential

crash would be. However, this comparison pays no attention to other information of

the road user movements, such as the speed. For the same TTC value higher speeds

would result in higher crash severity; the proximity to a crash is only one dimension of

“severity” [50]. The aspect of speed is captured through the Swedish conflict technique,

where TA values are associated with speed in order to estimate (potential) crash

severity (Figure 2.2). The other TCTs do not consider speed when assessing the

severity of a potential crash and they only rely on the time proximity.

Figure 2.2: Diagram for classifying conflict severity, adopted from [104]

Many other indicators have been derived from the TTC concept. These include, for

instance, Time-to-Line crossing, Time-to-Zebra, reciprocal of TTC, T2, Time Exposed

TTC, and Time Integrated TTC. Most of them have rarely if ever been applied in

practice and have not been applied in bicycle-related research [50].
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Traditional TTC along with the indicators of the same family, i.e., the ones

mentioned in the previous paragraph, assumes that all involved road users maintain

their speed and path while being on a collision course. However, this may not be

realistic. According to Saunier & Sayed that defined the probabilistic framework: “The

collision probability for a given interaction between two road users can be computed

at a given instant by summing the collision probability over all possible motions

that lead to a collision given the road users’ states.” [218]. For each user and for

each instance all possible motion patterns in terms of speed and path are generated;

then, it is estimated which of all these points overlap for the different road users.

The probabilistic framework has in applied in the bicycle safety research to study

behaviour and safety of bicyclists at locations with bicycling infrastructure treatment

discontinuities, compared to control sites [172]. The work seems promising and the

authors have fully automated all video data processing, however, the paper is mostly

focused on identifying the impact of the discontinuities rather than demonstrating the

probabilistic framework.

Post-Encroachment Time

Provided that two road users are on a collision course, TTC may be determined.

However, if none of the users changes their path or speed and given that they did not

crash, TTC estimation is infeasible. A study observed that in a number of crashes no

evasive action was present, or at least it was not identified [7], resulting in no TTC

estimation. Therefore, there is the need for another metric that has the ability to

capture events that either are not on collision course or ones that are on collision

course but evasive maneuvers did not identified. For these cases, the proximity in

time and space of two users can be captured by another TCI, known as PET.

PET describes the time difference between moment that the first user leaves the
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Figure 2.3: Conventional definition of PET [7]

path of the second road user and the moment when the second user reaches the path

of the first road user [7]. In other words, PET measures what time margin two road

users miss each other [50]. Figure 2.3 illustrates the PET concept. Smaller PET values

correspond to more severe events. Some studies suggest to only consider events with

PET less of equal than 4 seconds [137] while other analyze events with a PET of 5 or

less seconds [129, 274]. The events at the threshold, i.e. 4 or 5 seconds, are considered

to be of mild severity. Besides the time proximity there has not been proposed any

other criterion to further assess the severity of the conflict.

Along with PET, several similar indicators have been developed. Time-Advance

(TAdv) predicts the PET value when all involved road users keep moving on the same

path maintaining the same speed [138]. Another indicator is the Time Headway, which

expresses the difference between the moment that the front part of the leading vehicle

enters the region and the time that the following vehicle enters the same region [258].

A similar concept is expressed through Time Gap, however, this indicator is expressed

in distance instead of time. These indicators have been applied to study automobile

interactions and these indicators neither have been validated for this vehicle type

interactions not have they used to study bicycle-automobile interactions. On the other

hand, the traditional PET has been validated to relate traffic conflicts with crashes

for motorized traffic [7] and bicycle-automobile traffic [137, 274].

38



Figure 2.4: Illustration of relationship between Delta-V and probability of a severe
injury (adopted from [80]).

Non-time based surrogate safety metrics

Two more categories of surrogate safety metrics have been developed: 1) Speed

Differential, or Delta-V as it is usually called, and 2) Deceleration Rate (DR). These

metrics are not used to identify traffic conflicts as PET and TTC. Delta-V is used to

assess both the severity of an existing crash but also of a potential one, while DR is

used to assess (only) the severity of crashes had they occurred.

Delta-V (∆V ) is a notation often used in physics to denote an object’s change of

velocity. In the context of crashes, Delta-V refers to the change of a velocity vector,

i.e., magnitude and the direction of the speed, experienced by a road user during a

crash. Essentially, a rapid and large change implies a crash with a high injury severity

outcome. The relationship between Delta-V and the probability of a serious injury is

visualised by a logistic regression curve (Figure 2.4).

For crashed that have not occurred, Delta-V estimates crash severity assuming
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that the road users would collide having the speeds at the moment of the evasive

maneuver [136]. This is not so realistic in the sense that before a crash, users are more

likely to decelerate and therefore, their speed at the time of the collision are lower

compared to the moment they realized they are about to collide. Aiming to depict

this reduction, Laureshyn et al. developed the Extended Delta-V [136]. Neither of

these metrics has applications that involve bicycle-automobile interactions [50].

DR is used to indicate areas or sites that could be potentially prone to crashes

due to frequent and intense deceleration events. Strauss et al. used GPS data to

extract bicyclists DR from intersections and segments [236]. Existing injury data for

the different sites was found to be correlated with the respective DR. Specifically, the

ranks of expected injuries and dangerous decelerations were found to have a Spearman

correlation of 0.60 at signalized intersections, 0.53 at non-signalized intersections

and 0.57 at segments [236]. Through GPS devices DR can be collected for an entire

network relatively fast, although that would be data from users that have smartphone

or other GPS-enabled devices and are willing to share it. One limitation of DR as a

surrogate safety metric is that it does not necessarily corresponds to user interactions;

a user might decelerate for various reasons and not only to avoid another road user.

2.2.2 Categories of surrogate safety studies

(beforehand) of their participation in a research project. It Surrogate safety studies

observe interactions between road users and extract various metrics that can be used

to quantify safety. Such studies have been conducted in various environments and two

main groups may be denoted: 1) controlled and 2) not controlled studies. Studies that

happen in a control environment are essentially these that involve simulation. It can

be either microsimulation, i.e., a software that simulates the movements of road users,

or driving simulator, where humans are exposed to a virtual environment. Under
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the bicycle-safety umbrella, in addition to driving simulator studies experiments have

utilized bicycle simulator. In this case, participants ride a stationary bike. On the

other hand, there are studies that rely on field data that are also known as naturalistic.

Two subcategories can be denoted with respect the data collection in naturalistic

studies: a) fixed-point data collection, and b) network-wide data collection. In a) a

sensor (e.g., a video camera) has been set up at a specific point of the road network,

e.g., an intersection, and it records all the road users that appear in its range during

the data collection period. Of course, this set up can be repeated to cover multiple

points across the road network. In b) data is simultaneously collected from road

users that are spread across the road network. This section reviews studies that have

been conducted in any of the aforementioned environments and have identified and

analyzed traffic conflicts.

Microsimulation studies

Simulation is a resource-efficient way to model traffic flows in a network. Simulation

models can be multimodal in nature and are used to model the interactions between

different modes on a transportation network. New roadway designs and facilities

ranging from roundabouts to traffic signal timing can be evaluated in terms of delay,

safety, etc., through simulation before they are actually built.

With respect to traffic conflict analysis several studies have been conducted in

microsimulation environment. For automobiles the most commonly used tool is the

Surrogate Safety Assessment Model (SSAM) [82]. It is a post-processing module

compatible with various microsimulation packages, such as VISSIM, Aimsun, and

Paramics. The user has the ability to define threshold values for TTC and PET, or

use the predefined one that is 1.5 seconds for both indicators. Events that are found

to have TTC or PET values bellow the thresholds are defined as conflicts. Then
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considering the exact value reported by the time-based indicator as well as the speed

of the vehicle, information can be extracted regarding the severity of each event. This

model has not been expanded though to capture bicycle-vehicle interactions.

Up to date bicycle-vehicle interactions have not been studied through microsimu-

lation. There is a considerable effort that tries to create realistic bicycle behavioral

models that can be utilized in microsimulation packages [252], however only few of

them have been validated with real world data. Actually, simulating bicyclists behavior

is hard as these road users have a great flexibility regarding the location of the street

that they use; it can be a bike lane and then, the sidewalk, or ride on a bike lane

but on the opposite direction [251]. Up to date microsimulation studies that involve

bicyclists have only focused on delay estimation [79, 129].

Driving simulator studies

Similar to microsimulation, driving simulator offers the possibility to study vari-

ous infrastructure designs. In addition to kinematic-related metrics such as speed,

acceleration, lane changing, driver simulator allows the use of alternative ways of

assessing driver response to various infrastructure designs or stimuli from the roadway

environment. For example, mounting an eye-tracking device on driver’s heads is a

way to get participant eye-gaze data that can in turn be used to assess attention

allocation, impact of visual stimuli, etc. Overall, research on validating the technology

of the driver simulators has found that driving in high fidelity simulators is similar

to driving in the field in terms of speed, acceleration, braking, lateral position, and

drivers reaction time [201].

An array of studies aimed to capture driver behavior in response to interactions

with bicyclist(s) and/or bicycle infrastructure treatments [37, 53, 61, 75, 83, 93, 108,

127, 204, 261]. All of these studies have implemented various surrogate safety metrics
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to assess driver behavior. For example, vehicle-bicycle lateral distance during over-

passing events [93], driver speed [53, 127] and placement on the roadway with respect

to bicycle infrastructure [37, 75], driver braking patterns when bicyclists are present

[59], driver glances at the bicyclist [204] or the bicycle infrastructure treatments

[53], etc. Part of the aforementioned studies have assessed driver behavior from the

human factor’s point of view. This consists of analyzing solely metrics regarding

driver attention [204], situational awareness [108], distraction [61], etc. All of the

previously listed surrogate safety metrics provide safety-related information and they

have the potential to guide policy regarding the implementation and design of bicycle

infrastructure treatments. However, their relationship with crashes has not been

validated as in the case of traffic conflict indicators such as TTC and PET.

Only the study by Warner et al., conducted a traffic conflict analysis using traffic

conflict indicators in a driver simulator environment [261]. In their experiment, drivers

were prompted to make right turns in the presence of a variety of treatments such

as bicycle signs and intersection-crossing pavement markings. Bicyclists were present

riding at a bike lane on the right of the driver. TTC was estimated for the cases

that a right-turning driver almost or actually hit a straight-going bicyclist. Results

showed that 57% of the time TTC was equal to or less than 1.5 s [261]. In the

driver simulator environment conflicting behavior is dynamic only from the driver’s

perspective. Bicyclists (or in general, other virtual road users) have a consistent

behavior as it has been coded. On the one hand, this allows to isolate driver response

in a given bicyclist behavior, on the other hand, in real world bicyclist behavior is not

known either, and thus more complex.

Naturalistic studies

Naturalistic studies deploy real vehicles and the experiment involves participant driving
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these vehicles in real-world (i.e., natural) conditions. Kinematic data, i.e., speed,

acceleration, and position, can be collected in a naturalistic study. Two categories can

be defined with respect the area of the study. There are studies tat deploy vehicles

that travel through the entire road network, e.g. a city or neighborhood, and there

are studies that data is collected at one or more specific sites, e.g. an intersection,

and record all road users that are present in that site. While both type of studies

can capture movements of bicycles and motorized vehicles in real-world conditions,

there are substantial differences regarding the data collection process. In the first

case, kinematic data is derived via sensors (e.g., GPS devices) that are deployed in

the vehicles (either automobiles or bicycles) that study participants are utilizing. In

the second case, kinematic data from all vehicles that pass through the study site

can be collected. Usually this is feasible with the deployment of one of the following

sensors: video camera, RADAR, or LiDAR device mounted in a fixed location.

Network-wide naturalistic studies deploy vehicles that travel throughout an area

that is usually a city. In order to collect kinematic data vehicles are equipped with a

GPS device. Coupled with other types of equipment, additional data can be collected

during a naturalistic study conducted at a network level. For example, participants

may be asked to wear an eye tracking device so that their eye movement is captured

[121], bicyclists have been asked to wear helmet with a mounted camera to record

route infrastructure characteristics [111], or wear devices that record pulses in order

to assess stress level [27]. Moreover, as participants are recruited for these studies,

socioeconomic and demographic data may also be acquired.

Many aspects regarding bicycle safety have been studies in this context. Researchers

have attempted to capture the mechanisms of cars overtaking bicyclists by deploying

an instrumented bicycle [58], and driver behavior while making right-turns in streets

with bicycle infrastructure treatments [121]. Other studies have estimated non-time
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based conflict indicators across a network indicating points with higher deceleration

rates via GPS devices [236]. The significance of the latter study lies in the fact that

the authors tried to associate locations with high deceleration rates with their existing

crash history. The results showed a promising relationship however, they indicated

that more experiments should be conducted [236].

These studies provide insightful information regarding drivers behavior in terms

of lateral distance, speed, and eye-movement, however, none of them can identify

traffic conflicts either with PET or TTC indicators. Network wide naturalistic studies

collect data is such a way that does not allow to estimate PET or TTC values. These

indicators require kinematic data from both interacting vehicles.

In addition to network-wide naturalistic studies, there are those studies that

collect real world traffic data in fixed locations over a period of time. A sensor in a

fixed location is used to collect vehicle kinematic data. For the bicycle-automobile

interactions only video cameras have been used up to-date.

Various safety surrogate metrics have used to analyze interactions as recorded

from video data. Researchers have estimated drivers-bicyclists rear distance or drivers

encroachment to bicycle infrastructure [56, 147], have assessed drivers and bicyclists

yielding behavior at unsignalized intersections [228], and have also aimed to capture

bicyclists and drivers understanding and compliance with left-turn regulations [26].

Apart from these surrogate metrics, site-based naturalistic studies favor the iden-

tification of traffic conflicts between bicyclists and drivers with one of the TCIs

method. Many researchers have developed methodologies to accurately extract PET

and TTC values and apply this methods to study bicycle-automobile interactions

in various roadway designs. Both indicators have been equally used to study users

interactions at intersections with the presence of bicycle infrastructure treatments

[116, 153, 198, 219, 253, 274].
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Some studies focus on a specific site and provide countermeasures for reducing

the observed conflicts [198, 219]. The outcomes of this approach are not necessarily

transferable to other sites. Also, in these studies data collection duration is only

couple of hours, therefore, other different behaviors could have been observed in other

time periods. There are studies that emphasize either on the video data processing

framework [116] or on the used traffic conflict framework [137]. The latter category

does not provide safety assessment of specific bicycle infrastructure treatments.

Only two studies collected data from different sites and aiming to compare different

designs or treatments [153, 172, 274]. This is an approach that can inform about

the safety benefits of certain infrastructure treatments. Madsen and Lahrmann [153]

compared the TTC values from five different intersection treatments at signalized

intersections where protected bike lanes were present on the segment. Zangenehpour

et al. [274] collected data from 23 signalized intersections with or without protected

bike lanes on the segment and used PET to identify and assess conflicts. Both studies

emphasized on the importance of traffic and bicycle volumes when studying traffic

conflicts and created rates in order to allow for meaningful comparison among different

sites.

In traffic conflict analysis studies data collection comes from a very limited amount

of time. Actually, Madsen and Lahrmann is the only study found to report data

collection duration in days and not in (several) hours. Collecting data either for a

longer period or in different time/day might reveal different behaviors, and so result

in different number or severity of traffic conflicts. Another concern is that in either

study, there is no information regarding the age of each treatment; it is expected that

users eventually adjust their behavior to new elements. Therefore, data collection

for traffic conflict analysis should take place during similar days and times, e.g., on

weekdays during AM peak period and same weather conditions. Additionally, sites of
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similar age should be compared with each other in order to avoid behaviors due to

unfamiliar users.

2.3 Safety impact of bicycle infrastructure treatments

For site-level analysis, i.e. segments and intersections, multiple studies have been

conducted to assess the safety impact of bicycle infrastructure treatments. The vast

majority of them utilized crash records, while there are several video-based and

simulator-based traffic conflict analysis studies. A study is usually dedicated to either

segment- or intersection level bicycle treatments.

Various design exist for both segment- and intersection level bicycle treatments

and unfortunately, researchers, practitioners, etc., are not always consistent with the

terminology when referring to a certain treatment. Throughout this study, NACTO

Urban Bikeway Design Guide [175] terminology and definitions have been adopted.

2.3.1 Segment-level bicycle infrastructure treatments

Definitions

According to NACTO Urban Bikeway Design Guide on the segment there are three

categories of treatments: bike lanes, cycle tracks, and bicycle boulevards [175].

A bike lane is a portion of the roadway separated by white striping from the traffic

lanes. Pavement marking and signage should be accompany bike lanes [175]. There

are four types of bike lanes, namely: conventional bike lanes, buffered bike lanes,

contra-flow bike lanes, and left-side bike lanes. Except of left-side bike lanes, the other

types are on the right of the right-most traffic lane. Colored bike lanes, usually green

in the US and Canada, red or blue in European countries, may be used either through

the whole length of bike lanes or specific parts of them that are considered critical,

e.g., intersection approach. Coloring is considered to enhance bicyclists visibility and
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indicate vehicle priority [102]. Conventional bike lanes can commonly be found in

three different configurations, as shown in Figure 2.5.

Buffered bike lanes are quite different from the conventional bike lanes as they

have a buffer between the bike lane and the right-most traffic lane to ensure that

bicyclists and motorists maintain a certain lateral distance between them and therefore,

bicyclists are more protected. This type of bike lanes is illustrated in Figure 2.6.

A cycle track or protected bike lane is a bicycle facility physically separated from

motorized traffic and distinct from the sidewalk [175]. While protected bike lanes

have different designs, e.g., one or two ways, on the street or sidewalk level, raised

medians or on-street parking as separators, etc., they all share common elements: they

are separated from traffic and parking lanes as well as the sidewalk. NACTO defines

three types of cycle tracks (i.e., protected bike lanes): one-way protected cycle tracks,

raised cycle tracks, and two-way cycle tracks; see Figure 2.7. Similar to bike lanes,

cycle tracks may be placed on the right or left side of the street and utilize pavement

color markings.

A bicycle boulevard is a bicycle treatment for the segment-level where both mo-

torized traffic and speeds are low, and bicyclists are expected to use the full traffic

lane along with the motorized vehicles. There are signs and pavement markings that

indicate that a street is a bicycle boulevard, while at the same time speed and traffic

calming measures are implemented to discourage through trips by motorized vehicles.

There is another treatment for the segment-level that enhances mixed-traffic, i.e.,

allows bicyclists to use the full traffic lane, namely a sharrow. In contrast to bicycle

boulevards, streets with sharrows do not have traffic calming measures. It terms

of pavement marking and accompanied signage, this treatment is similar to bicycle

boulevards, however they are not assigned to similar roadway environments. Bicycle

boulevards and sharrows are shown in Figure 2.8.
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Research findings

Several crash-based studies have compared streets with bike lanes to street without

bike lanes, and demonstrated the safety impact of this treatment [93, 128, 197, 244].

Implementing bike lanes can reduce crash frequency [128], crash risk [93], injury severity

[244]. The work of Pulugurtha and Thankur (2015) [197] indicates the importance

of proper exposure metrics when estimating crash rates. When the exposure metric

was the average daily traffic (ADT), streets with bike lanes were not find to differ

significantly from streets with bike facilities. On the contrary, when the authors used

the length of the street as exposure metric, streets with bike lanes were found to be

safer for bicycling. Besides Kondo et al. [128], the other studies do not mentioned the

design of the bike lanes that they studied. However, even Kondo et al., consider as

bike lanes streets with sharrows [128]. Bike lanes have also been evaluated in driving

simulator environment, but the focus was mostly on drivers attention [37, 261]. There

are no studies on buffered, contra-flow, or colored bike lanes.

Mixed-traffic facilities mainly include sharrows and bicycle boulevards; the former

treatments can be implemented with a variety of pavement markings, for example

with or without green-colored squares. There is one study that compared crash rates

in bicycle boulevards to near-by arterials were no treatments had been implemented

[159]. The findings suggested that bicycle boulevards provide can significantly reduce

the crash risk for bicyclists.

In terms of sharrows, existing studies involve a crash-based analysis [92], two

driving simulator experiments [75, 93], and several field studies [74, 117, 118, 254].

The crash-based study while included sharrows they were grouped with bike lanes,

therefore there is not much to be said on the sharrows safety performance. Both field

studies and driving simulator experiments emphasized on the bicyclists and motorists

lateral position on the roadway on segments where sharrows had been implemented.
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This is because the placements of sharrows aims in placing the bicyclists in the middle

of the traffic lanes instead of having them riding in the sidewalk, shoulder, or right

side of the traffic lane; the latter placement is particularly dangerous in streets with

parking lanes as bicyclists are likely to be involved in dooring crashes. Two of the

four field studies took place in Canada and one in California, U.S., and found that

bicyclists would shift their position towards the middle of the traffic lane when sharrow

where present [74, 117, 118]. The last field study that took place in Norway did not

observe this trend [254]. Motorists seem to be reducing their overtaking behavior and

instead follow the bicyclists [74, 117, 118]. In the driver simulator settings, driver

were found to have lower speed [75] and higher overtaking lateral distance [93] when

in streets with sharrows.

Separated facilities such cycle tracks have extensively been studied in the North

America context in the recent years, as US and Canada realized to follow the North

European example of bicyclists-motorized vehicles separation [196]. The majority of

these studies is based on crash records.

2.3.2 Intersection-level bicycle infrastructure treatments

According to NACTO Urban Bikeway Design Guide on the intersection there are

seven categories of treatments, namely: bike boxes, intersection crossing markings,

two-stage turn queue boxes, median refuge island, through bike lane, combined bike

lane/turn lane, and cycle track intersection approach [175].

Definitions

A bike box is a designated area at the head of a traffic lane and is connected to a

bike lane. Bike boxes are implemented only at signalized intersections and aim to

place bicyclists in front of the queuing motorized vehicles during red signal phase.
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Therefore, bicyclists visible from drivers and this enhances their safety. This treatment

is particularly efficient in eliminating right-hook conflicts and in turn crashes between

through-bicyclists and right-turning motorized vehicles. Figure 2.9 illustrates a typical

bike box design.

Intersection-crossing pavement markings indicate the area where bicyclists should

move while crossing the intersection. Usually they connect bike lanes (or other type

of segment treatment) upstream and downstream of the intersection. Crossings may

be green colored to enhance drivers visibility. This treatment should not be confused

with through bike lanes that represent the part of a bike lane that vehicular traffic is

supposed to cross in order to change lane, e.g., approach right-lane. Through bike

lanes are placed at the intersection approach, while intersection crossing marking are

on the intersection.

A two-stage turn queue box is an area on the intersection that offer bicyclists a

place to wait before making a left turn. They can be placed at both signalized and

unsignalized intersections where right side bike lanes or cycle tracks are present on the

segment upstream of the intersection. Figure 2.10 illustrates the intersection-crossing

pavement markings as well as a turning-queue box.

A combined lane/turn lane is a treatment that merges bike lanes with traffic lanes

aiming to allow bicyclists to turn. It is a treatment that is placed upstream of an

intersection.

Lastly, a cycle track intersection approach includes several designs that smoothly

merge bicyclists and vehicles at the intersection approach. Depending on the cycle

track (or protected bike lanes) design, one may decide upon the appropriate design for

cycle track intersection approach. For example, in the case of raised cycle tracks it is

common that the intersection approach brings bicyclists to the level of the vehicular

traffic.

51



A median refuge island are placed in the center of two-ways streets and allow

bikes and pedestrians to cross one direction at a time while crossing the street. They

are configured as protected places, i.e., there a physical separation between these

islands and the pavement, for example, islands can be build with an elevation.

Some additional treatments are included in the recently published NACTO Guide

for intersections [176], that are not included in the previous one [175]. These are:

protected intersections, dedicated intersections, and signal phasing strategies.

A protected intersection, also known as setback or offset intersection, offers bicyclists

a dedicated path through the intersection and have the right-of-the-way over turning

motorized traffic. This design incorporates elements such as corner islands and

also create a setback between motorized traffic and bike lanes (either protected or

conventional) and this results in drivers increased visibility; see Figure 2.11. In cases

of busy streets with limited space, dedicated intersections can be used instead of

protected intersections to accommodate bicyclist crossing movements and reduce

conflicts with motorized vehicles. A dedicated intersection has a similar design with

the protected one and their difference includes smaller turning radius and bicyclists

have a smaller place to wait prior crossing the intersection.

Research findings

With a few exemptions of studies dedicated to roundabouts, there are no crash-based

studies assessing the safety impact of intersection infrastructure treatments. Existing

studies on intersections consider the placement of bike lanes, which is a segment-level

treatment (e.g., cite [211]). Even though, intersections with bike lanes have been found

to negatively associated with the number of intersection crashes [29, 211]. Moreover,

several treatments, such as two-stages turn queue boxes and median refuge island,

have not been evaluated in terms of safety in the literature. This section summarizes
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research findings on the safety evaluation of intersection treatments including bike

boxes, cycle track intersection approach designs, intersection crossing markings, and

finally, bike signals.

Several studies have assessed safety impact of bike boxes in the US [56, 102, 147]

and in Europe [8, 205]. Due to the lack of data, crash-based studies could not

draw firm conclusions [8, 205]. Therefore, behavioral studies were found to be the

most appropriate approach. Studies agree on an overall improvement in safety, in

terms of bicyclists visibility [147], reduced number of conflicts between bicyclists and

motorists and increased yielding behavior from motorists when encountering bicyclists

[56]. Moreover, a study found that green-colored bike boxes led to improvements in

bicyclists behavior, in terms of placement [147]. However, there are few shortcomings

related to the aforementioned findings. Loskorn et al. [147], focused on motorists

encroachment to bike boxes, a behavior that has not been related to crash risk in

the literature. Additionally, in their work Dill et al. [56] deployed human observers

to identify conflicts, such us braking event or change in direction, rather than using

automated techniques. The latter are more accurate and do not suffer from human

bias.

Cycle track intersection approach designs [153, 162] as well as intersections with

cycle tracks [274] have been studied by video-recorded field data. Zangenehpour et al.

[274] concluded that intersections where cycle tracks are present are safer than those

without cycle tracks, as lower number of conflicts was identified. Protected intersection

design was found to be the most effective in reducing conflicts between drivers and

bicyclists at signalized intersection, compared to other cycle track intersection approach

designs, such as truncated cycle track [153]. Monsere et al [162]. study was mainly

focused to drivers and bicyclists understanding and compliance with various designs,

included truncated cycle track and creation of mixed-traffic lane, e.g., whether users
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were able to understood the right-of-the-way.

A driving simulator experiment evaluated driver behavior in various intersection

designs, i.e., varying curb radius, colored and simple intersection crossing markings,

protected intersection, and presence of bike signage [261]. In all the developed scenarios,

conventional bike lanes existed on the segment upstream the intersection. The used

performance measures where drivers glancing behavior, developed speed, and number

of conflicts with (simulated or virtual) bicyclist. Signage was found to increase drivers’

situational awareness in the sense that it informed drivers of bicyclists presence,

however, there was no effect in observed conflicts. Protected intersection design made

drivers to develop lower speeds, which can result in less severe crashes, however, it

did not reduce the number of conflicts.

2.4 Summary of literature review

In the recent years there is a growing body of the literature dedicated to bicycle

safety research. Attention has been given to the different bicycle treatment types and

their safety benefits have been studied mainly using crash-based analysis, although

various surrogate safety methods have been used as well. Overall, in the existing

literature it is mostly common to compare sites that have a given bicycle treatment to

sites that do not have that treatment. This approach allows to understand the safety

impact of the studied treatment, however, it does not allow for a comparison between

different treatment types. Such a comparison cannot be valid as a different safety

approach may have been used (e.g., crash analysis vs traffic conflict analysis), but even

when the same safety approach has been used the studies vary in terms of location and

incorporation of independent variables. Therefore, the relationship between segment-

level treatments such as sharrows, conventional bike lanes and protected bike lanes is

unclear. Several studies have attempted to include some different treatment types, e.g.,
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conventional bike lanes and sharrows or conventional bike lanes and protected bike

lanes. Again, as not all treatments are compared within the same study, it remains

unclear which treatment is safer. Similarly, it is unclear how the different intersection-

level treatments such as bike boxes, intersection-crossing pavement markings, and

protected intersections affect bicycle safety at the intersection.

To that end, it should be added that intersection treatments have received relatively

lower attention in the literature compared to ones for the segment-level. This can

be partially attributed to the fact that intersection treatment are less frequently

implemented, although several studies conclude that this trend should change. There

is very limited research on certain intersection treatments such as intersection-crossing

pavement markings, bike boxes, and protected intersections.

Existing studies on bicycle treatment types focus on either road segments or

intersections; there is no research that has simultaneously studied the impact of

different bicycle treatment types both at the segment and the intersection level. For

example, protected bike lanes have been found to eliminate crashes at the segment

level but more crashes take place at intersections. Up to date, similar analysis has not

taken place for other treatment types such as sharrows and conventional bike lanes.
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3 Investigating the safety impact of segment- and

intersection-level bicycle treatment on bicycle-

motorized vehicle crashes

3.1 Introduction

Bicycling is a sustainable alternative to car, yet it has not reached a critical mass

as a regular mode of transport in most countries around the world. This is certainly

the case for the United States. The implementation of bicycle treatments, such as

bike lanes, cycle tracks, bike boxes, etc., can improve bicyclists’ safety and comfort

level and have the potential to attract more bicyclists and legitimize bicycles as a

mode of transport. However, it is evident that crashes still take place at locations that

feature bicycle treatments. This could mean that bicycle treatments might not be

appropriate for any location. There is a need to understand whether certain bicycle

treatment types are more effective in reducing crashes compared to other types and

determine the factors affecting the effectiveness of such treatments.

Bicycle treatments are typically present along a roadway segment (e.g., bike lanes,

sharrows) or at the intersection (bike boxes, protected intersection elements, etc.).

Segment-level treatments are intended to provide space for the bicyclists while they are

traveling along the segment; however, they provide no information to bicyclists on how

to navigate through an intersection. Intersection-level treatments are implemented

to mitigate potential conflicts at the intersection, by providing designated space for

bicyclists to wait during the red signal interval, therefore, improving their visibility,

or altering the paths of vehicles an bicycles to avoid conflicts. Lastly, more research is

needed with respect to intersection-level treatment, e.g., bike boxes, that tend to be

omitted [176] as their safety benefits have not been well studied.

The objective of this study is to analyze bicycle-motorized vehicle crashes for
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road segments and signalized intersections aiming to understand the impact the

various bicycle treatment types have on crash frequency. This is done through the

development of two separate crash prediction models for (a) road segments and (b)

signalized intersections using data from the City of Portland, Oregon. In particular,

this study has focused on protected and conventional bike lanes and sharrows, that

are segment-level bicycle treatments, and two intersection-level bicycle treatments,

namely bike boxes and intersection-crossing pavement markings. At intersections, the

presence of segment-level treatments, e.g., intersections with conventional vs protected

bike lanes is also assessed . In the U.S. conventional bike lanes and then, sharrows are

the most frequently implemented treatments, a trend that is eventually changes as

cities are also implementing protected bike lanes. Intersection-level treatments are

not frequently applied [176], however, intersection-crossing pavement markings and

bike boxes are quite common.

In both (i.e., segments and signalized intersections), the models express crash

frequency as a function of motorized vehicle demand, bicycle demand, and bicycle

treatment type. The analysis presented in this chapter is novel and advantageous

in several ways. First, it utilizes crowdsource app data as the base for estimating

bicycle demand across a road network. Previous studies on bicycle-motorized vehicle

crashes and the presence of bicycle treatments have been limited to a few sites across

a network as bicycle demand data were only available for those. The use of crowd

sourced data allows for expanding the dataset of segments and intersections that can

be studied. Second, the impact of bicycle treatment types is considered both at the

segment- and the intersection-level. As a result, this analysis can provide guidance

to policy makers and transportation planners and engineers on the most effective in

terms of reducing vehicle-bicycle crashes, segment- and intersection-level treatments.

The rest of this chapter is organized as follows: First, literature related to the
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safety impact of bicycle infrastructure treatments for roadway segments as well as

signalized intersections is reviewed and synthesized to highlight existing research

gaps (section 3.2). Next, the data sets used for the development of crash prediction

models are presented followed by the steps taken to filter these data and develop

the mathematical models (section 3.4). Section 3.5 presents the results of this study.

A discussion of the results can be found in section 3.6. The final section provides

concluding remarks and suggestions for future research (section 3.7).

3.2 Literature review

The reviewed literature has has focused on (a) studies investigating the safety

impact of bicycle treatments for the segment-level and (b) studies that have assessed

the safety of intersection-level bicycle treatments. The reviewed studies have been

limited to those relying on crash occurrence analysis. Particular emphasis is given

on the segment- and intersection-levels, therefore, reviewed studies have been been

classified as either “segment-level” or “intersection-level” based on whether they focus

on the safety at the segment or at the intersection. Studies that did not specify whether

the crashes took place at the segment or the intersection and rather conducted a

corridor-level analysis, e.g., [148], were not further considered for this review.

3.2.1 Bicycle safety on road segments

Segment-level treatments appear to improve bicycle safety at the segment, as

indicated by the great majority of existing studies [159, 197, 246]. There are multiple

studies focusing on sharrows, bicycle boulevards, conventional bike lanes, protected

bike lanes, but there are no crash-based studies on buffered bike lanes.

In terms of shared bicycle-motorized vehicle treatments, Minikel (2012) compared

bicycle boulevards, i.e., streets with traffic calming measures where bicyclists are
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allowed to move as motorized vehicles do, to parallel arterials where no bicycle treat-

ments are present [159]. The findings suggest that bicycle boulevards are associated

with two to eight times lower crash rates compared to the arterials. Ferenchak and

Marshall [71] conducted a before-after analysis of census blocks after the installation

of sharrows and observed an increase in bicyclist injury rates. The authors clarify

that the increase was observed for all crash types including dooring crashes, that

are supposed to be eliminated when sharrows are present. This study design cannot

directly assess the impact of sharrows (or any other treatment) as it uses census blocks

as the analysis unit,instead of a site (e.g., segment).

The literature on the safety impact of conventional bike lanes is inconclusive. When

comparing streets with conventional bike lanes to streets with no bicycle treatment, a

study observed a reduction in bicyclist crash risk [197], while another study did not

find any significant difference in crash risk [15]. The work of Morisson et al. (2019)

tested the effect of different types of conventional bike lanes that are implemented in

Melbourne (Australia) and found that bike lanes located between parking lanes and

traffic lanes are associated with reduced crash risk compared to all other types (i.e.,

shared bicycle and parking lane and wide-curbside lane) while curbside bicycle lanes

are the least safe [164].

The review of Thomas and DeRobertis concluded that when traveling between

intersections, i.e., segment-level, protected bike lanes eliminate the interaction between

bicyclists and motorized vehicles [246]. In Toronto (Canada) Ling et al. conducted

a before-after analysis to assess the effect of protected bike lanes and found that

protected bike lanes reduced crashes at the segment but increased crashes at the

intersection [143]. All of the above studies concerned the evaluation of a single

bicycle treatment (e.g., sharrows). Limited studies have compared different types of

treatments at the segment-level. Two Canadian studies considered multiple treatments,
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such as protected bike lanes, multi-use trails, and bike lanes and found that overall

injury risk at protected bike lanes is reduced for bicyclists compared to other segment

types [94, 244]. A more recent U.S. study followed the same methodology as [94, 244],

and concluded that protected bike lanes can be safer than conventional bike lanes or

streets with no treatments, depending on the type of separation [41]. More specifically,

continuous barriers or grade and horizontal separation was found to reduce collision

risk compared to a separation facilitated via parked cars, posts, or low curb separation

[41]. However, all three studies focused on hospitalized bicyclists, they also included

bicyclists that were not injured during an interaction with motorized vehicles, such

as bicyclists that had fallen during their ride or collided with objects and animals.

Jensen (2008) conducted a before-after study to assess the safety effects at streets

where (a) bike lanes and (b) protected bike lanes were implemented and where no

bicycle treatments existed before [110]. This study highlights that both bike lanes

and protected bike lanes can improve the safety at the segment-level [110].

Overall, each of the segment-level bicycle treatments has been primarily evaluated in

comparison to the no treatment case. However the respective literature is inconclusive

and it is overall unclear whether each treatment improves bicycle safety or not. In

addition, most of the reviewed studies do not account for both bicycle and motorized

vehicle exposure that has been shown to be important [76].

3.2.2 Bicycle safety at signalized intersections

Table 3.1 summarizes the methodology and research findings from existing studies

that have analyzed bicycle-motorized vehicle crashes that took place at intersections

and considered the presence and/or the type of bicycle treatment type. Studies that

did not include signalized intersections (e.g., [220]) were excluded from the table as

the focus of this study is on signalized intersections.
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The existing literature is inconclusive with respect to the impact of segment- and

intersection-level treatments on bicycle safety at signalized intersections. Finding

on the impact of conventional bike lanes are contradicting [31, 211]. Other studies

have included sites with different bicycle treatments; however, treatment types were

coded as a binary variables, i.e., whether a treatment was present or not, instead of

categorical ones [92, 128]. This approach does not allow for a comparison between the

different treatment types. From the remaining studies, i.e., that differentiated between

the treatment type, there contradicting findings when comparing the safety impact of

conventional and protected bike lanes [144, 234]. In a nutshell, further research is

required to assess the impact of various bicycle treatment types on bicycle-motorized

vehicle crash frequency at signalized intersections.

In addition, no studies to-date have performed a comparative analysis of the impact

of various intersection-level bicycle treatments such as bike boxes and intersection

pavement markings on intersection safety. The effectiveness of bike boxes in improving

safety, have been assessed with the use of surrogate safety metrics rather than crash

data [26, 56, 147]. As a result, the impact of bike boxes on crash frequency is still

not known. On the contrary crash records have been used to understand the safety

benefits of colored intersection-crossing pavement markings [109]; a study found that

the number of crossings at an intersection affects the number of crashes and generally,

one crossing reduces the number of crashes while more than one crossings increase

crash frequency [109].

3.3 Data

Multiple sources are needed for the development of crash prediction models. Crash

data, is the dependent variable and exposure data (traffic count and bicycle count

data) are the most commonly used independent variables. For this study, bicycle
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infrastructure data is used as independent variables, too. Road network data as

all data types are matched to particular spatial units; in this study those are road

segments and signalized intersections.

3.3.1 Crash data

Crashes for the City of Portland were obtained from Oregon Department of

Transportation database, listing all crashes that took place in Oregon between 2012-

2019 [180]. Data were filtered to include only bicycle-motorized vehicle crashes for

the City of Portland. Crashes are geocoded and associated with a unique ID. In

the database, crashes are categorized as intersection or segment level and for the

intersection ones, the control type is also reported.

3.3.2 Road network

Road network and speed limit information is publicly available in Geographic

Information System (GIS) layers provided by the City of Portland [42]. A GIS layer

containing all signalized intersections is available as well and was used in the study.

Segment crashes were linked to the closest road segment based on their proximity and

name, while intersection crashes were linked to the closest signalized intersection node.

3.3.3 Bicycle exposure data

Bicycle demand was used as an exposure metric, in addition to traffic volume data.

Bicycle demand might be collected during various time intervals and could fluctuate

over the year. For crash analysis, it needed to be converted to Annual Average Daily

Bicycles (AADB) format. Two sources were utilized to achieve this: (a) a sample

of segment-based aggregated trips and (b) point-based continuous counters. The

combination of both allowed for estimating demand across the majority of the road
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network in Portland.

Aggregated segment-based bicycle trips were available through the Ride mobile

phone application (app) [189, 203]. The app was initially launched for the City of

Portland, with the main objective to collect bicycle count data and bicyclist experience

along bicycle routes across the city [191]. When enabled, the app records the user’s

position throughout their route. At the end of the trip users can rate the route. This

rating applies to all of the segments that formed the particular route. Those ratings

were not used in this study.

Mobile phone apps allowing collection of crowd sourced data are seen as a new

and efficient way of collecting bicycle related information that could not have been

possible otherwise. Fitness apps (e.g., STRAVA) can be used to collect bicycle trip

characteristic data such as routes and trip duration and have also been used in bicycle

safety studies, as a means of bicycle demand [24, 31, 211]. However, fitness apps are

limited in that bicyclists using them might be more likely to be riding for recreational

purposes and tend to choose routes more suitable this activity. Given that these routes

tend to be consisting of off-road paths and trails and in turn, places where there is no

interaction with motorized vehicles, using fitness-based crowdsourcing apps might not

be ideal for assessing bicycle safety. Overall, there has been no study thus far relying

on other than fitness crowdsourced apps for bicycle exposure data.

Bicycle trips per segment per month obtained from the Ride app were provided by

the firm. For every segment aggregated trips per month were provided for the period

of September 2016-August 2017. The total annual trips per segment were estimated

and matched to the actual road network of Portland. As shown in Figure 3.1, Ride

data covers a substantial portion of the Portland road network, both in the downtown

area as well as in the surroundings of the city. The numbers shown are total annual

rides for the 12-month period mentioned above.
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Ride app data are plentiful spatially and cover the great majority of the Portland

road network (Figure 3.1), but not all bicycling population uses the app. The app

offers a sample of the bicycling population that must be adjusted to the AADB level.

Fortunately, the City of Portland has placed counters that collect continuous bicycle

count data for both short-term and long-term periods; varying from day-, week-,

month-, and year-long samples. These data have been archived by the Portland State

University (PSU) in an effort to establish a non-motorized counts database [192].

The PSU’s database contains count data from 87 locations in Portland for the

period of 2013-2016, with 23 counters having at least one full year of counts for the

2014-2016 period. These 23 multi-year continuous counters were used to scale-up the

Ride app trips too obtain the AADB values. All the other short-term counts were not

sufficient for this scaling process, as they would need adjustment themselves.

It is assumed that Ride trips demonstrate the bicycle demand allocation across

Portland. Even if the Ride app data comes from a year, it is assumed that is remained

the same during the 2014-2017 period. While factors such as land use, bicycle

treatments, etc. have been found to influence bicycle demand and route choice, for

the studied time period of four years land use as well as mode share trends are not

likely to have changed. In terms of bicycle treatments only a very small part of the

bicycle network was modified during this period and thus, it is reasonable to assume

that there have not been significant changes with respect to bicyclist route choice.

Additionally, it is assumed that this trend has not changed over the past few years,

as there has been no change in the bicycle volumes as measured by the continuous

counters during the 2014-2017 period.

For some road segments, the actual bicycle demand (i.e., total bicycle trips per

year) is known by the continuous counter data. In order to estimate AADB for all

network segments, all 23 continuous counters were utilized to develop a scaling model.
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Table 3.2: Linear regression model for the the network-wide AADB estimation

Coef. Std Error p−value Conf. Intervals (95%)
Ride AADB 194.458 13.409 0.000 ∗∗∗ [167.263, 221.652]
Pop. Density 7.821 2.418 0.003 ∗∗∗ [2.916, 12.726]
∗,∗∗,∗∗∗ Statistically significant at the 90%, 95%, and 99% level

Given the linear relationship between the counter AADB and the Ride app AADB

(see Figure 3.2), a linear regression model was estimated to predict the final AADB

for each segment based on the existing Ride AADB.

In addition to the Ride app AADB, one more variable was added into the linear

regression model, namely the population density of the census tract, where the

continuous counter is located. This was necessary as a proxy to bicycle demand given

the number of segments with a crash but no Ride trips. Population density was chosen

as it is expected that lower density suburban areas will have fewer rides compared to

areas with higher population density. Population density was estimated as thee total

number of people per 1000 per square kilometre for each census tract. The results are

presented in Table 3.2.

Both independent variables are statistically significant at the 95% confidence

level. The model intercept was removed since it was not statistically significant, an

action that improved the model in terms of R2 (82.4% increased to 88.6%), Akaike

information criterion (AIC) (523.7 decreased to 523.3), and Bayesian information

criterion (BIC) (528.6 decreased to 526.5). In this implementation, the intercept might

also be redundant in the sense that when population density and Ride AADB are zero,

then there are no bicyclists. With respect to population density, our assumption that

more dense census tracts will concentrate more rides was also confirmed as indicated

by the respective coefficient signs. This model was used to predict the AADB for

every network link.
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3.3.4 Traffic exposure data

Traffic demand was also used as an exposure metric and was available through

traffic counts performed by the City of Portland spanning the period from 2014 to

2018 [190]. Each counter collected data during three weekdays and therefore, the data

was expressed in Average Daily Traffic (ADT). Additional traffic demand data in

Annual Average Daily Traffic (AADT) was available for the City of Portland through

ODOT; for road segments that both ADT and AADT data were available the later

was selected.

3.3.5 Bicycle treatments

Segment-level bicycle treatments for Portland have been mapped and are publicly

available in GIS format. Given that many changes were planned for the Portland bike

network for 2018-2019, this study focused on the period between 2014 and 2017. The

fact that demand data was available from two different sources from 2014 up to 2017

further motivated the selection of that period.

Only links labeled as ”ACTIVE”, i.e., a bicycle treatment currently exists, during

the 2014-2017 period were included in the analysis. Road segments where changes

took place during the 2014-2017 period were filtered out. Active bicycle infrastructure

consists of the following treatments: conventional bike lanes (BL), buffered-bike lanes

(BBL), enhanced shared roadways (ESR), neighborhood green ways (NG), protected

bike lanes (PBL) and, off-street paths or trails (TRL). ESR and NG are marked with

the sign of sharrows. Off-street paths and trails were excluded from the analysis due

to not being associated with bicycle-motorized vehicle interactions. During 2014-2017,

Portland had approximately 260 km of conventional bike lanes, 12 km of buffered bike

lanes, 3.3 km of protected bike lanes, 132 km of mixed-traffic segments, and 135 km
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of trails.

For the intersection-level treatments, Google Maps imagery was solely used to

obtain the treatment type, if any, at the signalized intersections across Portland.

Specifically, bike boxes and crossings were identified. Signalized intersections that had

been modified in terms of bicycle treatment during the study period were excluded

from the analysis.

3.3.6 Final dataset

Data availability determined the crash locations and time period that were used

in this study. As mentioned earlier, the Portland bike network experienced several

changes during the 2018 and 2019 while at the same time bicycle demand data was

available for 2014 to 2017. Since traffic demand data was also available for that period,

it was selected as the study period. The final number of segments and signalized

intersections with crashes during 2014-2017 was determined by (a) the traffic demand

data availability, i.e., locations with no count data were excluded, and (b) the bicycle

treatment status, meaning that sites with modified bicycle treatments were excluded.

Overall, 188 segments and 179 signalized intersections with crashes were used for this

analysis. Additional sites, i.e., road segments and signalized intersections where no

crash had taken place during the study period were randomly selected to be used for

the development of the crash predictions models. The road segments and signalized

intersections used for this analysis in addition to the Ride app segments and the

bicycle treatment types are shown in Figure 3.3 and Figure 3.4, respectively.

3.4 Methodology

Crashes have been traditionally modeled using count data models [146]. Approaches

that involve least-squares regression are not appropriate as the response variable, i.e.,
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the number of crashes observed per site during a given time period, is positive integer

and therefore, the functional form of the chosen model should comply with this non-

negativity constraint. In practice, crashes are most commonly modeled using Poisson

or Negative Binomial distribution models, however, additional modeling approaches

exist [146]. Ultimately, the relationship between the mean crash frequency and the

variance (across all sites from the sample) can determine whether a Poisson or Negative

Binomial distribution is more appropriate; when the mean and the variance are equal,

the Poisson distribution is chosen.

When modeling crash frequency with Poisson regression it is assumed that the

probability of having yi crashes at site i during a certain time period is:

P (yi) =
exp (−λi)λyii

yi!
(13)

where P (yi) is the probability that site i has yi crashes over a certain time period;

λi is the Poisson parameter for the i-site and it expresses the average expected

crash frequency per year for that site. The expected crash frequency, λi, is specified

as a function of a set of independent variables. The Poisson regression model is

appropriate for datasets where the dependent variable mean value and variance across

all observations are equal. The NB regression models have the ability to deal with

datasets where the variance is greater than mean.

A Poisson regression model was found to be the appropriate one for modeling

crashes at signalized intersections, as it complied with the mean-variance criterion

(0.72 ≈ 0.69); as a result, no further models were considered.

The most common functional form of count data models is λi = exp bXi. However,

specifically for modeling crash frequency other forms can also be considered to primarily

incorporate exposure-related terms into the model and differentiate them from the rest
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of the independent variables. For example, Federal Highway Administration (FHWA)

proposes the following form for road segment crashes for motorized vehicles [9]:

Ni = eβ0AADT β1i lengthβ2i e
∑n
j=3 βjXij (14)

where Ni is the number of crashes at road segment i per a certain time period; AADTi

is Annual Average Daily Traffic in vehicles per day for segment i, lengthis is the length

of segment i, and βnXn is a vector of explanatory variables other than traffic volume

that might affect the crash occurrence. Road characteristics, such as traffic volume

and segment length, that are considered as exposure metrics are not in exponential

format. Essentially, in the λi = exp bXi functional form, the natural logarithm of the

exposure metrics is used instead of the actual value. This transformation allows to

create a relationship where the left-hand side of in Equation (14) becomes zero when

either of the exposure terms are equal to zero.

3.4.1 Development of signalized intersection crash prediction models

Similar functional form as the one given by Equation 14 has been used to model

bicycle intersection crashes [31, 174, 200, 211, 220]; it is clarified though that these

frameworks did not have the same regression model as crashes may follow a different

distribution.

For the signalized intersection crashes two functional forms are considered each

one for a different model. Essentially, there are two objectives: (1) to understand

the impact of the segment-level treatment type and combinations at the intersection

area while not accounting for intersection treatments, see Equation (15), and (2)

understand the intersection treatment impact by isolating the respective variables, see

Equation (16).
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Ni = eβ0AADT β1i AADBβ2
i e

∑n
j=3 βjXij (15)

where Ni is the number of crashes at the signalized intersection i during the 2014-2017

period; AADTi is the total Annual Average Daily Traffic in vehicles per day for the

signalized intersection i, AADBi is the total Annual Average Daily Bicycles in bicycles

per day for the signalized intersection i, and βnXn is the vector of binary explanatory

variables that express a signalized intersection where: (1) one of the intersecting

roads has a conventional bike lane and no other treatment is present, (2) one of the

intersecting roads has a protected bike lane and no other treatment is present,(3)

one of the intersecting roads has a sharrow and no other treatment is present, (4)

two of the intersecting roads have conventional bike lanes and no other treatment

is present, (5) one of the intersecting roads has a conventional bike lanes and the

other has a protected bike lane and no other treatment is present, and (6) one of the

intersecting roads has a conventional bike lanes and the other has a sharrow and no

other treatment is present. It is clarified that in the studied signalized intersections of

Portland no other combinations were found, e.g., sharrow and protected bike lanes.

The second model for the signalized intersections has the following functional form:

Ni = eβ0AADT β1i AADBβ2
i e

∑n
j=3 βjXij (16)

where Ni is the number of crashes at the signalized intersection i during the 2014-2017

period; AADTi is the total Annual Average Daily Traffic in vehicles per day for

the signalized intersection i, AADBi is the total Annual Average Daily Bicycles in

bicycles per day for the signalized intersection i, and βnXn is the vector of binary

explanatory variables that express a signalized intersection where: (1) at least one of

the approaches has intersection crossing pavement markings and (2) at least one of
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the approaches has a bike box.

3.4.2 Development of road segment crash prediction models

For the road segment crashes it was observed that during the studied period the

final crash dataset, i.e., after removing segments for which AADT was not available

and/or there have been changes with respect to the bicycle treatment type, about

87% percent of the crash segments had one crash; two segments had three crashes and

seven segments had two crashes. Therefore, this is a dataset with very low sample

mean. In the review of Lord & Mannering, it is highlighted that count data models

will produce models with false coefficient values when the sample mean is considerably

lower than one [146]. In this case it a common practice in the literature to model crash

probability instead of crash frequency. In other words, the developed crash prediction

model will predict what is the probability that a segment has a crash or not during

the studied period. Binary logistic regression models are ideal for this purpose.

3.5 Results

3.5.1 Crash prediction model for road segments

A logistic regression model was developed to express the crash probability as a

function of AADT, AADB, and segment bicycle treatment type, i.e., no treatment,

sharrow, conventional bike lane, and protected bike lane. The results are shown in

Table 3.3.

Odds ratio (OR) are reported for each one of the independent variables. Values

higher than one indicate a positive association between the dependent and the specific

independent variable while values lower than one indicate a negative association.

However, values close to one indicate a poor association. AADT is positively correlated
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Table 3.3: Logistic regression model for the segment crashes

Odds Ratio (OR) Std Error p−value Conf. Intervals (95%)
Intercept 1.062 0.278 0.828 [0.616, 1.830]
AADT (10−3) 1.056 0.017 0.002∗∗ [1.022, 1.092]
AADB 1.001 0.001 0.104 [1.000, 1.002]
1Treatment [Conv.] 0.552 0.293 0.043∗∗ [0.311, 0.980]
1Treatment [Protected] 0.032 1.085 0.002∗∗ [0.004, 0.272]
1Treatment [Shared] 0.211 0.495 0.002∗∗ [0.080, 0.558]
∗,∗∗,∗∗∗ Statistically significant at the 90%, 95%, and 99% level
1No treatment is the base for the comparison

with the crash probability, meaning that streets with higher AADT are riskier for

bicyclists. The different level of the “Treatment” variable are compared against to the

no-treatment case and showed that protected bike lanes are safer than conventional

bike lanes and sharrows, which are also safer than conventional bike lanes. The only

independent variable that was not found statistically significant, although with a

positive association to the crash occurrence, is the AADB.

The model reported a pseudo R2 equal to 47.8%, which is relatively high considering

that the response describes crash probability and crashes are affected by various

factors such as weather, human factors, safety culture, etc. A chi-squared test was

used to assess the model’s Goodness-of-Fit (GoF) and reported a p-value that was

approximately 0.94. This value is greater than the target 0.05 significance level

allowing us to accept the null hypothesis, stating that observed and estimated values

are the same.

3.5.2 Crash prediction models for the intersection

For the intersection models, the objective was to assess both the segment-level

treatments (e.g., conventional bike lanes) that they are present at least one of the

intersecting streets, and also the intersection-level treatments such as bike boxes
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and intersection-crossing pavement markings (or simply crossings). The impacts of

segment- and intersection-level treatments were assessed developing two different

models. First, intersection-level treatments are present only if the segment-level ones

exist, therefore an interaction modeling approach would be more appropriate. However,

the great majority of Portland bicycle network is made up by conventional bike lanes

meaning that there are relatively few intersections with sharrows or protected bike

lanes. For example, there is only one intersection with sharrows and a bike box and

no intersection with sharrows and crossings, and therefore the developed regression

model has limited information to “learn” the case of sharrows and bike box, compared

to conventional bike lanes and bike box.

A Poisson regression model was developed considering the following independent

variables: a) AADT , b) the natural logarithm of AADB that are prerequisites for

bicycle crash prediction models [31, 173], and then a set of bicycle treatment-related

binary variables: c) only-CBL that is equal to 1 if the intersection has a road with

conventional bike lanes and no other treatment, and zero otherwise; d) CBL-PBL

that is equal to 1 if the intersection has a road with conventional bike lanes and a

road with protected bike lanes, and zero otherwise; d) CBL-CBL that is equal to 1 if

the intersection has two roads both with conventional bike lanes, and zero otherwise.

It is noted that independent variables to represent the sharrow-only, protected bike

lane-only, and conventional bike lane and sharrow cases were also in the initial model

but were not found statistical significant and were removed. Table 3.5 presents the

results.

The motorized traffic and bicycle traffic terms are significant, although AADT is

significant at the 90% level. Intersections with conventional bike lanes, either at one

or both of the intersecting roads, were found to be safer compared to the intersections
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Table 3.4: Intersection crash prediction model - Impact of segment-level treatments

Coefficient Std Error p−value Confidence Intervals (95%)
Intercept -1.3839 0.269 0.000∗∗∗ [-1.911, -0.857]
AADT (10−3) 0.0104 0.006 0.092∗ [-0.002, 0.022]
ln(AADB) 0.0857 0.032 0.007∗∗ [0.023, 0.148]
only-CBL 0.6663 0.161 0.000∗∗∗ [0.350, 0.983]
CBL-CBL 0.7266 0.268 0.007∗∗ [0.201, 1.252]
CBL-PBL 1.2178 0.382 0.001∗∗ [0.469, 1.966]
∗,∗∗,∗∗∗ Statistically significant at the 90%, 95%, and 99% levels
1Only-CBL: a CBL exists at only one road of the intersection
1CBL-CBL: CBLs exists at both intersecting roads
1CBL-PBL: one intersecting road has a CBL, and one has a PBL

with conventional and protected bike lanes as indicated by the coefficient values. This

model indicates that everything else kept equal, signalized intersections where the

aforementioned combinations of segment-level treatments are present are more likely to

experience bicycle-motorized vehicle crashes. A GoF chi-square test (stat. = 220.665,

p−value=0.987) confirmed that the data fits the Poisson distribution.

The following CMFs can be developed from the above model, considering as the

base case no bicycle treatments at the intersection approach:

• Signalized intersections with CBL: CMF = 1.94

• Signalized intersections with CBL-CBL: CMF = 2.07

• Signalized intersections with CBL-PBL: CMF = 3.38

A second Poisson regression model was fit in the same dataset as the previous

model, however, here the considered independent variables were different. In addition

to AADT and AADB variables, the binary variables to express the presence or not of

bike boxes at a signalized intersection as well the presence or no of intersection-crossing

pavement markings were used as explanatory factors for bicycle-motorized vehicle

crashes. The following table (Table 3.5) presents the results.
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Table 3.5: Intersection crash prediction model - Impact of segment-level treatments

Coefficient Std Error p−value Confidence Intervals (95%)
Intercept -1.1155 0.258 0.000∗∗∗ [-1.620, -0.611]
AADT (10−3) 0.0135 0.006 0.025∗∗ [0.002, 0.025]
ln(AADB) 0.0899 0.032 0.005∗∗ [0.027, 0.153]
Crossings 0.3292 0.190 0.082∗ [-0.042, 0.701]
Bike Box 0.5677 0.246 0.021∗∗ [0.086, 1.050]
∗,∗∗,∗∗∗ Statistically significant at the 90%, 95%, and 99% level

Traffic volume and bicycle volume are statistically significant and the findings

indicate that intersections with higher AADT and AADB will experience more crashes.

The findings also show that everything else kept equal, intersections with crossings

or bike boxes increase crash frequency. A GoF chi-square test (stat. = 224.358,

p−value=0.988) confirmed that the data fits the Poisson distribution.

The following CMFs can be developed from the above model, considering as the

base case no bicycle treatments at the intersection approach:

• Signalized intersections with Bike Box: CMF = 1.76

• Signalized intersections with Crossings: CMF = 1.39

3.6 Discussion

3.6.1 Crash prediction model for road segments

The logistic regression model for the segment crashes showed that overall, the

presence of bicycle treatments reduces the probability of a crash. This finding supports

the implementation of bicycle treatments at segments and routes that bicyclists choose

to ride across a network. It would be beneficial for cities to inspect where bicyclists

ride and implement treatments in those segments instead of following the “build them

and they will come” approach which by the way has been found to work under certain
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conditions [45]. For the case of Portland, given that two crowdsource apps, i.e., Ride

app and STRAVA [31], are used by the bicyclists it is feasible to understand where

bicyclists ride and use this information to expand or improve the bicycle network.

In terms of the different treatment types, it was found that conventional bike lanes

is the least safe treatment while sharrows come next and finally, protected bike lanes

is the safest one. It should be highlighted that generally Portland has implemented

sharrows in low-volume streets, mostly in residential neighborhoods, where the speed

limit tends to be 20 mph, but also in some downtown locations. During 2014-2017

protected bike lanes were implemented in a small number of segments; specifically,

across two downtown corridors and then, at some of the bridges. All of these cases

have relatively high bicycle and motorized vehicle demand compared to the rest of the

road network. Generally, there is a consistency regarding the segment types where

sharrows and protected bike lanes have been placed in Portland. On the contrary,

conventional bike lanes exist in segments that vary quite a lot in terms of bicycle and

motorized vehicle demand, road classification, and speed limit. Figure 3.5 illustrates

the AADT as well as the Ride app trips across the different treatment types for the

segments with and without a crash.

Overall, these findings quantify the impact of three bicycle treatment types, namely,

protected bike lanes, conventional bike lanes, and sharrows on crash occurrence. Cities

that have developed their bicycle network similarly to Portland, i.e., mostly use

conventional bike lanes, should consider switching to other treatment types such us

protected bike lanes and sharrows.

3.6.2 Crash prediction models for signalized intersections

The findings from the two crash prediction models for signalized intersections

should be carefully interpreted. Both models indicate that when everything else is
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equal, signalized intersections where certain bicycle treatments (either those for the

segment-level or those for the intersection-level treatments) are present will experience

a higher crash frequency. Because of the way bicycle crashes are coded and reported by

ODOT, it is unclear how the crash took place and at which intersection approach; thus,

it is unclear whether a crash can be attributed to the bike box or the protected bike lane.

Essentially, these signalized intersections should be prioritized for safety improvements.

Additional countermeasures have the potential to assure that bicyclists and motorized

vehicles interact safely and in turn, the number of crashes is reduced. However, the

countermeasures for each intersection should be selected in a way that serves the

specific intersection. Literature from the Netherlands [222] as well recently published

guidelines in the U.S. [176] highlight the need for intersection treatments in addition to

the segment-level ones. Such countermeasures can be related to control strategies, e.g.,

bike signals, or more innovative intersection treatments that eliminate the conflicting

points between bicyclists and motorists such as the protected intersection [53].

The existing intersection treatments, i.e., bike boxes and crossing markings, are

placed to increase driver awareness of bicyclists presence. However, they only have

the ability to improve intersection safety with respect certain interactions between

bicyclists and motorized vehicles. For example, bike boxes are effective in placing

bicyclists in the front of motorized vehicles during the red phase so that bicyclists can

remain in the front when the green starts [175]. Hence, bike boxes can be effective for

the beginning of the green phase (i.e., right after the red phase) and not necessarily for

the later green phase. Additionally, at the studied intersections bike boxes are placed

at one or two approaches while crashes might occur in the other ones as well (the

same holds for the intersection-crossing pavement markings). This discussion aims to

clarify that bike boxes and/or intersection crossing-pavement markings should continue

consider as potential countermeasures for signalized intersections; although at the
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same time, both treatments might need to be couple with additional countermeasures,

e.g., dedicated right-turning phase or bicycle signal phasing that separates bicyclists

from motorized vehicles.

3.7 Conclusions and future extensions

This work developed bicycle crash prediction models for road segments and signal-

ized intersections in an effort to associate the presence and type of different bicycle

infrastructure treatments with crash frequency. The analysis took place in the City of

Portland, Oregon for which a crowdsource app data, i.e., Ride app, was available and

provided a the base for estimating network-wide bicycle demand. This allowed bicycle

demand to be estimated for the great majority of Portland segments and intersections

and therefore, the crash analysis was not limited to a few sites. The probability of a

crash to occur at a road segment was found to be a function of the segment’s AADT,

AADB, and bicycle treatment type, i.e., no treatment, sharrows, conventional bike

lane or protected bike lane. Then for signalized intersections, two crash prediction

models were developed: one to associate crash frequency with the intersection’s AADT,

AADB, and segment-level treatment type, and the second associated crash frequency

with the intersection’s AADT, AADB, and intersection-level treatments.

The contribution of this work can be seen in multiple levels. First, it provided a

quantification of the safety risk associated with three bicycle treatment types for the

segment-level. While there is some evidence in the existing literature that segment-

level bicycle treatments reduce bicycle-motorized vehicle crashes at the segment, it is

not feasible to compare the impact of the three different bicycle treatments, namely:

sharrows, conventional bike lanes, and protected bike lanes. In Portland, Oregon

protected bike lanes and then sharrows are associated with lower crash risk compared

to conventional bike lanes, although the placement of any treatment was found safer
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compared to the no-treatment case. Using the no-treatment case as the base for the

model, it was found that sharrows have an OR equal to 0.211, conventional bike lanes

have an OR equal to 0.552, and for protected bike lanes OR is equal to 0.032. Second,

this work explored the impact of the presence and the type of the aforementioned

treatments as well their combinations, e.g., conventional and protected bike lanes, at

signalized intersections. Up to date, the treatment presence and type has not been

studied both for segments and intersections while exposure in terms of AADT and

AADB are incorporated. Signalized intersections with certain treatment combinations,

e.g., conventional and protected bike lanes or only conventional bike lanes, where

found to be positively related to higher crash frequency. Lastly, the present study also

associated the presence of intersection treatments, i.e., intersection-crossing pavement

markings and bike boxes, with crash frequency; signalized intersections with either

bike boxes and intersection-crossing pavement markings experience a higher number

of crashes.

While these results are specific to the City of Portland, Oregon there are several key

takeaways that can inform transportation engineers and policy makers with respect to

the safety of the bicycle treatment types. At the segment, bicycle treatments should be

placed to elevate motorist awareness and designate space for bicyclists. The majority

of segment crashes in Portland took place in streets with no treatments therefore,

implementing bicycle treatments where bicyclists ride is crucial. Then depending

on the AADT and AADB values as well as the presence of other traffic calming

measures, a certain treatment should be chosen over another. The current practice,

where conventional bike lanes represent the majority of the city’s bicycle treatment,

appears to be less safe for bicyclists. At intersections, it is shown that the presence

of segment-level treatment does not provide safe navigation for bicyclists. Therefore,

additional treatments should be considered for the intersections that separate bicyclists
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and motorized vehicles in space and time, such as protected intersections and bicycle

signals. To understand the appropriate intersection-level treatments, on-site analysis

should be conducted (e.g., Road Safety Inspection or traffic conflict analysis), as the

existing crash reports contain limited information regarding the crash mechanism,

exact location as well as the site’s unsafe conditions. Essentially on-site analysis can

focus on each intersection approach and specific movements and so, reveal more details

on how road users interact and what it the role of the bicycle treatments in those

interactions.

Future work should expand the developed models for other cities in the U.S. that

are similar to Portland in terms of bicycling culture and road network/ land use,

weather, etc. (e.g., Seattle, WA) to explore whether similar trends will be observed.

The treatment types should also be explored for rural settings as well as cities and

states that do have a strong bicycling culture. Additional treatments should also be

studied, such as bicycle signals, merging zones, etc, and it would be a very useful

input for engineers to know which combinations of segment- and intersection-level

treatments work better for given roadway environments, bicycle and motorized traffic

volumes.

In addition to testing the transferability of the developed models, future work

should develop Safety Performance Functions (SPFs) as well as the respective Crash

Modification Factors (CMFs) to effectively predict the expected number of crashes

at road segments and signalized intersections using the HSM methodology. This

work developed models and associated the different bicycle treatment type to crash-

related outcomes and so, it has demonstrated the importance of differentiating on the

bicycle treatment type, however, as the developed models are (a) for one city and

(b) multivariate, cannot be considered SPFs as defined in HSM. To this end, crash

prediction models need to have the following characteristics to be considered SPFs:
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• Be developed for facilities of similar characteristics, i.e., arterials, local roads,

three-leg vs four-leg signalized intersections, etc., so that they represent similar

base conditions.

• Be developed using data from multiple states to ensure transferability and

generalizability of the findings. Data from different states will capture local

factors such as weather, bicycle culture, safety culture, road design and other

road network characteristics, urban planning characteristics, etc.

• Employ Empirical Bayes theorems to remove regression-to-the-mean bias.
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4 Right–hook traffic conflicts between motorists

and bicyclists at signalized intersections

In the previous chapter, Chapter 3, crash prediction models were developed to

relate bicycle-motorized vehicle crashes at segments and signalized intersections with

exposure metrics and the type of different bicycle treatments. Crash analysis is the

traditional approach of assessing safety. Analyzing crash data along with other data

types that relate to road environment, road users, weather, etc., allows to understand

which of those factors contribute to crashes. However, depending on availability (e.g.,

all crashes have been reported), level of detail (i.e., all information regarding the

crash have been completed), and accuracy (i.e., the information regarding the crash

is correct, e.g., precise crash location) the final outcome of the crash analysis can be

affected.

For the case of bicycle-motorized vehicle crashes, there is a lot evidence that they

remain underreported especially when no property damage or injury have occurred

[227]. Therefore, bicycle crash data is analyzed, this only includes a portion of the

crashes that can be as low as 10% of all crashes [227]. Particularly for the Oregon

State and the City of Portland, where the crash analysis in Chapter 3 took place,

the crashes are self-reported and the police investigates only crashes that involve the

presence of an ambulance [43].

Low crash data availability may limit crash-based analysis as explained below.In

the previous chapter, the models developed for signalized intersections need to be

carefully interpreted. For the example, bike box presence was associated with higher

crash frequency but it is hard to understand the actual reasons for this association.

Ideally, crash-based analysis should differentiate based on the crash type, e.g., right-

hook crashes and the safety impact of each treatment should be assessed per crash
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type. However, there are not many crash records for such detailed analysis.

This Chapter studies the interactions between bicyclists and motorists at signalized

intersections emphasizing on a specific interaction type, the right-hook conflicts. Traffic

conflict analysis in this case is used to capture unsafe interactions between bicyclists

and motorists that may lead to a crash. Interactions are categorized as safe or unsafe

based on the Post Encroachment Time (PET), with smaller PET values corresponding

to less safe cases as this indicates that a bicyclist and a motorist approach in space

and time. Compared to crash records, traffic conflicts are occur more frequently and

so, certain traffic conflict types (e.g., right-hook conflicts) can be studied to assess the

safety impact of a treatment.

4.1 Introduction

Increasing bicycling mode share is gaining popularity as it has been associated

with environmental and multiple public health benefits, while also being an effective

way to address congestion in highly crowded areas. The implementation of bicycle

treatments has the potential to increase bicycle mode share by improving safety

and convenience. While there is evidence that bicycle treatments improve bicyclist

safety, bicycle-motorized vehicle crashes still occur at locations where treatments are

present [54, 246]. This highlights the need to further explore the safety impacts of

bicycle treatment types and provide guidance on the most appropriate treatment for

different roadway environments and vehicles and bicycle demands.

Crash statistics from the United States (U.S.) suggest that a significant portion of

bicycle-motorized vehicle crashes take place at urban intersections [186]. Furthermore,

some evidence from countries around the globe like the U.S., Canada, and Germany

suggests that signalized intersections are associated with a higher risk for bicyclists

compared to unsignalized intersections [103, 144, 235]. A common crash type between
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bicyclists and motorized vehicles at intersections is the “right-hook” crash [25, 73, 103],

where a right-turning vehicle collides with a through-going bicycle; Figure 4.1 illustrates

this collision type. Right-hook conflicts are also very common compared to other

conflicting interactions [25]. Right-hook conflicts (and in turn, crashes) occur when

right-turns are allowed during the green phase at intersections where bicyclists and

motorists coexist. While both right-turning vehicles and through-bicycles are traveling

as indented, their paths can cross. Given that the placement of the bicycle with

respect to the motorized vehicle affects both the occurrence and severity of right-hook

crashes [108, 261], it is critical to study the specifics of the interactions between

bicyclists and motorists performing the aforementioned movements in the presence of

bicycle treatments.

Segment-level treatments such as protected and conventional bike lanes and shar-

rows affect bicyclist placement with respect to motorized vehicles. Protected and

conventional bike lanes separate bicyclists from motorized vehicles. In the former

case bicyclists and motorized vehicles are physically separated via various objects

(e.g., bollards, parked vehicles, etc.) while in the case of conventional bike lanes

pavement marking is used to indicate where bicyclists should ride. Sharrows on the

other hand, allow mixed-traffic conditions and bicyclists can share the exact same

road space as motorized vehicles. When protected or conventional bike lanes are

implemented, bicyclists are usually on the right on motorists. Due to the physical

separation that protected bike lanes offer, drivers might be driving closer to protected

bike lanes compared to when driving next to conventional bike lanes. When sharrows

are implemented bicycles could be found to the right or left of motorized vehicles at

intersections.

In addition to segment-level treatments, it is becoming common for cities to

implement intersection-level treatments, such as intersection crossing markings and
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bike boxes. Intersection crossing markings indicate how bicyclists should navigate

through an intersection and inform drivers about the potential of a bicyclist being

present within that space. Intersection crossing markings are placed in both signalized

and unsignalized intersections. Bike boxes are a dedicated to bicyclists area located

just upstream of signalized intersections where bicyclists can get ahead of the car

queue and wait during a red signal phase [87, 147? ]. This improves bicyclist

visibility and provides some level of priority to bicyclists. Various combinations

of intersection- and segment-level treatments exist in the real world; for example,

intersection-crossing markings can be combined with protected and conventional bike

lanes. While existing research has focused on assessing the safety impact of various

intersection-level treatment types, it has not assessed the safety impacts of those

treatments when combined when various segment-level treatments.

This study contributes to existing literature by using field data to assess and

compare the safety impact of the following bicycle treatment types at signalized

intersections: (i) three segment-level treatments, namely protected bike lanes, con-

ventional bike lanes, and sharrows, and (ii) two intersection-level treatments, namely

intersection crossing markings and bike boxes. The analysis focuses on right-hook

conflicts between through-going bicyclists and right-turning motorists assessed using

surrogate safety metrics. The primary objective of this work is to determine whether

there is correlation between the frequency of traffic conflicts and the bicycle treatment

type while accounting for exposure metrics, in particularly right-turning vehicle and

through-bicycle volumes. Emphasis is given on user sequence, e.g., a bicyclist followed

by a motorized vehicle and vice versa, to assess whether it has an impact on the chosen

threshold used to determine existence of a conflict. The following section presents

literature on the safety impacts of bicycle treatments. Next, the methodological frame-

work is presented focusing on data collection, traffic conflict definition and extraction,
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as well as the choice and development of the appropriate regression models. The

models are presented next and the obtained insights and implications for real-world

implementations are discussed. The final section includes the conclusions of this study

as well as recommendations for future work.

4.2 Literature review

Bicycle treatments can be separated into segment-level (e.g., bike lanes and pro-

tected bike lanes) and intersection-level (e.g., bike box and intersection crossing

markings). In North America, segment-level treatments can be broadly separated into

two categories: those that separate bicyclists and motorized vehicles, e.g., conventional,

buffered, and protected bike lanes, and those that do not, such as sharrows and bicycle

boulevards [175]. Subsection 4.2.1 focuses on studies that have evaluated segment-level

treatments at intersections. Subsection 4.2.2 presents safety-related findings from

studies that have focused on bike boxes and intersections crossing markings. Finally,

subsection 4.2.3 summarizes the findings from the literature and highlights existing

research gaps.

4.2.1 Segment-level treatments at intersections

While an array of studies has assessed the safety impact of segment-level treatments,

the focus of this section is to summarize studies that have evaluated the safety impact of

these treatments at the intersection level, e.g., intersections where bike lanes (protected

or conventional) or sharrows are present just upstream of the intersection. Table ??

summarizes the bicycle treatment types that have been studied, the type of intersection

control, and the findings of studies that have assessed the impact of segment-level

treatments on intersection bicycle safety. Note that findings are expressed as the

outcome that was observed when such treatments were in place (i.e., reduced crash
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risk implies a reduction in crash risk when the noted bicycle treatment(s) was in place

versus when not unless otherwise specified).

Several aspects were taken into consideration while reviewing the relevant literature;

the following decisions were made regarding the inclusion or not of relevant studies.

The listed studies (Table 3.1, Chapter 3) are consistent in that they all account

for bicycle and motorized vehicle demand as exposure terms; studies that did not

account for either type of exposure [128, 164] were excluded. This is because recent

findings on bicycle research have shown the need of incorporating both types of

exposure in bicycle safety analysis [76, 173]. Additionally, studies that only considered

unsignalized intersections (e.g., [220]) were excluded as paper’s focus is on signalized

intersections. It is also worth noting that due to the fact that these studies were

conducted in various countries, there is some inconsistency in the treatment type and

configuration. European and Canadian studies consider protected and conventional

bike lanes, while the ones in the U.S. mostly include conventional bike lanes and

sharrows, as protected bike lanes had not been widely implemented until recently. In

Australia and New Zealand, there are several different configurations of conventional

bike lanes (e.g., using a dotted versus a continuous line to denote the bike lane) as

demonstrated in [164, 250]. All studies except for one [274] used crash records to

evaluate bicycle safety; Zangenehpour et al. (2016) used field data of right-hook traffic

conflicts between bicyclists and motorized vehicles.

Overall, existing literature is inconclusive with respect to the impact of different

treatments on bicycle safety at signalized intersections when accounting for exposure.

Even though studies included test sites with different bicycle treatments the developed

models only considered the presence of such treatments as a binary variable (i.e.,

whether a treatment was present or not) [30, 92, 128, 211]. This approach does not allow

for a comparison between the different treatment types, e.g., are intersection approaches
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with conventional bike lanes versus with sharrows safer? From the remaining studies,

i.e., those that differentiated among treatment types, one concluded that there is

no difference between the presence of conventional bike lanes versus protected bike

lanes [234], while another one found that conventional bike lanes enhance safety

compared to protected bike lanes [144]. In addition to the fact that the results of

the aforementioned studies do not agree, neither of them considered sharrows in

their analysis. As a result, there is no comparative analysis on the safety impacts of

conventional bike lanes, protected bike lanes, and sharrows.

4.2.2 Intersection-level treatments at intersections

Several studies have assessed the impact of intersection-level treatment types on

bicyclist safety by analyzing historic crash records or field data or through driver

simulation experiments. The present section reviews those studies that include

intersection crossing markings and/or bike boxes (see Figure 4.2 and Figure 4.3).

Bike boxes is a treatment time that is implemented only at signalized intersections

[168]; therefore, the following studies include by default only such intersections.

Research findings related to the impact of bike boxes are conflicting. Two different

studies have analyzed bicycle-motorized vehicle crash records before and after the

installation of bike boxes in Portland, OR [54] and in New Zealand [? ]; in Portland,

OR there was a 50% increase to the number of crashes in the after period while

in New Zealand there was a reduction in the observed crashes. Increased yielding

rates to bicyclists from motorists turning right and reduced conflicts (and avoidance

maneuvers by bicyclists) have also been reported when bike boxes are implemented in

the U.S. [56, 147] and the United Kingdom (UK) [8? ]. In one study colored pavement

appeared to have a negative impact on the avoidance maneuvers compared to the

white outlined bike box [147]. Finally, a driver simulator study concluded that drivers
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who are also bicyclists are more likely to behave as intended when encountering a

bike box (i.e., stopping behind the stop line and not encroaching on the bike box) [75].

While there is some agreement in the research findings related to the occurrence

of non-crash events at intersections where bike boxes are present, it is unclear how

“conflicts” and “maneuvers” are defined and detected in the aforementioned studies,

therefore, limiting the ability to compare findings across different studies.

Intersection crossing markings indicate the area where bicyclists should move while

crossing the intersection. Usually they connect bike lanes upstream and downstream

of the intersection [168] and they are placed in both signalized and unsignalized

intersections. Crossings may be green colored to enhance drivers visibility.

Research on the impact of intersection crossing markings is limited compared

to bike boxes. Intersection crossing markings’ impact on bicyclist safety has been

evaluated in various contexts and thus, existing findings cannot be synthesized in

a comprehensive and conclusive manner. A driver simulator experiment found that

intersection crossing markings designed as white-dotted line markings outperformed

the ones that included green-colored crossing markings in terms of increasing drivers’

ability to detect bicyclists while approaching an intersection to turn right [261]. A

Danish study correlated the number of intersection approaches per intersection where

blue-colored intersection crossing markings had been installed with crash frequency;

in particular, intersections with one approach with blue-colored crossings reduces the

number of intersection crashes, while more approaches with crossings increase that

number [109].

4.2.3 Summary of the literature

Findings that related to the impacts of segment-level treatment on bicyclist safety

at the intersection are inconclusive; the impact can be either positive or negative.
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Additionally, there is no study up to date assessing all three types of treatments,

namely, conventional bike lanes, protected bike lanes, and sharrows. Research on bike

boxes does not explicitly show whether these treatments impact crash occurrence,

while in cases where non-crash events have been studied the definition of metrics

used, e.g., conflict, is not clear or consistent across all studies. Finally, research that

simultaneously assesses the impact of segment-level and intersection-level treatments

on bicyclist safety is limited.

The great majority of the studies assessing the impact of segment-level treatments

that were reviewed rely on crash records while this is the case for a significant number

of the studies focusing on the safety impacts of intersection-level treatments. Crashes

are rare and random events, therefore, often limiting the ability to perform statistical

analysis. The fact that they are are rare events is even more apparent in bicycle

safety research. Bicycle-motorized vehicle crashes tend to be underreported especially

when they do not result in an injury or property damage [52, 57, 195, 237]. As a

result, crash analysis might be an ineffective method in the sense that it requires many

years of data to establish a representative crash frequency estimate for a site. Data

availability is more limiting when a specific crash type is of interest, e.g., right-hook

crashes. Consequently, alternatives to crash-based analyses have been developed; these

approaches are denoted as surrogate safety methods.

Several studies have used surrogate safety methods to assess bicycle safety at

intersections. One area of surrogate safety studies relies on the definition and use of

objectively defined and identified safety performance metrics, known as surrogate safety

indicators. Such indicators describe how close two or more road users approach in

time and space, whether a collision is likely to occur and lastly, what would the injury

severity of that collision be. An array of field studies has been conducted with the

objective to assess the effectiveness of intersection-level bicycle treatments [153, 219]
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and control strategies such as Leading Bicycle Interval [129, 208], as well the effect

of discontinuities in the bicycle network on bicycle safety [172]. However, there is no

study that differentiates on the different treatment types such as conventional and

protected bike lanes and sharrows that simultaneously accounts for intersection-level

treatments such as bike boxes and intersection crossing markings.

This section first presents the experimental design in terms of site selection and

video data collection. Video data processing to extract relevant interactions between

through-bicyclists and right-turning motorists is explained next. Statistical models

are then developed to relate the observed traffic conflicts with bicycle and motorized

vehicle demand as well as with the bicycle treatment type.

4.2.4 Site selection and video data collection

Video data were collected from ten signalized intersection approaches located in

Boston (3), Cambridge (6), and Somerville (1), Massachusetts to investigate and

compare the safety impact of the three segment-level and two intersection-level bicycle

treatments on right-hook conflicts. Data collection took place in November and

October of 2019 for the Cambridge sites and October and November 2020 for the

Boston and Somerville sites. Cambridge data were recorded using a GoPro Hero7

camera mounted on a tripod while video data collection for Boston and Somerville was

facilitated by cameras provided by Street Simplified, which were mounted on traffic or

light poles. At each site the camera was placed to capture the studied approach and,

in particular, the area containing potential crossing paths of through-bicyclists and

right-turning vehicles.

Table 4.1 provides details on the data collection sites. The column “Period (Hours)”

describes the peak period of the day for which data was collected and analyzed

(total hours of data collection). The “Segment” and “Intersectio” columns contain
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information on the segment and intersection bicycle treatments. The extraction of

traffic conflicts (i.e., column “Conflicts”) is explained in the following subsection. The

data collection sites are also illustrated in Figures 4.4-4.11.The bike path (whether it

is on a protected or conventional bike lane or shared with motorized vehicles) is noted

with a yellow arrow. The path of right-turning vehicles is noted with a red arrow.

Finally, the light blue rectangular area marks where the traffic conflicts between

right-turning vehicles and through-bikes might occur (i.e., where the aforementioned

paths are crossing).

In Cambridge, data were collected during weekdays and specifically on Tuesdays,

Wednesdays, and Thursdays of October and November 2019 during clear weather

conditions (e.g., no snow or rain). For each bicycle treatment type, i.e., sharrows

(one intersection), conventional (two intersections) and protected bike lanes (three

intersections), data were collected approximately between 8:30-10:30 AM and 5:00-7:00

PM, resulting in a total of about four hours of data per treatment type. The selected

intersections have consistency in terms of design: (1) when present conventional and

protected bike lanes are located to the right of the traffic lanes, (2) there are no bicycle

signals, and (3) turning right on red is not permitted. The later is important as it

prohibits drivers from moving during red and enter the location where bicyclists wait

to cross the intersection. Overall, a total of four intersection approaches were observed

during the morning peak hours in Cambridge (one with a sharrow, two with protected

bike lanes, and one with a conventional bike lane) and three during the evening peak

hours (one with a sharrow, one with a conventional bike lane and one with a protected

bike lane). Of the seven intersection approaches four had intersection crossing markings

as their intersection-level treatment and the rest had none. The decision to select

different intersection approaches for the AM and PM data collection stems from

the need to ensure sufficient bicycle and car demand was present, allowing for more
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interactions between bicyclists and motorists to be observed. These approaches were

typically not located at the same intersection as that did not always feature the same

bicycle treatments; instead intersection approaches along the same main corridor were

considered. The only exception was the intersection that featured sharrows as there

was no other intersection in Cambridge (during the data collection period) where a

sharrow was present. Lastly, due to very low bicycle demand during the AM period at

Binney Street, additional data was collected from the Western Avenue and Memorial

Drive intersection on a different day during the AM period.

Video recordings from Boston and Somerville sites were collected during weekdays

in November 2020. Morning peak and afternoon peak periods were analyzed for

the scope of this study. With respect to bike boxes, data was collected from the

sites during both time periods (AM and PM) as it was not always possible to find

similar sites and use one for the AM period and one for the PM period. In total,

data were collected at three intersection approaches that featured conventional bike

lanes upstream the intersection and one with a protected bike lane upstream the

intersection. Two of the conventional bike lane sites and one of the protected bike

lane ones also presented a bike box at the intersection approach and two of those

were in combination with bike boxes. Finally, one intersection approach in Boston

presented a combination of conventional bike lanes and a bike box at the intersection.

4.2.5 Traffic conflict extraction

Surrogate safety methods focus on the interactions between two road users, i.e., a

right-turning vehicle and a through-bicycle in this case. More specifically, interactions

between two road users should align with one of the following definitions in order

to be considered as conflicts: “an observable situation in which two or more road
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users approach each other in time and space to such an extent that there is a risk of

collision if their movements remain unchanged” [11], or a “situation when two road

users unintentionally pass each other with a very small margin, so that the general

feeling is that a collision was “near”, [138].

Different time-based indicators have been developed to objectively quantify the

proximity aspect of two interacting users; the most commonly used ones are the Time

to Collision (TTC) and the Post Encroachment Time (PET) [50]. TTC is appropriate

when users are in a collision course, meaning that one user needs to change their path

or speed to avoid the collision. Essentially, TTC can be detected only when such action

(i.e., change in speed or path or in other words evasive maneuver) is observed and it

is estimated as the time difference between the moment of the evasive maneuver until

the time one of them would reach the collision point. On the other hand PET, which

is defined as the time difference between the moment that the first user leaves the path

of the second road user and the moment when the second user reaches the path of the

first road user [7], is appropriate for cases where the user paths are crossing (or in other

words, are perpendicular) by default and so a user does not aim at changing their path

to avoid another one. Since in the present context of right-hook conflicts right-turning

vehicles cross paths with through-going bicyclists, PET is the appropriate as it can

be estimated without the existence of evasive maneuvers. Figure 4.12 graphically

illustrates the definition of the PET indicator.

Surrogate safety methods and in particular, the time-based indicators have a

proven association with traffic safety. As summarized in the review of Johnsson et al.

(2018), eight studies have correlated the number of observed traffic conflicts that have

been identified using the PET definition with crash occurrence [112]. In bicycle safety

research several studies have used PET to assess the impact of bicycle treatments on

right-hook conflicts between bicyclists and right-turning vehicles [129, 208, 274].
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The recorded videos were reviewed to manually extract the following information.

A 15-minute interval was used as the time unit for the number of: (1) right-turning

motorized vehicles, (2) through-bicyclists, (3) traffic conflicts, at each intersection

approach. This interval was considered appropriate since it is usually used in volume

studies. Smaller intervals such as 5 min. would have greater variability to the number

of conflicts and recorded volumes depending on the occurrence of red phase per 5 min.

As mentioned earlier, traffic conflicts are identified using the PET as the surrogate

safety indicator. The number of traffic conflicts was further grouped by (a) PET value

(i.e., 1, 2, 3, and 4 seconds), and (b) the road user sequence in terms of who is arriving

first at the conflict area, i.e., a bicycle arrives first and is followed by a motorized

vehicle or vice versa.

For each site the conflict area was defined as the area where the through-bicycle

and right-turning vehicle paths were crossing. This area is illustrated with a blue

rectangle in Figures 4.4-4.11. The total number of observed traffic conflicts during the

data collection period were grouped per treatment type. The total number of detected

traffic conflicts along with the respective volumes are shown in Table 4.1.

Smaller PET values indicate a closer chance of collision in the sense that users have

approached each other closer in time and space. This is because a slight increase in the

second user’s speed (see Figure 4.12) would result in collision. Different time thresholds

have been proposed in the literature to (a) define which interactions are severe enough

to be considered as traffic conflicts, and (b) differentiate these interactions to severe

and less severe ones. Some studies suggest to only consider events with PET values

lower or equal to 4 seconds [137] while others analyzed events with a PET threshold

of 5 seconds [129, 274]. Events reporting a PET value equal to the threshold, i.e., 4 or

5 seconds, are considered to be of mild severity. For this study, very few interactions

were observed were PET was equal to 5 seconds. In addition, video analysis revealed
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that these interactions did not appear to be unsafe. As a result, the upper PET value

used for the study was 4 seconds.

User sequence was also obtained for each PET value smaller than 4 seconds. In

particular, conflicts that occurred when a bicyclist was the first user or the second user,

i.e., the first or the second one to arrive at the conflict area, were counted separately.

The focus on the user sequence might reveal some further information with respect

to the user behavior and allow for assessing whether bicyclists and motorists have

different preferences with respect to the gap they leave between themselves and the

leading vehicle.

4.2.6 Model formulation

The objective of this study is to correlate the number of conflicts per 15 minutes

with the types of bicycle treatments that are present (both at the segment- and the

intersection-levels), as well as the right-turning motorized vehicle and through-bicycle

volume for the respective time period.

The dependent variable, i.e., the number of traffic conflicts per 15 minutes, is

a positive integer and conflicts are random events. As a result, count data models,

which can model discrete outcomes, are the appropriate family of models to consider

[146]. In traffic safety literature, count data models have been used to model crash

frequency data, however, more recently, they have also been used to model traffic

conflicts for motorized vehicles [67], between bicycles or pedestrians and motorized

vehicles [56, 112, 129, 208].

The Poisson distribution is appropriate for a set of observations where its mean and

variance are approximately equal [146]; for the observed traffic conflicts this relation

holds although variance is slightly higher than the mean (the mean and variance

are 2.69 and 3.56 respectively). On the other hand, the Negative Binomial (NB)
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distribution is flexible, since it can represent observations where the variance exceeds

the mean. Poisson, is a subcategory of NB, when the error term has zero variance. N

According to the NB distribution, the average expected number of events λi (e.g.,

traffic conflicts) is given by the following equation:

λi = exp (βXi + εi) (17)

where Xi is a vector of explanatory variables for the ith−observation and β is a

vector of estimable parameters. The term εi is the error term that follows the gamma

distribution with mean = 1 and variance = α, where α is the dispersion parameter.

The addition of the gamma-distributed error term allows the observations’ variance to

be greater than the mean; the physical meaning is that some sites experience quite

higher or lower events (e.g., traffic conflicts or crashes) compared to the mean across

all sites. Equation 17 represents the average expected frequency of events given by a

Poisson distribution.

The NB probability distribution has the following form as determined by Long

((year?)):

P (yi|Xi) =
Γ(1/α + yi)

Γ(1/α)yi!
(

1/α

(1/α) + λi
)
1/α(

λi
1/α + λi

)yi (18)

where yi is the number of events (e.g., traffic conflicts) for the ith−observation, Γ(.) is

a gamma function, and α is the dispersion parameter.

Finally the variance of the NB probability distribution is given by:

V ar(yi|Xi) = λi +
λ2i
1/α

(19)

In this study given that the mean and variance are close, both Poisson and NB

distributions were considered to model traffic conflict frequency. The final selection
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of the distribution relies on statistical criteria; essentially, the objective is to keep

the models that fit the data better. The Akaike Information Criterion (AIC) and

Bayesian Information Criterion (BIC) were estimated for each model. The model

that showed the lower AIC and BIC values was the one presenting a better fit for the

available data. The parameters of the developed count data models were estimated by

maximizing the log-likelihood function. All of the analyses were conducted by using

the statsmodel module of the Python programming language [223].

As mentioned earlier, the recorded traffic conflicts were also categorized based on

different PET values, and the road user sequence, i.e., whether a bicyclist was followed

by a motorist or vice versa. Different time thresholds, e.g., PET of one versus two

seconds, correspond to a higher probability of collision. These data collection would

allow for a better understanding of the frequency and type of more and less severe

conflicts.

4.3 Results

4.3.1 Traffic conflict model

The first model that was estimated was the “base model” which relates the number

of traffic conflicts per 15 minutes to the exposure terms, i.e., right-turning motorized

vehicles and through-bicycles, and excludes any other independent variable. Note

that the natural logarithm of each exposure term is used for the model instead of

the actual count. This transformation allows us to model the following relationship

between the dependent variable and the exposure terms: when either of the exposure

terms is zero, then the dependent variable is zero as well. The traffic conflicts per 15

min are given by the following equation ( 20):
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Table 4.2: Base model

Coefficient Std Error p−value Confidence Intervals (95%)
Intercept -3.5922 0.556 0.000∗∗∗ [-4.682, -2.503]
Right-Turning Veh. 0.9084 0.171 0.000∗∗∗ [0.573, 1.244]
Through-Bicyclists 0.7057 0.088 0.000∗∗∗ [0.533, 0.879]
∗∗∗ Statistically significant 99% confidence level

Ni = RT β1i TBβ2
i e

β0 (20)

where N is the number of conflicts per 15 minutes observed during the ith interval,

RTi is the number of right-turning motorized vehicles during the ith interval, TBi

is the number of through-bicycles observed during the same interval, and X4 is the

nominal variable for the bicycle treatment type.

The model as defined by Equation 20 was estimated by fitting the Poisson and NB

distributions. The Poisson distribution was found to have lower AIC and BIC values

(AICPoisson = 268 and BICPoisson = 275) compared to the NB one (AICNB = 269

and BICNB = 279), meaning that the Poisson distribution is more appropriate in

terms of fitting. The model specifications of the Poisson model are shown in Table 4.2.

The base model reveals that both the number of right-turning motorized vehicles

and the number of through-bicycles are significantly and positively associated with

the number of conflicts at signalized intersections. These findings align with existing

research on bicycle-motorized vehicle collisions at signalized intersections [173]. The

developed model was assessed in terms of goodness-of-fit (GoF) using the chi-square

statistical test. The GoF results revealed that the Poisson distribution fits the conflict

data with a chi-square value of 38.53 and a p-value of 0.273.

The base model was then extended to consider the variables for the bicycle

treatment presence. Specifically, the variables indicate whether a treatment is present
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in the studied intersection approach or not: the segment-level treatment type was

treated as nominal variable with three levels (i.e., CBL, PBL, and sharrows); the

variable Crossings indicates whether there are intersection crossing markings, and

finally the Bike Box variable indicates whether a bike box is present. Both bike boxes

and intersection crossing markings can be present at an approach. The model form

(Equation 21) and specifications (Table 4.3) are presented below:

Ni = RT β1i TBβ2
i e

β0+β3CBL+β4PBL+β5Crossings+β6BikeBox (21)

where N is the number of conflicts per 15 minutes observed during the ith interval,

RTi is the number of right-turning motorized vehicles during the ith interval, TBis is

the number of through-bicyclists observed during the same interval, and CBL, PBL,

Crossings, and BikeBox are the variables for the various bicycle treatment types.

Table 4.3: Traffic conflicts model with bicycle treatment type

Coefficient Std Error p−value Confidence Intervals (95%)
Intercept -3.0417 0.622 0.000∗∗∗ [-4.260, -1.824]
Right-Turning Veh. 0.8484 0.224 0.000∗∗∗ [0.409, 1.288]
Through-Bicyclists 0.6927 0.137 0.000∗∗∗ [0.424, 0.962]
CBL -0.7046 0.371 0.057∗ [-1.431, 0.022]
PBL -0.5342 0.402 0.184 [-1.322, 0.254]
Crossings 0.3851 0.308 0.210 [-0.218, 0.988]
Bike Box -0.1313 0.166 0.429 [-0.457 0.194]
∗,∗∗,∗∗∗ Statistically significant at the 90%, 95%, and 99% confidence level

The exposure variables (i.e., right-turning vehicles and through-bicycles) and

the constant are statistically significant at the 99% confidence level. However, the

treatment variables, are not statistically significant at the 95% significant level or

higher. This finding suggests that the studied bicycle treatment types, at the segment

or the intersection, do not affect the frequency of right-hook conflicts. However, the

chi-square test results show that this model fits the Poisson distribution well (x2 =
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37.49, p−value = 0.231). The only treatment that appears to have an impact, although

at the 90% confidence level is the conventional bike lane. Compared to sharrows, this

segment-level bicycle treatment reduces right-hook conflicts.

Conflict rates (Equation 22) were estimated for every 15 minutes interval and then,

grouped by segment treatment type.

CRi =
100 ∗ Conflicts
TBi ∗RTi

(22)

where CRi is the conflict rate estimated for the ith interval, RTi is the number of

right-turning motorized vehicles during the ith interval, and TBis is the number of

through-bicycles observed during the same interval.

Figure 4.13 shows three violin plots displaying the conflict rates per segment-level

bicycle treatment. Violin plots summarize information in a succinct manner and show

the probability density of the data at different values. These violin plots reveal that

lower conflict rates are associated with intersections where conventional bike lanes are

present compared to intersections with protected bike lanes and sharrows.

4.3.2 User sequence and PET values

This part of the analysis examined the observed right-hook conflicts in terms of

road user sequence. There are two potential user sequences: a bicyclist is user 1 and

the motorist is user 2 and so, the bicycle is followed by the motorized vehicle, or

the opposite. As noted earlier, while the observed conflicts were recorded, the user

sequence was recorded as well. While analyzing the data it became apparent that

bicyclists tend to have smaller PET values when follow motorized vehicles compared

to when they are being followed.

For the two different user sequences a heatmap was created to illustrate how PET
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values vary depending on the user sequence; see Figure 4.14. Each cell on the heatmap

corresponds to the percentage of traffic conflicts per PET value and site over the total

number of number of conflicts.

The heatmaps reveal that right-hook conflicts where a bicyclist is followed by a

motorist tend to have PET values of 2 or 3 seconds, while when motorists are followed

by bicyclists, PET values are more likely to be equal to 1 second. Further statistical

analysis was conducted to test whether there are statistically significant differences

between the occurrence of conflicts at the various PET values and the user sequence.

The data per group, i.e., per PET value and per user sequence, are not normally

distributed, according to the Shapiro-Wilk test [226]. Therefore, the Kruskal–Wallis

test [134] was used to assess whether the two user sequence groups per each PET value,

i.e., 1, 2, and 3 seconds, are significantly different. The results of the Kruskal-Wallis

test are presented in Table 4.4.

Table 4.4: Kruskal-Wallis test results for different PET values and user sequence

PET value (sec) Statistic p−value
PET = 1 3.871 0.049∗∗

PET = 2 13.055 0.000∗∗∗

PET = 3 12.151 0.000∗∗∗

All PET 5.436 0.020∗∗

∗∗ Statistically significant at the 95% level
∗∗∗ Statistically significant at the 99% level

Findings from this analysis showed that there is a statistically significant difference

between the reported PET values between the two different groups: conflicts where a

bicyclist was followed by a motorized vehicle or was following one. Bicyclists tend to

maintain smaller distance between themselves and the vehicle in their front that is

turning right, while motorists maintain a relatively larger distance. This finding could

impact on the way PET is recorded.

104



4.4 Discussion

Overall, the bicycle treatment type does not appear to have a significant impact

on the frequency of right-hook conflicts. Conventional bike lanes showed promising

results for improving safety compared to sharrows, but more research is needed to

conclude whether they are indeed capable of reducing the frequency of right-hook

conflicts. With respect to the other treatment types, a few considerations are listed

below in an effort to explain their lack of impact on reducing right-hook conflicts

between bicyclists and motorists.

Intersection-level treatments, such as bike boxes and intersection crossing markings,

can indeed be beneficial for improving bicyclist safety as concluded by previous stud-

ies [56, 75, 147, 261]. However, their safety impact is not necessarily related to reducing

right-hook conflicts and it is reasonable to infer that additional countermeasures are

needed to reduce (or even eliminate) right-hook conflicts at signalized intersections.

Bike boxes and intersection crossing markings should be placed at intersections to

improve bicycle safety and increase driver awareness on bicyclist presence in general,

however, it is critical for practitioners to understand which safety aspect they intent

to improve by implementing those treatments and whether additional signage or other

control devices are needed to enhance the safety impact of such treatments specifically

on reducing right-hook crashes.

Another reason that explains why the particular treatments at the segment and the

intersection levels are not strongly impacting right-hook conflicts is bicyclist behavior

when going through the intersection. Anecdotally, bicyclists often chose to wait in

front of motorized vehicles and particularly right after the crosswalk (regardless the

presence of intersection treatments), ensuring that they would be the first to proceed

through the intersection once the light turned green, thus, eliminating any potential
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conflicts. This was observed at sites with and without bike boxes and/or intersection

crossing markings. Bicyclists crossing the intersection during the red signal indication

was also a relatively common phenomenon. The presence of bicycle signals would be

beneficial for bicyclists in terms of safety and convenience.

Finally, in the studied sites there are also considerable pedestrian volumes due

to the fact that all sites were located in the downtown areas. More pedestrians

and bicyclists improve safety for pedestrians and bicyclists, creating the “safety-in-

numbers” effect [107] something also observed (but not recorded) during the video

data analysis. Motorized vehicles turning right yield to pedestrians and during those

moments bicyclists can also proceed through the intersection without interacting with

the motorized vehicles. Right-turning motorized vehicles are stopped ahead of the

segment-level treatments or bike boxes during this time, which in turn reduces the

potential for right-hook conflicts. The “Yield to Bicycles” sign that is placed in most

of the studied intersections, might also have a strong impact on driver situational

awareness and consequently, driver behavior. A driving simulator study found that

the presence of “Yield to Bicycles” signs attracted drivers’ glances [261]. An increase

in the time drivers spent looking at their right mirror before making a right turn was

also observed in the presence of such signs [261].

In addition to evaluating the safety impact of bicycle treatment types on right-hook

conflict occurrence at signalized intersection, the analysis also centered on the different

PET values reported for the two user sequence types. PET values for conflicts that

involve bicyclists followed by motorized vehicles are lower compared to the opposite

user sequence and it was found that this different is statistically significant for all the

PET intervals (1, 2, 3, and 4 seconds). It seems that bicyclists feel safer while the

conflicting vehicle is in their front and so they do not consider it important to for

example slow down so that they can increase their distance from the right-turning
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vehicle. This finding could motivate research on the appropriate thresholds to classify

the detected conflicts as more or less severe.

4.5 Conclusions and future extensions

This study aimed to assess the safety impact of five bicycle treatments at signalized

intersections focusing in particular, on right-hook conflicts between right-turning

motorized vehicles and through-going bicycles. Poisson regression was used to model

the observed traffic conflicts while additional analysis focused on the impact of user

sequence, i.e., a bicyclist arrives first at the conflict are and is followed by a motorized

vehicle or vice versa, in relation to the PET values.

The developed model found a strong positive association between the observed

number of conflicts and the exposure terms, i.e., right-turning vehicles and through-

bicycles, but did not find a statistically significant relationship between the conflicts

and the bicycle treatment type; conventional bike lanes appear to improve safety for

bicyclists however, this finding was significant at the 90% confidence level.

The observations collected through the video recordings also concluded that lower

PET values correspond to cases where a motorized vehicle is followed by a bicycle.

This suggests that bicyclists tend to maintain a smaller distance from the motorized

vehicle in their front and potentially, different PET thresholds should be defined for

this user sequence in an effort to capture the potential severity of a conflict. Intuitively,

it is riskier when a motorized vehicle maintains a small distance from the leading

bicycle compared to the opposite.

Possible limitations of this study is the relatively small number of sites hours of the

overall data collection effort; across the different sites 22 hours of data were analyzed.

However, an effort was made to ensure consistency, e.g., data collection took place

only on weekdays of October and November, during the peak hours of the day and
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during clear weather conditions. Another limitation is the lack of considering the

presence and impact of control devices. For example, this study did not include signal

timing considerations such as phasing sequence and signal timings or the presence of

signage that could be affecting bicyclist and motorist behavior. Bicyclist and motorist

behavior could also be affected by the level of familiarity with certain treatments,

some of which are fairly new in the study area.

Overall, existing literature on surrogate safety techniques and specifically on traffic

conflict studies using indicators such PET or TTC, is inconclusive regarding the

amount of data is needed to accurately assess safety using such metrics. But even

with this uncertainty, data collection used for surrogate safety studies is more easily

acquired and more informative compared to crash record datasets; video data collection

provides data for traffic conflict analysis but also allows us to study other factors, e.g.,

user compliance with the bicycle treatment and intersection control.

Future research should focus on several aspects to better understand the crash

mechanism behind right-hook crashes by studying right-hook conflicts. First, the

occurrence of traffic conflicts should be studied in relation to user compliance, i.e., given

the lack of bicycle signals bicyclists tend to cross the intersection during red, which

potentially eliminates the potential of conflicts. The presence of other intersection

treatments, e.g., protected intersections, that are specifically placed to protected

bicyclists from right-turning vehicles [53] should also be evaluated using surrogate

safety methods. It is also important to consider sites where intersection treatments

in addition to bicycle signals are present and develop recommendations to guide

their implementation based on bicycle and vehicle demand levels and intersection

geometric characteristics; there is some research on this field but it is again limited in

terms of the studied treatment types and control strategies [129, 208]. Finally, future

research should focus on the user sequence when assessing conflicts between bicycles
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and motorized vehicles, leading to recommendations on the appropriate thresholds

needed to determine safe and unsafe interactions between motorists and bicyclists.
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5 Assessing driver speeding and glancing behavior

in the presence of protected bicycle treatments

Chapter 4 emphasized on right-hook conflicts between right-turning motorized

vehicles and through-going bicyclists at signalized intersections. The objective was to

explore whether (i) the bicycle treatment type upstream the signalized intersection

and (ii) intersection-level treatments affect the frequency of right-hook traffic conflicts

at signalized intersections. The studied treatment types were: conventional bike

lanes, protected bike lanes, and sharrows for the segment-level and bike boxes and

intersection-crossing pavement markings for the intersection-level.

Traffic conflict techniques are one alternative approach to crash-based analysis to

assess traffic safety and they fall under the umbrella of surrogate safety methods. Their

focus is on traffic conflicts as these are events where different road users approach

each other in time and space and so, replicate the crash mechanism. Traffic conflict

analysis based on field data which can be used in various analyses in addition to traffic

conflicts (e.g., demand studies, compliance studies). Field data and in turn traffic

conflict analysis are limited in that they can only capture kinematic-related metrics,

such as position, speed, acceleration. Metrics related to road user mental processes

such as attention, situational awareness, perception, etc. cannot be assessed.

One additional restricting aspect related to field studies, is that through those

studies only existing treatments can be assessed. “Dutch” or protected intersection

design is not commonplace in the US. Therefore evaluating the safety impact of

this treatment is not feasible using field data. A driving simulator experiment is

another surrogate safety approach, appropriate for assessing bicycle-motorized vehicles

interactions in the presence of bicycle treatments for treatments not frequently found

in the field and it can benefit from the use of additional equipment such as eye-tracking
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device that captures driver glancing behavior.

5.1 Introduction

Urban intersections account for one third of crashes between bicyclists and motor

vehicles [186] and 43% of bicyclist fatalities in the United States [176]. Right-hook

crashes, i.e., crashes involving a right-turning vehicle and a through-going bicyclist, are

particularly common at urban intersections as indicated in various studies [25, 73, 103].

Intersection complexity has been found to increase driver workload and reduce

driver ability to detect potential hazards related to non-motorized users [108, 125, 264].

Drivers navigating complex intersections might omit searching for or detecting bicyclists

in their proximity, a condition that raise crash risk. Additionally, in bicyclist-driver

interactions there is the known “looked-but-failed-to-see” phenomenon [21], which

occurs when drivers look at a target, yet they fail to process that information. Finally,

research has shown that incorrect driver or bicyclist expectations related to bicyclist

visibility accounts for some bike-car crashes [265].

In an effort to improve safety for bicyclists, many cities around the world have com-

mitted to improving and expanding their bicycle network by implementing separated

or protected bicycle infrastructure, i.e., protected (separated) bike lanes and protected

(Dutch) intersections. Such treatments offer dedicated space to bicyclists, which can

lead to improved comfort and perceived safety for bicyclists [27, 44, 161]. Finally,

protected bike lanes have been associated with increased diversity in the bicycling

population, making bicycling more inclusive in terms of gender and age [3, 6, 55, 160].

However, the impact of such bicycle infrastructure treatments on driver behavior and

bicyclist safety has not been adequately studied.

Protected bike lanes have the potential to reduce drivers’ ability to detect bicyclists

or bicycle treatments, which may act as a warning that bicyclists may be present.
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This is due to the distance they add between motorists and bicyclists, that in turn

reduces the probability of a driver detecting a bicyclist. The distance between a travel

lane and the protected bike lane can be as low as 60 centimeters in the case of a

buffer zone and as high as the width of a car when a parking lane is used to separate

bicyclists and motor vehicles [155]. Particular protected bike lane configurations, such

as the presence of a parking lane, can actually block the drivers’ view to the protected

bike lane and limit their ability to detect bicyclists. Even when bicyclists are detected

by a driver, there are still concerns that after a period of separation drivers might not

anticipate interacting with bicyclists as the two merge back at the intersection. This

could raise the risk of right-hook crashes between drivers and bicyclists. The placement

of protected or Dutch intersection features after a protected bike lane is a potential

solution to right-hook crashes. This is because protected intersection elements allow

for physical separation between motorists and drivers at the intersection. This in

turn encourages drivers to make wider angle turns and results in drivers encountering

bicyclists in front of them, reducing the risk for right-hook collisions.

The objective of this research is to understand whether driver behavior at right

turns is affected by the presence of protected bicycle infrastructure treatments, namely

protected bike lanes and protected intersections. A driving simulator experiment was

designed to capture driver right-turning behavior, in terms of speed and glances, under

the presence of protected bicycle infrastructure treatments.

5.2 Literature review

This section summarizes bicycle safety research on protected bicycle treatments.

The safety impact of protected bike lanes both at the segment and the intersection

levels are presented in the first subsection (subsection 5.2.1), which is followed by

research related to protected intersections (subsection 5.2.2). The final section
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summarizes research gaps that are addressed through the research presented in this

paper.

5.2.1 Protected bike lanes

Protected bike lanes, also known as separated bike lanes or cycle tracks, provide

a physical separation between motorists and bicyclists as shown in Figure 5.1. As a

result, they eliminate the possibility of collisions between bicyclists and motorized

vehicles along roadway segments.

During the 1980s-1990s research on the safety aspect of protected bike lanes had

focused on Northern European countries, as those were the first to implement such

treatments. The majority of European studies have revealed positive safety impacts at

the segment level when cycle tracks are implemented versus when no bicycle treatment

is present [246]. Similar positive benefits were observed in Copenhagen, Denmark,

when protected bike lanes were compared against conventional bike lanes [113].

Recent implementations of protected bike lanes in North America have motivated

studies that compare the safety performance of road segments with protected bike

lanes to ones where other bicycle infrastructure treatments or no treatments at all

are present. Crash record studies reveal that both two-way and one-way protected

bike lanes are associated with reduced crash rates and injury risk when compared to

segments where no bicycle infrastructure is present [143, 148]. Naturalistic studies also

support these findings [27]. However, all of these studies have focused on comparisons

between segments with protected bike lanes and those with no bicycle treatments.

Additionally, none of the aforementioned studies have studied the impact of protected

bike lanes on intersection level safety; essentially, they do not differentiate on whether

a crash has taken place at the segment (i.e., between two intersections) or at the the

intersection. Lastly, they have not studied driver behavior and situational awareness
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of drivers traveling next to protected bike lanes.

Given that bicyclists and drivers merge back at the intersection, it is critical to

investigate the impact protected bike lanes have on drivers’ ability to detect bicyclists

and behavior of drivers at intersections. Recent research suggests that more than 50%

of drivers turning right omit to scan right for bicyclists at intersections after traveling

next to protected bike lanes [121].

There are several crash-based analyses on the impact of protected bike lanes at

intersections. Several studies found an increase in the number of intersection bicycle-

motorized vehicle crashes after the installation of protected bike lanes [2, 65, 110].

However, some of these studies did not control for exposure (i.e., bicycle and motorized

vehicle demand) [2, 65], which can result in over- or under-estimation of crash

risk [76]. On the contrary, studies that have accounted for bicycle and motorized

vehicle demand as the exposure metric, reported conflicting findings regarding the

presence of protected bike lanes at signalized intersections. When compared against no

treatment, protected bike lanes have been found to reduce crash risk [240] but when

compared to conventional bike lanes, protected bike lanes have been found to increase

crash risk [144]. Besides the conflicting findings, none of these crash-based studies

differentiate between the type of crashes that occur at intersections, e.g., rear-end

versus right-hook crashes. Therefore, it remains unclear if and how protected bike

lanes impact right-hook crashes at intersections.

A more accurate understanding can be obtained through field studies and conflict

analyses. Analysis of conflicts between right-turning drivers and straight-going bicy-

clists using data from two types of signalized intersections: with one- or two-way cycle

tracks or with no bicycle treatment revealed lower conflict rates when cycle tracks were

present [274]. However, other field studies revealed that drivers performing right turns

at intersections following protected bike lanes are focused on the left-approaching
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traffic and are less likely to scan right prior to a right turn [121, 238].

Several crash-based analyses have suggested the need for interventions at inter-

sections when protected bike lanes are placed upstream of those intersections to

reduce the risk of right-hook crashes [220, 246]. Examples of intersection treatments

that have been studied include the evaluation of traffic signal phases dedicated to

bicyclists [78, 240] and various intersection-designs such as mixing zones, i.e., con-

figurations that mix the traffic upstream of the intersection [153, 162, 240], raised

bicycle intersection-crossings [81], and protected intersections [81, 261]. Most notably,

mixing was found to be appropriate only in cases where the speed limit is lower than

30 km/hour [222], while the understanding of the impacts of combining protected bike

lanes with protected intersections on driver behavior and bicycle safety are limited as

explained in the next subsection.

5.2.2 Protected Intersections

Protected or Dutch intersections are intersections consisting of design elements such

as corner refuge islands, curb extensions, and setback bicycle crossings [176]. These

design elements alter the placement of drivers and bicyclists at the intersection and

right-turning drivers encounter the bicyclist in front of them, not to the right of them

which is the case for non-protected (i.e., conventional) intersections. Finally, vehicles

and bicyclists are physically separated with a corner refuge island that encourages the

driver to make the turn at a wider angle.

Overall, even though limited, existing studies agree on the positive safety im-

plications of protected intersections. A before-after study in Utah evaluated the

safety benefits of protected intersections by observing bicyclist, pedestrian, and driver

behavior; several unsafe behaviors were reduced after the installation of the protected

intersection and in particular, the number of bicyclists using the crosswalk and the
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number of bicyclists waiting to cross at the wrong place of the intersection (e.g., bicy-

clists waiting on the crosswalk) [? ]. A bicyclist simulation study exposed bicyclists

to protected and non-protected intersections (upstream of protected bike lanes) where

they interacted with a virtual right-turning vehicle [188]. The presence of protected

intersection increases the distance between the bicyclist and the turning vehicle at the

intersection while at the same time in the case of protected intersections bicyclists were

found to arrive at the crossing point with a lower speed compared to non-protected

intersections. Other field and driving simulator studies have revealed reduced conflicts

between bicyclists and and right-turning motorists when protected lanes are present

and protected bike lanes [153], or conventional ones [261] are implemented upstream

the intersection. However, the results from both of these studies lacked statistical

significance due to limited sample sizes. More recently, another driving simulator

study, investigated the impact of protected intersection elements and design specifics

on driver behavior [53], revealing that corner refuge islands with larger width as well

as the presence of intersection-crossing pavement markings can reduce right-turning

vehicle speed. However, this study did not compare scenarios where no protected

intersection elements were present or scenarios featuring protected bike lanes upstream

of the protected intersection. Overall, none of the aforementioned studies compared

scenarios that included different combinations of protected/non-protected intersections

and protected/conventional bike lanes upstream those intersections.

5.2.3 Summary of the literature

While research on the safety impacts of protected bike lanes has flourished over the

past few years as more and more urban areas have been implementing them, research

on protected intersections and their safety impacts is limited, raising the need to

understand their safety benefits and design implementation guidelines. Additionally,
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existing studies either focus on the segment treatments (e.g., away from the intersection)

or only evaluate intersection treatments, ignoring the benefits that could result from

combining segment and intersection bicycle infrastructure treatments. The goal of this

study is to fill this gap by assessing how drivers behave when traveling on segments

and making right turns through intersections with protected bicycle treatments.

5.3 Methodology

A driving simulator experiment was designed to assess driver behavior along

segments consisting of conventional or protected bike lanes while performing right

turns at protected and non-protected intersections. Driver behavior was captured

via glances at the infrastructure and bicyclists that were present in the simulated

scenarios, as well as through driver speed.

The following subsections describe the apparatus, followed by the research hy-

potheses and the experimental design which presents the scenarios, dependent and

independent variables. Participant recruitment as well as the experimental procedure

are discussed at the end.

5.3.1 Apparatus

Driving simulator

The experiment took place at the University of Massachusetts Amherst Human

Performance Lab (HPL) where a high fidelity driving simulator is housed. The HPL

driving simulator is a 2013 model Ford Fusion Sedan (see Figure 5.2) offering similar

functionalities as real cars, such as accelerating, braking, steering, etc. The car is

surrounded by screens creating a 330-degree field-of-view, where scenarios are displayed.

The scenes are provided by six high resolution projectors. The front five projectors

provide a resolution of 1920 x 1200 pixels, while the rear projector provides a resolution
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of 1400 x 1050 pixels. The rear scene can be seen through the in-cab rear-view mirror

while the side-view mirrors display the simulated world. The vehicle is also equipped

with a virtual dash and 17-inch touch screen center stack. With regards to sound,

the HPL driving simulator has two separate systems, one external and one internal

to the cab, to imitate environmental sounds and engine noise, respectively as in the

real world. A 5.1 channel audio system that is external to the car cab provides the

environmental sounds such as traffic, passing vehicles, and road noise, an internal audio

system provides engine sounds and vibrations; those two elements contribute further

to providing a driving experience that resembles real-world conditions. Vehicle data

such as position, speed, acceleration, etc. are continuously collected at a frequency of

96 Hz.

Eye-tracking device

An eye-tracking device was used to record participant eye movements. HPL is

equipped with an Applied Science Laboratory MobileEye tracker, shown in Figure 5.2,

which is used to capture participants’ right pupil movement through video cameras

located on a set of goggles ; the camera works at 30 Hz. The device is equipped with

an additional camera that is used to record participant’s view of the road.

Prior to the experiment, the eye-tracking device is calibrated for every participant

to ensure that the device is capable of following the participant’s right pupil and

correctly record its movement. During this process, the participant is in the driver’s

seat, has already adjusted the seat and rear mirror, and is wearing a seat belt; so, the

participant’s position before the calibration needs to be settled. The front screen of

the simulator displays a board with letters A, B, C, D, E, F, G, H, and I placed on a

3x3 grid. The participant is asked to view the middle letter (E) so that the device’s

camera can detect their right pupil. After this step is completed, the participant is

asked to view all letters, one-by-one. Through this phase, it is ensured that the device
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follows the participant’s pupil across all letters on the board. The molecular needs to

be adjusted up to the point that all letters are viewed.

5.3.2 Research hypotheses

This experiment tested various hypotheses related to driver glancing and speeding

while traveling along the segment and while entering the intersection. There are three

hypotheses related to driver glancing behavior:

1. Drivers traveling along a segment configured with protected bike lanes (located

to the right of a parking lane) are less likely to glance at a bicyclist that is riding

on the protected bike lane, compared to the case of conventional bike lanes;

protected bike lanes increase the lateral distance between drivers and bicyclists

while parked cars have the potential to block drivers’ view of the protected bike

lane.

2. Drivers turning right at protected intersections are more likely to glance to

their right compared to when entering a non-protected intersection. Protected

intersections incorporate design elements that can capture driver attention.

3. Bicyclist presence at the segment is expected to increase the occurrence of right

glances at the intersection.

Additionally, there are three hypotheses related to driver speeding behavior:

1. Drivers are expected to develop higher speeds when traveling along a segment

where protected bike lanes are present compared to when traveling next to

conventional bike lanes, as the potential to interact with bicyclists is lower in

the former case.
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2. Drivers turning right at protected intersections are expected to develop lower

speeds compared to non-protected intersections.

3. Drivers are expected to drive slower along the segment if a bicyclist is present,

with the objective to be more careful.

5.3.3 Scenario development

In order to capture the impact of protected bicycle infrastructure treatments, i.e.,

protected bike lanes and protected intersections, both treatments were compared

with conventional bike lane and non-protected intersection designs, respectively. Two

segment- and two intersection-level bicycle infrastructure treatments were considered,

leading to four roadway environments (Figure 5.3).

The roadway environment was a straight road segment leading to an intersection,

configured as followed based on the bicycle treatment types:

1. a straight segment with a protected bike lane leading to a protected intersection

2. a straight segment with a protected bike lane leading to a non-protected inter-

section

3. a straight segment with a conventional bike lane leading to a protected intersec-

tion

4. a straight segment with a conventional bike lane leading to a non-protected

intersection

At intersections, it is common to indicate the bicyclist path, which is ultimately the

extension of the bike lane through the intersection referred to as intersection-crossing

pavement markings. In North America the design of a bicycle intersection-crossing
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path varies, e.g., solid line versus green-colored markings [168]. In this study the

dotted extension design has been chosen for the conventional non-protected intersection

design (Figure 5.4a), while the protected intersection design includes green-colored

intersection-crossing pavement markings in addition to a corner refuge island for the

intersection approach of interest (Figure 5.4b).

In each roadway environment, the cross-sectional design of the road per direction

of traffic is: two traffic lanes (i.e., for motorized vehicles), one parking lane, and one

bike lane. The relative placement of the bike and parking lanes was dependent on the

type of the segment-level bicycle treatment. More specifically, a conventional bike lane

is placed between the right-most traffic lane and the parking lane, while a protected

bike lane is placed between the parking lane and the sidewalk. The posted speed limit

is 56 km per hour (35 miles per hour).

Eight scenarios were developed in total, and each of these four roadway envi-

ronments appeared twice; see Table 5.1. The development of eight instead of four

scenarios aimed at the inclusion of an additional variable, that of the bicyclist presence.

The later variable aimed to assess whether driver glancing and speeding behavior at

the intersection depends on bicyclist presence along the segment. In the real world,

drivers would ideally be able to detect bicycle infrastructure treatments along the

roadway and translate this stimuli as an indication of potential bicyclist presence.

In an attempt to replicate reality, participants drove the same roadway environment

twice; once with a bicyclist riding on the segment (upstream the intersection) and

once with no bicyclist present.

A bicyclist was programmed to ride on the bike lane (conventional and protected)

along the segment denoted by letters A and B in Figure 5.5. This was achieved by

placing a sensor along the driver’s path, 10 meters before point A. The sensor activated

the bicyclist’s motion as soon as the driver crossed it. The bicyclist was programmed
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Table 5.1: Scenario Design

Scenarios Segment Intersection Bicyclist
1 Protected Bike Lane Protected YES
2 Protected Bike Lane Non-Protected YES
3 Conventional Bike Lane Non-Protected YES
4 Conventional Bike Lane Protected YES
5 Protected Bike Lane Protected NO
5 Protected Bike Lane Non-Protected NO
7 Conventional Bike Lane Non-Protected NO
8 Conventional Bike Lane Protected NO

to be moving at a constant speed of 16 kilometers per hour (km/h). The bicyclist’s

starting and ending points, as well as speed remained unchanged across all scenarios.

The bicyclist presence combines both top-down and bottom-up attention processing

elements in the design. Along the segment, a bottom-up design has been adopted

where the driver may or may not glance at the bicyclist, while at the intersection the

design is top-down; it is aimed to assess whether drivers will check right based on

their previously gained knowledge (i.e., glance at the bicyclist, if one was present) or

based on their overall knowledge related to safe driving.

A within-subject design was adopted exposing each participant to all eight scenarios.

An eight by eight Latin square matrix was used to randomize the order of the scenario

presentation to the participants. At each scenario participants drove a straight roadway

segment of 310 meters that led to an intersection. In advance of the intersection

participants were given the instruction to turn right. The signals were programmed

to always show a green indication so that the driver would not have to stop at the

intersection. Each scenario had two programmed cars moving in the opposite direction,

along the segment and away from the intersection. The scenario terminated 50 meters

after the participant completed the right turn. The outline of the geometric design of

the scenarios is shown in Figure 5.5.
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5.3.4 Dependent and independent variables

The columns of Table 5.1 display the independent variables used in the experiment,

namely the bicycle segment treatment (protected or conventional bike lane), bicycle

intersection treatment (protected or non-protected intersection), and the binary

variable indicating the presence of a bicyclist.

The segment-level analysis focused on the AB part of the drive (Figure 5.5), which

coincides with the part of the drive where the driver would encounter the bicyclist (if

driving a scenario with a bicyclist being present). The intersection analysis focused

on the segment defined by points C and D. The intersection was further split into

two zones; see Figure 5.6. Zone 1 is defined as the intersection approach section and

captures the area corresponding to 3 seconds before the driver reaches the stop bar.

The starting point for Zone 2 is the stop bar and the end point coincides with the end of

the bike lane, where a potential bicyclist could enter the intersection. The intersection

glance analysis is time-based instead of distance-based (e.g., as the speed analysis)

to ensure that regardless their traveling speed, all participants had the opportunity

to allocate the same time (i.e., 3 seconds) to glance right. A different amount of

time would have resulted in different memory allocation per participant, e.g., one

participant would have processed this information earlier compared to another.

Speed data were analyzed for the following parts of each drive: (1) while the driver

was traveling along section AB, and (2) while the driver was traveling along section

CD. For both cases, the average participant speed per scenario for these two parts of

the drive was used for the analysis.

Driver eye glance analysis focused on: (1) whether the driver glanced at the

bicyclist in the presence of protected and conventional bike lanes while traveling along

section AB and (2) whether the driver glanced to the right at the intersection while
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traveling in Zone 1 or 2.

Glances were treated as binary variables, indicating whether the participant placed

a glance or not at the area of interest. The scoring process consisted of assigning a

score of 1 every time the red cross shown in Figures 5.7 and 5.8 was pointing at the

area of interest; otherwise, assigning a score of 0. For segment AB the scoring process

was relatively straight-forward, recording 1 if the red cross was on the bicyclist at least

once during the drive along the segment. The expected glance type at the intersection

and in particular, while in Zone 1, varied based on the segment treatment. When

protected bike lanes were present, it was anticipated that drivers would place a glance

at the intersection area where a bicyclist would be expected to be in a real-world

environment. In the case of conventional bike lanes a right-mirror glance while in

Zone 1 was scored with 1.

5.3.5 Sample size and participants

This within-subject experimental design includes three binary, independent vari-

ables. To determine the required sample size necessary to achieve a target statistical

power of 0.95, GLIMMPSE [90, 133] was used. GLIMMPSE requires the user to define

certain parameters such as the desired power, the number and type of the independent

variables, estimated mean value and variance for the dependent variables, in order

to estimate the minimum sample size to achieve the desired statistical power. While

some parameters are straight-forward based on the experimental design (e.g., the

number of independent variables), some others require assumptions to be made by the

researcher. For example, in order to estimate the sample size the researcher needs to

import values, i.e., expected mean and variance, for the dependent variables. In this

experiment this information was obtained using data collected from three participants,

referred to as the “pilot study” participants. The data obtained from the pilot study
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were not used for the main analysis of this study. Table 5.2 lists the mean value and

variance imported into the GLIMPSE software. In addition to mean and variance

for the four dependent variables, the following information was used to complete the

power analysis:

1. Desired power = 0.95

2. Type I Error Rate = 0.05

3. Control for a single, normally distributed covariance

4. Four dependent variables

5. “Repeated measures” option was checked indicating that for every dependent

variable eight measurements were taken per participant

6. Under the Hypothesis tab it was indicated that the objective of the study was

the Main Effect

7. Within-Participant Variability: derived from the pilot study

Table 5.2: Mean and variance for the dependent variables used in the power analysis

Dependent variable Mean Variance
Segment speed 35.90 23.07
Intersection speed 16.79 7.77
Glance at the bicyclist 0.92 0.08
Glance right (intersection) 0.04 0.04

GLIMMPSE indicated that a sample size of 31 participants is needed to achieve

a 0.95 statistical power. Thirty-two participants were recruited and successfully

completed the experiment.

Participants with a valid U.S. driving license for at least a year were recruited

from the University of Massachusetts Amherst area. In total, 35 drivers completed the
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study: three that served as pilot and 32 that were used for the entire analysis. Two

more attempted to complete the study but due to simulation sickness and problems

in calibrating the eye-tracking device (section 5.3.1) they had to stop.

5.3.6 Experimental procedure

The 32 participants were equally split between male and female and their age was

between 18 to 36 years old with a mean of 23.7 years old, a median of 24 years old

and a standard deviation of 4.5 years. When participants arrived at the HPL they

were asked to fill out a consent form and a questionnaire asking about their gender,

age, and driving history; this is the pre-study questionnaire. Then they were asked to

enter the vehicle in the drivers’ seat and were fitted with the eye tracker; the device

was properly calibrated before starting the vehicle.

Participants first drove a practice drive that allowed them to familiarize themselves

with the simulator and its controls. The practice drive was three to four minutes

in length and exposed participants to straight segments and curves, signalized and

unsignalized intersections so that they can experience different driving modes such

driving with constant speed, decelerating, and accelerating. Additionally, prior to

each turn, a pop-up message informed the driver whether to turn left, right, or

continue through the intersection. The pop-up message related to navigation is an

element present in the experiment and participants familiarized themselves with

this type of communication during the practice drive. Similar to the experimental

roadway environment, the practice drive featured an urban network, however, no other

similarities exist with the actual scenarios. The particular practice drive has been used

in other driving simulator experiments conducted in HPL (e.g., [53, 60, 209, 210]).

After the practice drive, participants started the driving part of the experiment that

exposed them to the eight scenarios described earlier. Lastly, after completing the
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driving part of the experiment, participants completed the post-study questionnaire

that gathered information related to participant’s bicycling habits, if any. Overall,

each participant remained in the lab for about 15 to 20 minutes.

5.4 Results

This section presents the glance and speed related results organized in subsections

corresponding to results for the segment or intersection parts of the drive. In addition to

the three roadway environment-related independent variables, i.e., segment treatment,

intersection treatment, and bicyclist presence, the impact of participants’ age was also

investigated. While data on participants gender was collected it was mostly used to

ensure that males and females are equally represented among the participants and

was not used for any further analysis.

5.4.1 Glance data

Data collected with the eye-tracking device were analyzed for the AB segment and

the intersection area, focusing on Zones 1 and 2; see Figure 5.6. Glances were treated

as binary variables, indicating whether the participant glanced or not at the respective

area of interest. Logistic regression models were developed aiming to associate the

binary response variable with design factors (e.g., segment or intersection treatments),

bicyclist presence, and participant age. The information on participants driving

history, i.e., age that they got their driving license, was found correlated (0.908) with

the Age variable and so, the latter was included in the analysis.

A closer investigation of the data revealed that the positive and negative responses

in terms of glances (i.e., glanced or not) were not equally represented in the dataset;

while at the segment the great majority of the drivers glanced at the bicyclist, most

of them did not place a glance to their right when at the intersection. This imbalance
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in the number of positive and negative responses can result in a model that is biased

towards the most represented response, or in other words, the majority class. This

bias is due to the fact that the model will have more opportunities to learn why the

most represented response occurred [199]. Therefore, both datasets, i.e., glances at

the bicyclist at the segment and glances at the intersection, needed to be balanced

prior to the development of any logistic regression models. Note that the fact that

both datasets appeared to be imbalanced can be attributed to randomness; studying

a different population might have resulted in only of them being balanced.

One approach to address imbalance in datasets is to change the size of the classes

in order to make them equal; this can be achieved by either oversampling the minority

class or undersampling the majority class [165, 182]. In the context of the present study,

undersampling the majority class would be achieved by withdrawing participant data;

therefore, resulting in an insufficient sample size to achieve the target statistical power.

As a result this imbalance was addressed by implemented a method, introduced by

Chawla et al. (2002), named Synthetic Minority Oversampling TEchnique (SMOTE).

SMOTE increases the sample size of the minority class by generating new synthetic

data points. This is done by forming a convex combination of neighboring data

points [28]. For example, in a two-dimensional space, SMOTE will generate a third

point that lies somewhere on the straight line that connects two neighboring data

points [28].

SMOTE has several applications in the field of transportation and particularly, in

traffic safety research. Traffic incidents such as near misses and crashes are relatively

rare compared to the total number of road user interactions occurring on roadways.

SMOTE has been implemented for the development of real-time crash risk models

where the dataset used to develop the model consisted of crash and no-crash traffic

events with the former exceeding by far the latter [120, 185]. In driving simulator
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studies SMOTE has been applied for crash prediction [63] and balancing datasets

with depressed (minority class) and non-depressed participants (majority class) [119].

For the present study, this method was applied for the recorded glance datasets at

the segment and the intersection and was used to create models that are capable of

modeling both the minority and majority classes.

The analysis of glance data along the AB segment included only scenarios where

a bicyclist was present resulting in a total of 128 observations (i.e., 32 participants

across 4 scenarios). In the case of conventional bike lanes, all participants glanced

at the bicyclist; in the case of protected bike lanes participants glanced at the

bicyclist in 76.2% of all drives, creating the aforementioned imbalance that called for

the implementation of SMOTE. After implementing SMOTE, the total number of

observations increased from 128 to 156. This increase allowed us to obtain a more

representative sample for the no-glancing data points.

The following independent variables were considered for the logistic regression

model: segment treatment and age (see Table 5.3). Age that was treated as a

continuous variable ranging from 18 to 36 years old and segment treatment is a binary

variable equal to 1 for protected bike lane and 0 otherwise.

Table 5.3 presents the logistic regression model that describes glances at the

bicyclist while traveling along segment AB. All independent variables were statistically

significant at the 95% level of significance.

Table 5.3: Logistic regression model for glances at the bicyclist (segment)

Parameter Coefficient Odds Ratio (CI 95%) p-value
Segment Treatment -5.367 0.005 (0.000, 0.031) 0.000∗∗

Age 0.203 1.224 (1.123, 1.329) 0.000∗∗

*Statistically significant at the 95% level of significance
** Statistically significant at the 99% level of significance
CI: Confidence interval
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The model reported a pseudo R2 equal to 40.4%, which is relatively high considering

that the response describes human behavior that is complicated and affected by many

different factors. A chi-squared test was used to assess the model’s Goodness-of-Fit

(GoF) and reported a p-value that was approximately 0.99. This value is greater than

the target 0.05 significance level allowing us to accept the null hypothesis, stating

that observed and estimated values are the same. The model’s performance in terms

of accuracy was assessed with the Area Under the Curve (AUC), which essentially

summarizes the classifier’s performance over a range of trade-offs between True Positive

and False Positive error rates [241]. For this model the AUC value was found to

be equal to 0.98. Higher AUC values are associated with higher model accuracy

and, according to Hosmer et al. (2013), an AUC that is greater than 0.7 results in

acceptable models [101].

The intersection glancing behavior analysis focused on Zone 1 and Zone 2 as shown

in Figure 5.6. The glance variables indicate whether there was at least one right glance

(either in Zone 1 or 2) at the intersection per drive per participant. The percentage of

drives where at least one glance was recorded while either in Zone 1 or 2 is shown in

Figure 5.9. Bicyclist presence as well as the protected intersection design appear to

be influencing glancing behavior, despite the fact that the percentage of drives that

have at least one glance per scenario rarely exceeds 25%.

Given the imbalance observed regrading the intersection glances, SMOTE was

applied prior to developing a logistic regression model. In this model, the independent

variables were: age (continuous), segment treatment = 1 for protected bike lane, 0

otherwise; intersection treatment = 1 for protected intersection, 0 otherwise; and

bicyclist = 1 for scenarios where a bicyclist was present at the segment, 0 otherwise.

A backwards elimination process was used to determine the final model; in the initial

model, segment treatment was not found statistically significant at the 95% confidence
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level and was removed from the final model, shown in Table 5.4 for the final logistic

regression model.

Table 5.4: Final logistic regression model for glances at the intersection Zones 1 and 2

Parameter Coefficient Odds Ratio (CI 95%) p-value
Intercept -3.299 0.037 (0.007, 0.209) 0.000∗∗

Intersection Treatment 0.690 1.994 (1.201, 3.310) 0.008∗∗

Bicyclist 1.464 4.322 (2.526, 7.340) 0.000∗∗

Age 0.082 1.085 (1.157, 1.157) 0.013∗

*Statistically significant at the 95% level of significance
** Statistically significant at the 99% level of significance

In this model all the independent variables except from age are statistically

significant at the 99% level, indicating a strong association with the response variable.

The model reported a pseudo R2= 0.09. According to the odds ratio, the presence of a

bicyclist was the strongest determinant of driver glancing behavior at the intersection.

Intersection treatment had a positive impact on the right glances, meaning that

protected intersections can increase right glances at the intersection. The goodness

of fit for this model was assessed through a chi-square test, which reported a p-value

equal to 0.99, indicating that observed and estimated values are similar. The AUC

value for this model was equal to 0.76 suggesting that the model has quite strong

predictive power [101].

5.4.2 Speed data

Driver speeding behavior was analyzed for the AB and CD parts of the drive

as shown in Figure 5.5. There was an attempt to develop linear regression models

both for the segment and the intersection speeds including both design independent

variables (i.e., intersection and segment treatment) as well as participant age; however,

these models were found to have a poor fit and resulted in no significant variables, so
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they are not presented. The analysis presented here focuses instead on capturing the

effect of each design variable individually on the segment and intersection speeds.

Segment speeds were assessed using violin plots; see Figure 5.10. The white dot in

the middle of each violin plot corresponds to the median value and the thick black bar

represents the interquartile range. The end of the thin black line (upper and lower)

represents the upper (max) and lower (min) adjacent values in the data [97]. Violin

plots represent the order ranking of a data set and the additional information of how

frequently a certain value appears in the data set, in other words illustrating a density

plot of the data.

The violin plots show that there was a relatively small variation in speeds among

the four segment environments. The impact of individual factors and in particular,

bicycle treatment and bicyclist presence on speed was assessed through an Analysis of

Variance (ANOVA). A repeated measures ANOVA revealed that bicyclist presence

(F-statistic = 7.36, p-value = 0.033) as well as the type of bicycle treatment (F-statistic

= 10.16, p-value = 0.011) had an impact on the observed speeds. However, there is

no interaction effect between the segment treatment and the presence of a bicyclist

(F-statistic = 0.04, p-value = 0.946) as shown in Figure 5.11.

Table 5.5: Repeated measures ANOVA for segment speed

Parameter F -statistic p-value
Bicyclist 7.36 0.033∗

Segment Treatment 10.6 0.011∗

Interaction term 0.04 0.946

*Statistically significant at the 95% level of significance

An average speed of 54.2 km/hour (mean = 54.2, variance = 9.02) was reported

for the scenarios where a bicyclist was present versus 56.5 km/hour (mean = 56.5,

variance = 8.02) for those with no bicyclist. For these values the Cohen’s D value

was 0.274 which indicates a small effect size [46], meaning that the presence of the
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bicyclist has a small effect on the segment speed. When participants drove next to

protected bike lanes developed on average speed of 54.6 km/hour versus 56.2 km/hour,

which was the average speed across all scenarios with conventional bike lanes. The

Cohen’s D value was 0.183 indicating a small effect. Capturing the effect of each one

of the independent variables, i.e., bicycle treatment and bicyclist presence, on speed

with sufficient statistical power would require a larger sample size [46].

The intersection speed analysis focused on understanding whether the segment

and intersection bicycle treatments as well as the bicyclist presence would trigger

participants to select different speeds within the CD part of the drive. A repeated

measures ANOVA on the intersection (CD part of the drive) speeds revealed that

none of these independent variables or their interactions were statistically significant

at the 95% confidence level.

Further speed analysis focused on assessing whether there is a correlation between

participant glancing behavior and speed selection at the intersection (CD part of

the drive). The reasoning behind this analysis is the fact that both the intersection

treatment and bicyclist presence variables were found to have an impact on driver

behavior. A Student t-test was conducted for the intersection speeds of the participants

who glanced right at the intersection (mean = 20.9 km/hour) versus the ones who

did not (mean = 24.4 km/hour). A p-value equal to 0.000021 allowed to reject the

null hypothesis stating that the means across the two groups are equal. An additional

test aimed to assess whether glancing at the bicyclist at the segment upstream the

intersection influences participant intersection speed. A Student t-test revealed that

the mean speed of participants who glanced at the bicyclist (mean = 23.7 km/hour)

was significantly different (p-value = 0.00033) to the speed (mean = 25.9 km/hour) of

participants who did not glance at the bicyclist.
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5.5 Discussion

This research aimed at understanding whether bicycle infrastructure treatments

such as protected bike lanes and protected intersections affect driver behavior when

drivers are approaching an intersection to make a right turn. Driver behavior was

analyzed separately for the segment and the intersection using both glance and speed

data.

5.5.1 Glances

For the segment the initial hypothesis was that participants would be less likely to

glance at a bicyclist when a protected versus conventional bike lane is present. The

hypothesis was confirmed and in particular, protected bike lanes were found to reduce

the number of drivers glancing at the bicyclist. While not glancing at the bicyclist was

not a frequent behavior, which was the reason for using SMOTE to increase the sample

size by generating synthetic samples, it is important to consider that: 1) the ambient

traffic was very low, i.e., two vehicles per scenario were programmed to travel in the

opposite direction, and 2) the parking lane was not entirely full. According to Werneke

and Vollrath (2012), lower levels of motorized vehicle density were found associated

with higher attention levels to non-motorized users [264]. Due to this, a low ambient

traffic was chosen for the experiments to allow for capturing differences in glances

between conventional and protected treatments when other potential distractions

are not present. This indicates that even in a roadway environment with reduced

driver workload some participants did not directly glance at the bicyclist that was

traveling on the protected bike lane. Anecdotally, after completing the experiment,

two participants reported that they were nervous when overpassing the bicyclist that

was next to them and preferred having the bicyclist further, separated by the parked
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cars. Two other participants changed lanes to overpass the bicyclist that was riding on

the conventional bike lane. This observation has also been reported in recent studies

on driver preferred bicycle infrastructure treatments; drivers in the Bay Area reported

a stronger preference in driving next to protected/separated bike lanes compared

to conventional ones [212]. Traffic signs indicating the presence of bicyclists and

education could serve as potential countermeasures that would allow for increased

driver awareness of potential bicyclist presence in the case of protected bike lanes.

At the intersection, a small portion of the participants glanced right. Glancing

was positively correlated with the implementation of a protected intersection design

and the presence of a bicyclist on the segment. The protected intersection design was

effective in increasing the likelihood of participants glancing right at the intersection,

indicating that the intersection design itself can indeed increase driver awareness of the

potential presence of other road users at the intersection. The presence of a bicyclist

upstream the intersection triggered participants to glance right at the intersection.

The analysis of glances at the intersection also concluded that the segment treatment

type does not have an effect on participants’ right-turning behavior.

Age was found to affect participants’ glancing behavior. In agreement to other

studies on young drivers and their risk perception and situational awareness [17, 18],

younger drivers in this study were less likely to glance at the bicyclist while at

the segment and also less likely to place a glance to their right while being at the

intersection. Generally speaking, young and inexperienced drivers have a reduced

ability to anticipate and as a result, check for hazardous events. In the present study

a potential interaction with a bicyclist can be considered as a “hazardous event.”
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5.5.2 Speed

The speed hypothesis that participants would develop higher average speeds when

traveling on segments with protected bike lanes versus with conventional bike lanes

was not confirmed. One reasoning can be that parking lanes adjacent to traffic lanes

decrease the effective lane width and as a result, they motivate lower speeds. This was

also the finding of an earlier driving simulator experiment, which studied the effect of

on-street parking on driver speed and reaction times and found that the presence of

on-street parking reduces average speed [62].

While speeds at the intersection were not statistically different across the scenarios,

the results indicate that participants who glanced right at the intersection were those

who had significantly lower average speeds. Considering that intersection glancing

behavior was associated with the implementation of a protected intersection, it is

reasonable to infer that protected intersections may have speed reduction benefits as

well.

Lower average speeds were observed at the segment when a bicyclist was present.

At the intersection, bicyclist presence triggered right glances, which in turn, were

associated with lower turning speeds. Therefore, bicyclist presence resulted in reduced

intersection turning speeds only for those participants that glanced right at the

intersection. Although the speed reduction was small, it still shows that drivers adjust

their behavior once they are aware of the presence of other road users.

5.6 Conclusions and future extensions

This study conducted an in-depth analysis of driver behavior when the roadway

environment is configured with bicycle infrastructure treatments, namely protected or

conventional bike lanes and protected or non-protected intersections. The contribution
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of this study is in the comparison of various combinations of segment and intersection

bicycle treatments, which allows for the development of guidelines for the appropriate

implementation of such treatments and development of countermeasures that ensure

safe operations and interactions for all users.

The results of this study conclude that protected bike lanes, especially those

that are located between the sidewalk and the parking lane, have the potential to

reduce driver ability to detect the bicyclist. At the same time, they were also found

to affect driver speed selection although causing only a small change to it while

traveling along the segment. Findings from this study also indicate that the protected

intersection design improves driver behavior as it results in higher rates of glancing

at the intersection prior to a right turn, which in turn were associated with lower

average speeds. However, glances at the intersection were not affected by the type

of segment-level bicycle infrastructure upstream of the intersection. Notably, the

presence of a bicyclist on the bike lane along the segment was positively correlated

with glances and lower speeds at the intersection.

While this study lacked scenarios with driver-bicycle interactions, it still contributes

to the understanding of driver behavior in complex roadway environments such as

when bicycle infrastructure treatments are present. Given that the presence of a

bicyclist along the segment appeared to impact driver behavior, future studies should

examine this impact for a variety of bicycle demand scenarios (both in terms of volume

and location where bicyclists are present). A limitation of this study is that the

ambient traffic was very low; future work could explore how drivers behave when

they are exposed to higher workload conditions, e.g., higher traffic volumes. In such

scenarios it would be important to also assess whether the presence of traffic signs

or education improves drivers’ ability to detect bicyclists but also, check for bicyclist

presence prior to turns or other movements. Lastly, a more diverse population in
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terms of age as well as familiarity with bicycle infrastructure treatments should also

be tested in the future; existing research has demonstrated that drivers familiar with

bicycle treatments behave as indented in the presence of those treatments [75].
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6 A framework for mode classification in multi-

modal environments using radar-based sensors

As demonstrated in Chapters 3-5 bicycle safety can be assessed through various

ways including crashes and traffic conflicts between bicyclists and motorized vehicles

as well as by capturing and studying driver behavior in response to bicycle treatments

and bicyclist presence. Crash analysis and driver simulator experiments have been used

for traffic safety research for a relatively long time and are established methodologies;

there is a well-known procedure to collect and analyze data. On the contrary, field

studies are tightly related to the existing technology that is available for data collection.

Essentially, the way real-time field data is collected as well its quality are affected by

the technology and in turn, affect the analysis. Cambridge field data was collected

using video cameras as this technology is mostly used in the bicycle and pedestrian

traffic monitoring and safety studies. However, it was found that the recorded video

data suffered from certain inaccuracies, regarding bicyclists and pedestrians detection

and tracking. These aspects and a few more limitations regarding video data collection

are discussed in the literature; video cameras underperform in adverse lighting and

weather conditions.

Overall, the present study was motivated by certain limitations associated with

video cameras as tools to collect traffic data. Technologies alternative to video cameras,

such as radar-based sensors, can be used for traffic monitoring purposes. Radar-

based sensors have not been studied in terms of mode classification in multimodal

environments where pedestrians, bicyclists, and motorized vehicles are present. It

is of high importance to first assure that through the data records obtained by a

radar-based sensor it is feasible to differentiate between the different mode types

prior to considering this sensor for traffic monitoring. This study developed a mode
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classification framework able to work in varying traffic scenes where pedestrians,

bicyclists, and motorized vehicles are present.

6.1 Introduction

Non-motorized transportation modes such as bicycling and walking are gaining

popularity given their potential to improve public health and energy efficiency, reduce

congestion, and contribute to livable communities. However, data from around the

globe show that non-motorized user safety is on the line [68, 169, 267].

Enabling safe and convenient travel for bicyclists and pedestrians is critical in

achieving sustainable mobility goals; however, this requires a better understanding of

road users’ behavior and needs as well as the impact of geometric design and other

countermeasures on safety outcomes. Adequate and accurate traffic data remains

pertinent in supporting the procedural decision-making of improving roadway facilities

(e.g., median crossings, bike lanes, and control strategies) to more safely accommodate

non-motorized users. Additionally, accurate data are essential for evaluating the

effectiveness of implemented treatments.

Traditional sensing technologies, such as loop detectors and pneumatic tubes, can

be implemented in multimodal (i.e., motorized vehicles and non-motorized users) envi-

ronments but cannot provide detailed trajectory data that are essential for performing

behavioral and safety analyses. Thus far, bicycle and pedestrian safety studies focusing

on user behavior and, more specifically, interactions between users have primarily

utilized global positioning systems (GPS) or computer vision technology (i.e., vision-

based). Despite being able to concurrently collect data across multiple locations, GPS

data has its limitations when studying the interactions between different users, given

that not all users are equipped with GPS devices.

Safety analysis through user interactions is feasible with sensors that collect data
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from all users that are present at a location of interest. Fixed-point sensors, such as

vision- and radar-based sensors, offer this capability. Vision-based sensors utilize video

cameras that capture traffic data, which is later processed and analyzed to reveal

roadway user behavior and interactions. While the vision-based approach has recently

gained popularity in traffic monitoring, video cameras are still constrained by adverse

lighting and weather conditions. Given that many bicycle-motorized vehicle crashes

occur during reduced light conditions [233, 266], it is essential to explore different

sensing technologies that can provide accurate data necessary for safety studies even

under adverse environmental conditions.

Radar-based sensors are unaffected by external weather and lighting conditions but

have been relatively underutilized for traffic monitoring. In addition, their capabilities

have not yet been demonstrated in multimodal environments. There is a need to

assess the feasibility of radar-based sensors in detecting and classifying pedestrians

and bicyclists in multimodal environments prior to implementing them in large traffic

monitoring studies in such environments.

This work is the first to bridge this gap by developing a mode classification

framework to assign mode class to trajectories recorded by radar-based sensors.

The proposed mode classification framework incorporates the following aspects to

ensure transferability and flexibility: (1) it deploys the Support Vector Machine

(SVM) algorithm as the classifier, as it enables robustness and interoperability; (2)

it is capable of accommodating the unique properties of multimodal traffic captured

by radar-based sensors as: (a) it can be applied in different feature spaces (e.g.,

speed/length or speed/acceleration feature space), (b) it incorporates training sample

balancing strategy, and (c) it uses cross-validation for determining optimal SVM

implementation and deriving performance metrics; (3) it is validated using data from

two multimodal environments that vary in terms of traffic conditions and control type.
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The rest of the paper is organized as follows: First, literature on traffic monitoring

using vision-based and radar-based sensors is summarized. Next, a description of

data collected with a radar-based sensor is provided. This is followed by the proposed

mode classification framework and the numerical results of its application. The

paper concludes with a discussion of this study’s findings and limitations as well as

considerations for future exploration.

6.2 Literature Review

Fixed-point sensors such vision-based and radar-based sensors have the ability to

simultaneously collect traffic data from multiple road users that are present on a site

(e.g., intersection or road segment). In turn, these data can be used to study user

interactions and obtain safety-related insights. Traffic monitoring applications of these

sensor types and in particular, their performance with respect to detection and mode

classification are discussed next along with their limitations.

6.2.1 Vision-based traffic monitoring

Video cameras have been widely implemented for traffic monitoring studies. The

data obtained with video cameras are processed to identify road users through a

three-step process consisting of user (1) detection, (2) classification, and (3) tracking

[48]. During object detection, a real-world object, represented as a set of pixels, is

identified as different from its background. Detection is followed by assigning the

object to a class, e.g., human, car, bicycle. Once this is complete, tracked observations

from consecutive frames are connected to form a classified object’s trajectory.

Object detection and tracking are affected by the video image quality and the

placement of the video camera. Aspects such as image resolution and rendered colors

are critical for differentiating among different road users [48]. The absence of poles,
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the presence of buildings or vegetation affect camera placement and therefore, the

view angle. Overall, cameras should be placed so that occlusion, shadows, and light

reflections are minimized.

Video cameras have been deployed for traffic monitoring in multimodal envi-

ronments. While the demonstrated classification frameworks perform exceptionally

in detecting and classifying motorized vehicles, they underperform in the case of

pedestrians and especially, bicyclists [273]. Non-motorized users’ low detection and

classification accuracy has been attributed to the variability in color and shape [1].

However, pedestrian detection and classification can often be facilitated by the fact

that pedestrians travel on designated facilities, i.e., sidewalks or crosswalks. Bicyclists,

on the other hand, do share the roadways with motorized vehicles (e.g., in the absence

of bicycle facilities), which can further degrade detection accuracy and cause partial

occlusion problems. Lastly, due to their size, bicyclists and pedestrians can only be

detected when they are in close proximity to the camera; for motorized vehicles this

distance can be larger [141].

Another limitations of the aforementioned studies is that they took place in daylight

and clear weather conditions. Adverse lighting, i.e., low or extreme illumination, and

weather, e.g., fog, conditions have been found particularly untactful with respect

to user detection [13, 152]. Alternative video camera technologies, such as thermal

infrared cameras, can be used in adverse environmental conditions. Studies that

utilized thermal infrared cameras and took place in highways during thick fog or

snowy conditions have reported high detection accuracy [105, 106]. However, the

implementation of infrared cameras in multimodal environments is challenging as this

technology is associated with low image resolution. Non-motorized user size remains

an issue regarding detection with the use of thermal infrared cameras; pedestrians

appearing at a distance greater than 50 meters from the sensor cannot be captured by
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such cameras [179]. Bicyclist detection is further challenging due to shape of bicycles

and their irregular movement, e.g., they can be traveling within or separated from

motorized vehicle traffic, [77]. Lastly, infrared cameras could also face limitations in

detection during daylight conditions due to the low contrast between moving objects

and their background [151]. While recent efforts have addressed issues related to

low image quality, pedestrians were not extensively studied and bicyclists were not

included at all in the studied environments [31, 140].

Video camera traffic monitoring applications in multimodal environments might

also suffer from partial occlusion. While this type of occlusion is temporary, it could be

occurring when, for example, turning-vehicles are blocking bicyclists and pedestrians

and therefore, resulting in trajectory discontinuities [13, 141]. Several researchers

have proposed the deployment of unmanned aerial vehicles (UAVs) equipped with

video cameras to obtain a “bird’s eye view” [33, 151]. While differentiating between

pedestrians and motorized vehicles was successful studies using UAVs, pedestrians

could be missed as they look similar to fixed roadside objects (e.g., light poles) [33, 151].

In a nutshell, the implementation of video cameras for traffic monitoring purposes

is limited by several factors such as adverse weather and lighting conditions as well

as partial occlusion. These limitations are more pronounced when detecting and

classifying pedestrians and bicyclists. Alternative camera technologies, i.e., thermal

infrared cameras, as well as alternative placement of video cameras, e.g., on a UAV,

have the potential to address some of the limitations of conventional video cameras,

but they still perform poorly in multimodal environments. Moreover, thermal infrared

cameras are associated with higher procurement costs [12], while UAVs are limited by

battery life [72] and stability issues [151].

In recent years additional vision-based technologies have emerged, such as the

Light Detection and Ranging (LiDAR) sensors. LiDAR imaging systems have been
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extensively studied as autonomous vehicle (AV) equipment that assist in sensing

the vehicle’s surroundings as discussed in the review by Royo & Ballesta-Garcia

[207]. Several studies have demonstrated that LiDAR sensors can be used for traffic

monitoring through effective frameworks that have been developed to facilitate the

mode classification task using such data [124, 268, 275, 276]. For this study, LiDAR

sensors are not considered due to limitations related to their high purchase and

deployment costs.

6.2.2 Radar-based traffic monitoring

A radar-based sensor utilizes an antenna, which transmits electromagnetic waves

toward the area of interest. Once the waves hit an object they are reflected back to the

sensor enabling it to calculate the distance between its location and the object and,

simultaneously, to estimate the object’s speed based on Doppler effects. Given the

radar-based sensors’ ability to provide accurate distance and speed measurements and

their non-intrusive nature of the installation, they have been utilized as an alternative

to loop detectors [123] and pneumatic tubes. An advantage of radar-based sensors

compared to vision-based methods is that their operation remains unaffected from

external conditions such as weather (e.g., fog) and lighting (e.g., extreme illumination

or lack of light) [156, 157].

While radar-based sensors have been mostly utilized for speed [96, 123, 135] and

traffic demand (e.g., count data collection) monitoring [96, 215], some researchers

have demonstrated that these sensors can also be used for analyzing intersection delay

[216] or assessing safety [214, 243]. Speed data collected by radar-based sensors have

also been used for emission-related research [96, 272].

Existing literature includes several radar-based vehicle classification studies, e.g.,

differentiate between trucks and personal vehicles [96] or motorcycles and other types
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of motorized vehicles [35]. Vehicle classification with radar-based sensors relies on

vehicle kinematic; measurement data such as position, speed, and vehicle length

have commonly been used to classify different vehicle types. As an example, speed

data along with vehicle length obtained by radar-based sensors, have been used to

differentiate between trucks and cars [96] or motorcycles and cars and truckes [35].

Only a few radar-based sensor studies have taken place at locations where road users

other than motorized vehicles are present [215, 216, 272]. While none of these studies

differentiated between the type of motorized vehicles (e.g., cars vs. buses or trucks),

processes were developed to filter out recorded pedestrians that were traveling either

on the sidewalk or the crosswalk. The classification was performed either based on

the location pedestrians travel or by excluding trajectories that were parallel to the

stop bar [215, 216, 272].

6.2.3 Summary of the literature

This study focuses on multimodal environments where pedestrians, bicyclists,

and motorized vehicles are present. As revealed by the review of the literature on

radar-based traffic monitoring, there are no studies to-date considering all three modes.

The inclusion of bicyclists essentially prohibits a mode classification framework from

relying on location-specific data. This is because bicyclists often use different parts of

the roadway such as sidewalks or shared paths where they interact with pedestrians,

bicycle facilities that can be physically separated from motorized vehicles, or they

may travel on traffic lanes where they interact with motorized vehicles. Hence, even

in the presence of bicycle-specific infrastructure treatments, mode classification could

still be relevant and needed.

The presence of multiple road users in the same traffic scene has the potential to

create imbalance in the mode classification problem, and require various features to
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be considered for the classification since different mobility patterns might be present

depending on traffic operating conditions. The imbalance is caused due to the fact

that bicyclists and pedestrians tend to be fewer compared to motorized vehicles.

Depending on the traffic scene, non-motorized users might be moving with speeds that

are comparable to those of motorized vehicles, i.e., due to congestion. An additional

challenge with the use of any sensor data is the measurement noise. Existing research

is limited in that the developed so far mode classification frameworks have been

tested for single sites and have provided limited information on their transferability

and generalizability. In addition, existing studies do not deal with data imbalance.

Overall, there is a need to develop a transferable mode classification framework that

can handle imbalanced datasets of motorized vehicles, bicyclists, and pedestrians,

while accounting for radar-based sensor measurement inaccuracies.

The proposed framework addresses all of these limitations. First it includes different

road user types, a condition that has not previously been addressed in the literature.

Existing studies that use a radar-based sensor for traffic monitoring have taken place

at locations where motorized vehicles, pedestrians, and bikes are not all present

simultaneously. The presence of the three different modes further complicates the

data imbalance issue, that is also explicitly addressed in this framework, through the

implementation of a weighted SVM classification. SVM classifiers are robust and in

addition to being able to address imbalanced data they can account for measurement

noise that is inherent to radar-based data. Lastly, one challenge related to mode

classification of trajectories recorded with radar-based sensors is the impact of varying

traffic conditions on recorded trajectories and therefore, their potential to be classified

as one mode versus the other. A motorized vehicle recorded on the main road of an

unsignalized intersection is likely to have a very different speed profile compared to

that of a motorized vehicle that arrives at a signalized intersection during the red
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signal indication or one traveling on a congested roadway, which could easily bias the

mode classification process. The proposed framework addresses this issue by assessing

whether the classification should rely on (i) speed only, (ii) speed and vehicle length,

(iii) speed and acceleration, or (iv) speed, acceleration and vehicle length measurement

to assign each trajectory to its corresponding mode, ensuring that this framework can

be effectively implemented at any traffic scene.

6.3 Radar-based sensor configuration and data format

For the purposes of this study data collected using a generic radar-based motion

and presence sensor. The device detects moving objects that are approaching it and

records their position every 0.5 seconds. Each detected moving object is assigned a

unique ID. Moving object position information reported by the radar refers to the

middle point of the front bumper of the vehicle, i.e., the location of the radar-based

sensor setup is represented by coordinate (0, 0) in a Cartesian plane and the position

of the front bumper of a vehicle is reported in reference to this origin. Using the

vehicle position over time, the device can estimate vehicle speed and length. The

output data file records the following metrics for each detected moving object within

the device’s range, which is approximately 200 meters (600 feet), every 0.5 seconds: X

coordinate, Y coordinate, speed, and, vehicle length, essentially allowing for trajectory

construction for each of the recorded moving objects. A sample of data collected

with this device is shown in Figure 6.1. Different colors and sizes represent different

speed levels and vehicle lengths that were recorded for the various data points of each

moving object.

While radar-based sensors are capable of operating in adverse weather and lighting

conditions, they also present some limitations. Compared to video cameras radar

sensors provide limited contextual information (e.g., study site characteristics such as
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geometric ones that are not visible through the collected data). Data pre-processing

needs are also higher for radar-based sensors. This is due to the fact that some pre-

liminary data collection experiments and analysis are often necessary before finalizing

the sensor placement to ensure that collected data with minimal noise. In the case of

video cameras, one can immediately see whether one placement is better than another

in terms of capturing the area of interest, minimizing occlusion, etc. Radar-based

sensors can also be noisy in terms of vehicle length measurements.

6.4 Mode Classification Framework

The proposed mode classification framework assesses whether trajectories recorded

by a radar-based sensor can be correctly classified based on motion (e.g., speed) and

physical (e.g., vehicle length) features. The Support Vector Machine (SVM) algorithm

has been chosen as the classifier since it has a set of mathematical properties that

make it ideal for dealing with different roadway environments and traffic conditions.

The proposed mode classification framework has been structured with the following

properties: (1) trajectory normalization scheme (i.e., a process for selecting only a set

of records per trajectory); (2) deployment of different feature space combinations (e.g.,

speed only or speed along with vehicle length); (3) deployment of different sample

balancing strategies, and (4) use of cross-validation to obtain the optimal values for

SVM parameters and average scores across different performance metrics.

6.4.1 Support Vector Machine Algorithm for mode classification

The varying nature of multimodal traffic creates challenges that need to be ad-

dressed by the proposed mode classification framework. We identify the following

three challenges: (1) unbalanced classes: the potential of having a higher number

of motorized vehicle trajectories than bicyclist and pedestrian trajectories [273]; (2)
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applicability various operating environments: the proposed framework should be

flexible to work in both signalized and unsignalized intersections and under varying

traffic conditions over time for the same site; (3) inaccurate or “noisy” measurements:

noise in radar-based sensor measurements can be attributed to cross and/or adjacent

traffic, as well as sensor confusion [217]. In addition, some data points might be

reported with wrong X and/or Y coordinates or a specific recorded object might have

variations in its length measurements.

SVM, that falls under the Support Vector Classifiers (SVCs) category, can outper-

form existing classifiers, e.g., logistic regression, discriminant analysis, or trained-based

methods (e.g., Neural Networks (NN), random forests (RF)) for several reasons. SVCs

can be used for multi-class classification problems; this study considers three classes:

motorized vehicles, pedestrians, and bicyclists. Compared to trained-based methods

such as NN and RF, SVCs are semi-interpretable; the user may later interpret which

features (i.e., independent variables) and observations (e.g., trajectories) improve the

performance of the classifier. Other interpretable methods, like regression models,

are not flexible in using all data points from a trajectory as parameters; one would

have to use descriptive statistic values (e.g., mean, standard deviation) to develop a

classification model. Most importantly, SVC algorithms are robust and capable of

dealing with unbalanced and/or noisy datasets as explained next.

Among a set of possible hyperplanes that separate two (or more) classes in a

p-dimensional space (where p is the number of features), SVCs identify the one

that maximizes the distance between these classes. Compared to other classifiers

“Support vectors” are points close to the class boundaries that support (i.e., inform)

the definition of the hyperplane. However, support vectors are not necessarily the

most extreme points of each class. The fact that class boundaries are set to maximize

the distance between the classes but without relying on the most extreme points, that
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could correspond to noisy measurements, allows for robust solutions to be obtained;

the solutions are not sensitive to a specific set of points which could correspond to

less frequently occurred or noisy values. Other classifiers such as k-nearest neighbors,

simply define class boundaries based on the most extreme points. Consequently, SVCs

allow for some misclassification with an overall robustness trade-off. In the case of SVC

the user can determine the parameter related to misclassification to obtain a solution

that better fits particular needs. This flexibility is also important for imbalanced

and/or noisy datasets as the user can determine to which extend misclassification is

accepted for a particular class. For the present study the ability to handle unbalanced

datasets as well noisy measurements is especially important.

Compared to other SVCs, SVM can deal with non-linearly separable classes.

Assuming a dataset, consisting of N observations: (x1, y1), (x2, y2),..., (xN , yN ), where

xi is an input vector consisting of the characteristics based on which the classification

rule will be developed, and yi denotes the class of the ith observation. If the different

classes (i.e., mode types) are not linearly separable in the initial feature space, a fixed

feature space transformation, e.g., φ(xi) can be defined to map each data point (xi, yi)

into a higher dimensional feature space in which the transformed data are linearly

separable. These transformations are facilitated with the use of kernel functions. A

kernel function denoted as K(xi, x
′
i), where x′i is the input vector in the transformed

feature space, can take various forms such as polynomial, sigmoid, etc. SVM’s ability

to define non-linear boundaries is essential for mode classification as in certain cases

different road users have comparable, and so non-linearly separable, speed profiles.

This can be the case in more congested conditions where motorized users move in

lower speeds that are similar to those of non-motorized users or in shared paths where

bicyclists move at lower speeds since they share the space with pedestrians.

SVM solves the following mathematical program:
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minimize
w,β,ε

wTw

2
+ C

N∑
i=1

εi (23)

subject to:

yi(w
Tφ(xi) + β) ≥ 1− εi,∀i = 1, 2, ..., N (24)

εi ≥ 0,∀i = 1, 2, ..., N (25)

where w and β are parameters that define the hyperplane in p−dimension space, e.g.,

when p = 2 they represent the slope and intercept of the line. The product wTw is

the square of the margin between two classes. C and εi are parameters related to

misclassification. C bounds the sum of the εi’s; the latter is a slack variable that informs

on the placement of the ith observation with respect to the margin and the hyperplane.

C expresses the severity of the violation that is tolerated. Smaller C values result in

small-margin hyperplanes, while larger values create larger-margin hyperplanes. The

first constraint is related to the class assignment of the ith observation.

The ability to deal with non-linearly separable classes is crucial in the case of

varying traffic conditions (e.g., different control type and congestion levels), as these

conditions affect the motion of the different modes. Depending on traffic conditions,

motorized vehicles might need to slow down and adopt a lower speed comparable to

those of bicycles and even of pedestrians. Therefore, for the simple case of separating

a set of speed measurements of a bicycle from those from a slow motorized vehicle,

it can be argued that this cannot be facilitated with a straight line; SVM allows for

non-linear lines.

In a nutshell, SVM as a classifier separates two (or more) classes by maximizing the

distance between them based on points close to the class boundaries. The classes can

152



be separated either in a linear or non-linear way. These mathematical properties make

SVM ideal for the case of multimodal classification in varying traffic conditions. The

maximization of the distance between two (or more) classes based on the points close

to the boundaries eliminate noise and make SVM flexible in dealing with unbalanced

datasets. The ability to define non-linear boundaries between the classes favor the

mode classification under varying traffic conditions.

6.4.2 Data labeling

Ground truth data were collected using a video camera that was mounted next

to the radar-based sensor to be able to have the same field of view. Each object ID

recorded by the radar-based sensor was compared with the video footage to assign

one of the following labels: passenger car, bus/truck, pedestrian, bicyclist, or other;

for the rest of the paper this task is referred to as vehicle labeling.

In order to facilitate vehicle labeling, a tool (Figure 6.2) was developed that allowed

for: (1) synchronization of the radar-based sensor and video data and (2) plotting of

the trajectory, speed, and length values for each object ID recorded by the radar-based

sensor. The tool was able to read the first and last time stamps for each object ID

recorded by the radar-based sensor and display the same time period from the video

data footage. Then the user was able to view the video that corresponds to each

trajectory and assign the correct mode type to it.

At the initiation of the tool’s interface (Figure 6.2), the user is asked to insert

the path for the video and radar-based sensor data files as well as provide the time

differences between the two data sources. This way the code can synchronize the two

datasets. The radar-based sensor records are grouped per object ID and listed on

the left part of the interface. By selecting a recorded object ID, the following actions

occur:
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1. the part of the video recording that corresponds to the radar-based sensor’s

record appears on the right side of the interface so that the user can view it;

2. a plot (in red) of the selected vehicle trajectory appears to the left of the video;

and

3. vehicle speed and length as recorded by the radar-based sensor are plotted and

appear under the video recording view.

6.4.3 Feature vector formulation

The SVM algorithm classifies an observation to one of the available classes based

on a set of characteristics that are provided as input, denoted as “feature vector”.

For the proposed classification framework there are several features that could be

considered to ensure a low error classification. These features are measurements

such as speed, acceleration, and vehicle length. Acceleration, when not directly

reported from the device, can be estimated using the speed and time information.

Depending on the traffic scene, it is hypothesized that different combinations of feature

vectors can increase classification performance, and thus, it is advised to consider and

evaluate those combinations and select the most appropriate one. The grounds of this

hypothesis are explained below.

Speed and acceleration have been used in the literature to differentiate between

various motorized and/or non-motorized modes [70, 225, 239, 269, 271]. Speed profiles

of motorized vehicles, bicyclists, and pedestrians in free-flow conditions can be quite

distinct; under congested conditions different road user types might travel with

comparable speed [142, 255]. Therefore, it is unlikely to use speed only for classification.

Vehicle length has been used to differentiate between various types of motorized

vehicles [35, 96]. Overall, depending on the specific site, one measurement type could
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be more important than another. The proposed framework aims at assessing which

measurement type combinations achieve the best classifier performance.

The measurement values for each feature vector combination need to be aggregated

to allow for an efficient implementation of the SVM algorithm. Mean values for speed,

acceleration, and vehicle length can be used to build feature vectors. However, a single

averaged value cannot capture the variability that is potentially present in a trajectory.

For example, a motorized vehicle that approaches an intersection and stops at a red

traffic signal would be represented with a low mean speed that could be similar to a

pedestrian speed.

Alternatively, multiple measurements from each trajectory can be used to demon-

strate the potential variability of each measurement rather than a single mean value.

However, as recorded objects move at different speeds, each of the trajectories consists

of a different number of data points (e.g., for the same length a pedestrian would have

more points per trajectory compared to a moving motorized vehicle). In this case the

algorithm would have to receive and then process more ore data and in turn, learn

better the pedestrian compared to the motorized vehicle. Moreover, regardless of

mode, some trajectories are shorter than others, which occurs as they are only partially

included in an area where data collection takes place. Again, this phenomenon would

result in SVM receiving more information for some moving objects versus another.

A trajectory normalization scheme is therefore, proposed to allow for obtaining the

same number of data points per trajectory, without losing the integrity of the overall

trajectory, in order to ensure consistency in the feature vector inputs. In particular,

ten data points are extracted along each trajectory, i.e., at the 10%, 20%, etc. of

its covered length, A normalization scheme by ten data points per trajectory is a

balance between the complexity of the training scheme and the availability of the

training data since using more data points would also increase the number of training
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samples required. Depending on the sensor utilized for the analysis and in particular

the recording frequency, as well as the configuration of the site, a different value (i.e.,

other than ten) could be considered for the trajectory normalization.

Speed and acceleration measurements are extracted and interpolated; these values

are then used to form the feature vectors. The mean vehicle length for each trajec-

tory is estimated by averaging all obtained length measurements for that trajectory.

Unexpected variability in length measurements was found in many trajectories, there-

fore, obtaining a mean value across all points per trajectory would result in a more

representative vehicle length value.

Overall, the following feature vectors consisting of speed (Sj), acceleration (Aj),

and/or mean length (Lm) measurements are considered:

1. [S1, S2, ..., S10]

2. [S1, S2, ..., S10, Lm]

3. [S1, S2, ..., S10, A1, A2, ..., A10]

4. [S1, S2, ..., S10, A1, A2, ..., A10, Lm]

6.4.4 SVM algorithm implementation

Following the feature vector selection is the selection of the appropriate kernel

function and values for parameters C and γ. C reflects the misclassification tolerance.

The second parameter, γ, is present in SVM formulations that involve certain kernel

functions, e.g., Radial Basis Function (RBF), polynomial, etc. Techniques available in

multiple programming languages can determine the appropriate kernel function and the

parameter values; this work proposes the implementation of the exhaustive grid search

[242] that is applied for each feature vector. The grid search receives a set of kernels to
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test and for each kernel a combination of C and γ values. Those combinations create

a grid and the grid search algorithm will test each node of the grid (for each kernel

type) and then, it will produce the solution that yields to the most accurate results.

It is clarified that the optimal solution is obtained with cross-validation. Therefore,

as grid search considers multiple kernels and multiple combinations of C and γ per

kernel, it can be a time-consuming process. Grid search receives the feature vector,

the class of each trajectory as well as ranges for C and γ parameters as input.

In mode classification problems, imbalanced classes, i.e., classes with different sizes,

might occur as the non-motorized mode share is lower compared to that of motorized

vehicles. This imbalance is likely to affect the performance of the classifier, as the

algorithm would be well-trained in recognizing passenger cars (which is expected to be

the majority class) , but would be less successful in detecting the rest of the modes (or

in other words the minority classes). Assigning a weight to all objects of a class that

is inversely proportional to the class size penalizes the classifier when it miss-classifies

observations. The idea is to implement a greater penalty when the classifier miss-

classifies minority class observations compared to majority class observations. For

the rest of the paper the term “balanced” approach refers to the case where weights

(other than one) have been assigned. The weights are calculated as follows:

wj =
n

knj
(26)

where wj is the weight assigned to the jth class; n is the total number of observations;

k is the number of the different classes; nj is the number of observations that belong

to the jth class.

To summarize, the proposed framework assesses eight SVM models that vary in:

(1) the types of feature vectors (e.g., speed or speed and acceleration), and (2) the
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implementation of weights or not to account for imbalanced classes. The combination

of the two balancing approaches along with the four feature vectors (see section 6.4.3)

results in a total of eight models.

All eight models need to be evaluated with respect to their predictive power. The

objective is for a given traffic scene to identify the optimal model to perform the

mode classification. Overall, this formulation is robust and flexible in that it can

incorporate various traffic characteristics with respect to traffic conditions, control

type, and mode share that may appear in a roadway environment. Lastly, for each

model, the respective dataset is divided into two sets: one used to train the model

(train set) and another to test the model (test set). To assess the SVM performance

for every model cross-validation is recommended; use multiple pairs of train-test sets

to obtain average scores across these sets. Avoiding the use of a single train-test set

can eliminate the chance of randomly obtaining a very good or bad training set, and

in turn creating a model with high bias or variance. Five pairs of train-test sets are

generally considered adequate.

6.5 Experimental Tests

Traffic data was collected with a radar-based sensor at two urban intersections

where pedestrians, bicyclists, and motorized vehicles are present to test and validate

the proposed mode classification framework. Two test sites were chosen to allow for

testing of the proposed framework under different traffic operating conditions. In

particular, the chosen intersections in this study vary in terms of control types and

the roadway configurations.
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6.6 Test sites

6.6.1 Test site 1: Unsignalized intersection

Test site 1 is the intersection of North Pleasant Street and Butterfield Terrace

(Figure 6.3), in Amherst, Massachusetts. Data was collected on two different weekdays

between 9:30 to 11:30 AM and 10 AM to 12 PM.

North Pleasant Street is an one-way per direction street, while Butterfield Terrace

is a low-volume local street. This is an uncontrolled intersection with no yield or

STOP signs present. In North Pleasant Street, each direction of traffic includes a bike

lane adjacent to the travel lane and a sidewalk. Generally, vehicles and non-motorized

users travel on North Pleasant Street without interruptions, which allows for data

collection during free-flow traffic conditions. This is important because bicyclists and

motorized vehicles can develop different speed profiles depending on whether they

are experiencing near free-flow or congested traffic conditions. Only a few motorized

vehicles were observed stopping for crossing pedestrians or decelerating prior to turning

right at Butterfield Terrace, and these conditions allowed for obtaining wider speed

ranges for motorized vehicles. This in turn, allows for the algorithm’s robustness to

be further tested.

The radar-based sensor was mounted on a light pole, located a few meters down-

stream of the studied intersection to capture the northbound direction of travel

(Figure 6.3). While the majority of bicyclists used the bike lane, some were observed

using the right or the left sidewalk similarly to pedestrians. As a result, the roadway

position of these users cannot be used as a criterion to differentiate between motorized

and non-motorized users, as it was done in other studies to filter out pedestrians

[215, 272].

Table 6.1 presents the number of motorized vehicles, pedestrians, and bicyclists
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recorded per site and additionally, traffic flow, mean speed, mean acceleration, and

mean length values for the same modes. For test site one (i.e., unsignalized approach)

data was collected during two different days; the total hours of video data collection

are noted in a parenthesis. Traffic flow information has been estimated from the video

data by counting the number of motorized vehicles, pedestrians, and bicyclists that

were present in the traffic scene and approaching the sensor over the data collection

period in hours. However, due to some trajectories being incomplete, fewer motorized

vehicles were used in the analysis. The majority of the recorded modes in test site

one were motorized vehicles, followed by pedestrians and bicyclists. Based on Table 1,

it can be seen that the two data collection days are comparable in terms of level of

traffic demand. Given the low traffic flow, this segment was operating under free-flow

traffic conditions.

Table 6.1: Summary of data collected per test site

Test site Day Mode Flowa No. Speedb Accelerationb Veh. Lengthb

(hours) (veh/h) trajectoriesb (km/h) (m/s2) (m)

Unsignalized

Day 1 (2)
Motorized veh. 283 537 44.9 0.0007 4.4
Bicycles 4 5 21.2 0.0068 2.4
Pedestrians 28 50 4.5 0.0079 2.2

Day 2 (2)
Motorized veh. 291 527 48.3 0.0092 4.5
Bicycles 16 27 22.1 -0.0009 2.8
Pedestrians 22 37 4.4 -0.0057 3.0

Signalized Day 3 (1)
Motorized veh. 542 304 10.5 0.0023 4.8
Pedestrians 49 34 3.6 0.0031 3.1

a Values estimated based on video footage.
b Values based on the final number of trajectories used to develop the model.

6.6.2 Test site 2: Signalized intersection

The second test site is the intersection of Main and State Streets in Northampton,

Massachusetts downstream of the merging point of Elm and West Streets in the
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eastbound direction as shown in Figure 6.4c. One hour of data were collected during

the 10:00 to 11:00 AM period on a weekday.

The radar-based sensor was mounted on the traffic light pole at the intersection of

Main and State Streets, capturing the traffic approaching from West and Elm Streets

(see Figure 6.4b, 6.4c). The captured approach has one right-only traffic lane, a bike

lane, two through lanes, and a left-only lane. Pedestrians are walking on the sidewalk

on the right of the traffic and bike lanes. Due to the sensor placement, pedestrians

crossing the intersection were not captured.

The signalized approach of interest operated under a cycle length of 110 seconds,

a green time for the through and right-turning vehicles of 50 sec, and a green time

for left-turning vehicles of 30 sec. Given the low flow of motorized vehicles and the

aforementioned signal settings, traffic conditions at this intersection approach were

undersaturated. The presence of signalization, however, allowed for capturing different

speed and acceleration profiles compared to the unsignalized test intersection (where

users mostly travel at free-flow speed).

6.6.3 Data preparation

Vehicle labeling Using the vehicle labeling tool presented in section 6.4.2, a total of

1341 object IDs were labeled as “Passenger car”, 27 as “Bus/Truck”, 32 as “Bikes”,

121 as “Pedestrians”, and lastly, 813 were labeled as “Other”; the latter category

included either broken trajectories or those with fewer than five data points. Given

the small number of large vehicles, i.e., buses and trucks, compared to passenger cars,

they were all merged in one category, namely “motorized vehicles”. Differentiating

between motorized vehicles using radar-based sensor trajectories has already been

addressed in the literature [96] and is out of the scope of this study.

The task of labeling the recorded trajectories is a relatively time-consuming step.
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For the present implementation, 3-4 hours of video data were labeled in approximately

8 hours. It should be noted that the labeling process is a one-time task, essential

to train and test a mode classification model for a given traffic scene; trajectories

recorded later on can be automatically classified through the SVM implementation

with no additional video records needed. In addition, these labeled trajectories can be

used for example, for safety analysis through surrogate safety metrics obtained from

trajectories as well as for energy and emission estimation.

In total 1521 trajectories were used to develop and test the framework consisting

of 1368 motorized vehicles (78% in site 1 and 22% in site 2), 32 bicycles (100% is site

1), and 121 pedestrians (71.9% in site 1 and 28% in site 2). Motorized vehicles are

approximately 90% of the recorded trajectories, while the respective percentages for

pedestrians and bicycles are 7.9% and 2.1%. During the video data collection several

more vehicles, pedestrians, and bikes were recorded however, occlusion resulted in some

of the trajectories being broken and therefore, removed from the analysis. Broken

trajectories were mostly found at the signalized approach and can be attributed

to occlusion due to radar positioning; ideally, the sensor should be placed at the

horizontal part of a traffic pole as demonstrated in the studies by Santiago-Chaparro

et al. [215, 216] as other placements capture traffic scenes with an angle that may

benefit occlusion.

Feature vectors Speed and acceleration for a set of motorized vehicles and pedestrians

as well as for the bicyclists were visualized using whisker plots. Additionally, mean

values for speed, acceleration, and vehicle length were estimated (Table 6.1). Generally,

data visualization can provide some evidence regarding the appropriate kernel function

as it can indicate whether the dataset is linearly separable or not. Additionally,

visualizing the data may illustrate which measurements can be more critical for the

classification. However, data visualization should not be used as a decision making
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tool in the present framework.

Records from test site 1 (unsignalized approach) show that the three user types, i.e.,

motorized vehicles, bicyclists, and pedestrians, have distinct speed profiles as shown

in Figures 6.5a, 6.7a, and 6.9a . Similarly, distinct speed profiles between pedestrians

and motorized vehicles were observed for test site 2 (signalized approach). Essentially,

bicycles (site 1) traveled with speeds comparable to those of motorized vehicles at

site 2; this is an indication that speed alone might not be a good predictor of vehicle

class especially between motorized vehicles and bicycles. Acceleration profiles shown

in Figures 6.6, 6.8, and 6.9b are quite similar across all user types for both sites,

indicating that acceleration might not be a good predictor for the given traffic scenes.

Lastly, vehicle lengths vary between motorized and non-motorized users, however, the

estimated mean values for pedestrians and bicyclists are quite similar as shown in

Table 6.1. While visualizing the data is informative, testing all four feature vectors as

well as balancing strategies should not be omitted.

Grid search output

The appropriate kernel as well as optimal values for C and γ for each one of the four

feature vectors and balancing approach combinations were determined through grid

search. The following kernels were tested: linear, polynomial, RBF, and sigmoid.

It is highlighted that grid search for the same feature vector should be applied

separately for the balanced and unbalanced approach as balancing the data affects

the misclassification error which is related to the value of C. For both parameters,

the range that was provided as input was [10−10, 1010]; linear kernels do not use γ

parameter so in that case only a range for C was provided. The range is big enough

to ensure that the algorithm will assess multiple C and γ combinations. The RBF

kernel, shown in equation 27, was found to be the most appropriate for all eight SVM
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models.

K(xi, x
′
i) = exp

(
−γ||xi − x′i||2

)
(27)

where xi and x′i correspond to the input vectors for the ith observation in the non-

linearly and linearly separable feature spaces, respectively.

Different optimal C and γ values were identified for each feature vector as shown

in Table 6.2. The differences in C values indicate that in all cases, with the exception

of the speed-acceleration combination, there is a larger penalty for misclassification.

Table 6.2: C and γ values for the eight SVM models

Balancing Approach Feature Vector C γ

Unbalanced

Speed 1 10
Speed & length 1 100
Speed & acceleration 0.1 10
Speed, acceleration, & length 10,000 0.01

Balanced

Speed 0.1 100
Speed & length 1 100
Speed & acceleration 10 100
Speed, acceleration, & length 10 10

6.6.4 Results

Various performance measures, namely: precision, recall, and accuracy, were used

to compare the eight models. The reported values for precision, recall, and accuracy

correspond to the average values across the five different train-test sets that were

created for each one of the eight models.

Precision is the ratio of the True Positives over the sum of True and False Positives

as shown in equation 28. Precision expresses the number of cases correctly classified

as positive, e.g., the number of bicycles that were correctly classified as bicycles, over
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the total number of cases labeled as positive, i.e., the number of recorded objects that

were classified as bicycles [230].

Precision =
True Positives

True Positives + False Positives
(28)

Recall is the ratio of True Positives over the sum of True Positives and False

Negatives, as shown in equation 29; in other words, recall expresses the number of

correctly classified as positive cases over the number of positive cases in the data [230].

In this study’s context, recall is calculated as the number of times a recorded object

was detected as a bicycle over the number of times a bicycle was actually present.

Recall =
True Positives

True Positives + False Negatives
(29)

Accuracy, which expresses the effectiveness of the classifier, is defined as the number

of correctly classified responses over the entire sample (n) of observations, as shown

in equation 30.

Accuracy =
1

n

n−1∑
i=1

1(ŷi = yi) (30)

where yi is the observed response and ŷi is the predicted response.

The precision and recall results for the three-mode classification are shown in

Figures 6.10 and 6.11, respectively. Accuracy across all eight models is presented in

Figure 6.12.

Precision for motorized vehicles for the unbalanced approach ranges from 93-96%

across the four models with the lower values reported for the speed and acceleration

feature vector. In the balanced approach precision 93-99%, with speed and acceleration

feature vector reporting the lowest value. Overall, precision is maximized in the

balanced approach with the utilization of the feature vector that includes speed and
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length.

Precision for pedestrians for the unbalanced approach was overall lower compared

to that of motorized vehicles, ranging between 87-94% across the four models. Similar

to the motorized vehicle classification, the balanced approach either slightly improved

or did not affect the precision for pedestrians. Generally, pedestrians and motorized

vehicles maintain higher precision scores compared to bicyclists. When to each other,

pedestrians and motorized vehicles have distinct lengths and for this specific dataset

they were also found to have quite distinct speed profiles. However, as both road

users have similar acceleration profiles, the inclusion of acceleration does not improve

precision score for either road user. Pedestrian and bicyclist values for vehicle length

were very similar, while their speeds had close values in some cases. The balanced

approached penalizes the algorithm in case of miss-classification, and so performs

better when differentiating between these two modes. Hence, higher True Positive

rate is reported for pedestrians.

Lastly, precision for bicycles was low in both the unbalanced and balanced ap-

proaches, ranging from 20-75% and 48-75%. The balanced approach increased precision

for bicycles. This is because the bicycle class is the most underrepresented class of

the three in the sample and the use of weights facilitates the algorithm’s “learning”

of this class. However, given the relatively low precision scores, even in the balanced

approach, the classifier appears to be mistakenly assigning non-bicycle trajectories to

the bicycle class.

In terms of recall, motorized vehicles reported the highest recall values (higher or

equal to 92%) compared to the other two modes in both the unbalanced and balanced

approaches (Figure 6.11). High recall values indicate that when motorized vehicles are

present, they will most likely be correctly detected. The balanced approach causes a

small drop in the recall values of motorized vehicles. This is because the inclusion of
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weights when implementing SVM results in a trade-off between precision and recall.

When assigning weights proportional to the class size, precision is improved for the

majority class due to the fact that False Positives rate drops; the algorithm is forced

not to falsely assign pedestrians or bicyclists to the motorized vehicle class. Recall on

the other hand drops for the majority class as False Negatives value might increase; the

algorithm is less penalized if it falsely “misses” a motorized vehicle compared to missing

a pedestrian/ bicyclist. For the present sites, the aforementioned changes in precision

and recall are minor. Overall, for motorized vehicles vectors that contain vehicle length

information maximize both precision and recall for motorized vehicles. The recall

results for pedestrians are slightly influenced by the use of a balanced vs unbalanced

approach and besides the case of the speed-only feature vector, the balanced approach

results in lower recall values for pedestrians. The drop in pedestrians’ recall along

with a simultaneous increase in bicyclists’ recall values can be easily explained; the

inclusion of weights proportional to the class size force the algorithm to correctly

identify the minority class. Essentially, pedestrians’ False Negative rate drops as

the algorithm learns to identify bicycles instead. The fact that speed-only feature

vector results in the highest Pedestrians have distinctive speed profiles (see Figure 6.7)

compared to the great majority of motorized vehicles (see Figure 6.5) and bicycles

(see Figure 6.9); therefore, speed alone stands as a good classifier for pedestrians. The

inclusion of acceleration and vehicle length in addition to speed, improved pedestrians’

recall while that was not the case for speed and acceleration or speed and vehicle

length feature vectors.

For bicycles in the unbalanced approach zero recall values were reported, indicating

that in those cases the classifier could not classify any observation as a bicycle. As a

result, in the case of bicycles, the balanced approach is very beneficial for the classifier’s

ability to detect and classify them correctly given the small bicycle samples in the
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dataset. Additionally, the inclusion of mean length in the feature vector increases the

recall scores for bicycles.

Overall, as shown by the results, the feature vector consisting of speed and mean

vehicle length is able to simultaneously improve recall scores for all three modes. The

ability of radar-based sensors to estimate and report vehicle length is a unique feature

that is important when focusing on mode classification, but is lacking from other

sensing technologies (e.g., GPS devices). This advantage is not degraded due to the

fact that there are some fluctuations in the reported length values, possibly caused by

partial occlusion.

Accuracy values reached or exceeded 95% except for the case of speed and acceler-

ation feature vector (Figure 6.12). In the unbalanced approach the classifier focuses

on better learning the majority class (motorized vehicles in this case) as this is a

simultaneously safer and easier way of increasing its correct response rate. However,

there are slight differences in accuracy between balanced and unbalanced approaches;

one should focus on precision and recall metrics as they can better explain where

the misclassification error occurs and by analyzing precision and recall the benefit of

balancing the data is more apparent.

Overall, the balanced approach outperforms the unbalanced one. The current

dataset is highly unbalanced and the inclusion of weights that are proportional to class

sizes improved recall and precision. These weights are imposed on the C parameters,

affecting the penalty for misclassification.

Precision, recall, and accuracy are three metrics commonly used in signal detection

theory; however, depending on the context of the study, one metric is often prioritized

over another [230]. For example in the case of bicycles, high precision means that most

detected objects detected as bicycles are actually bicycles while high recall indicates

that most bicycles in the scene are detected.
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When mode classification takes place in the context of traffic monitoring in

multimodal environments, either for demand estimation or safety studies, recall is

more critical. Higher recall means that road users that are present can be detected.

As pedestrians and bicyclists are fewer compared to motorized vehicles, a classifier

should be capable of always detecting non-motorized users; missing a car is trivial

compared to missing a pedestrian as a pedestrian is less frequently present. Precision

is important too, as it assesses the classifier’s ability to correctly assign an object to

a class; however, it is considered of lower importance in this context. Lastly, with

respect to accuracy in multi-class classification settings this metrics lacks in informing

where the errors are attributed to.

After determining the balancing approach as well as the most appropriate perfor-

mance metric, the next step is to conclude on the feature vector that improves the

classifier’s performance. As shown in Figure ??, a feature vector consisting of ten

speed measurements along with the mean vehicle length resulted in recall values that

were high for all three mode types.

6.7 Conclusions and future extensions

Current technologies, such as cameras that are widely implemented in traffic

monitoring studies are limited by external conditions, such as light and weather. At

the same time, radar-based sensors have been underutilized with implementations in

motorized vehicles-only traffic environments. This study utilized a radar-based motion

and presence sensor to develop a mode classification framework for motorized vehicles,

bicycles, and pedestrians when they are all present in multimodal environments.

Overall, there are three, interconnected layers of contributions related to the use of

radar-based sensors in multimodal road environments, as this study. This is the first

research to explore the feasibility of using radar-based sensor data to accurately classify
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recorded trajectories in road environments where multiple modes are present. Second,

a robust, flexible, and transferable procedure for the classification of motorized vehicles,

bicyclists, and pedestrians is provided; the framework is capable of accommodating

varying traffic conditions and control types as well as imbalanced datasets. Lastly, this

study provides an instance of the complete procedure to demonstrate its applicability

in two traffic scenes.

The proposed classification framework uses SVM as the classifier and can accom-

modate the unique properties of multimodal traffic captured by radar-based sensors.

This is feasible through a step-by-step procedure for the SVM implementation to

obtain the most appropriate mode classification model for a certain scene. A trajectory

normalization scheme is first implemented to obtain a set of measurements for each

trajectory. The SVM implementation may vary in terms of feature space (speed/length

or speed/acceleration) or training sample balancing strategy. A set of performance

metrics as well a discussion on how to assess the results is provided to guide users

on how to select the appropriate SVM implementation. Cross-validation is used to

obtain the optimal SVM parameters as well as performance metric averages across

multiple train-test sets.

To test and validate the proposed framework, data was collected from two test

sites that varied in terms of geometry, control, and operating speeds, i.e., interrupted

vs uninterrupted flow. This allowed for testing the radar-based sensor performance

using trajectories collected under a variety of operating conditions. The findings

suggest that the proposed mode classification framework can accurately detect and

classify bicycles, pedestrians, and motorized vehicles achieving an accuracy of 95%. A

desirable performance was achieved using a balanced approach with a feature vector

containing ten speed measurements and the average vehicle length. The preference for

the balanced approach can be attributed to the imbalance of observations by mode.
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While this combination of features and approach could be specific to the dataset used

in this study, the proposed framework can be applied to determine feature vectors

that are appropriate for any other test site with radar-based trajectory data available.

Future work on the mode classification aspect could validate and perhaps modify

the proposed framework to be able to differentiate between types of motorized vehicles,

e.g., buses and trucks, as large motorized vehicles have been reported to degrade the

safety of pedestrians and bicyclists [194, 256]. Additionally, future research should

focus on a large scale validation with larger numbers of non-motorized users (and

types, e.g., e-scooters) in a variety of traffic conditions and geometric designs (e.g.,

vertical or horizontal curves or under the presence of innovative bicycle and pedestrian

infrastructure treatments).

Apart from classification, there is a need to develop a methodology to deal with

broken trajectory reconstruction and noise elimination so that road user interactions

and behavior can be assessed. Such a methodology should combine both advanced

data filtering techniques and identification of optimal placing of the sensor. Essentially,

the placing of the sensor can eliminate/ reduce occlusion and noise and so, reduce

the need for advanced data filtering. For example, placing the radar-based sensor in

the horizontal part of a traffic light pole allows for field of “view” closer to bird’s eye

view, that is free of occlusion. This placement would benefit right-hook traffic conflict

analysis between bicyclists and motorized vehicles, presented in the previous chapter.
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7 Conclusions, practical implications, and future

extensions

Following the trend of Northern European countries, many cities across the globe

have come to the realization that the bicycle should become the primary transportation

mode for a higher share of the population. The implementation of bicycle treatments,

such as protected or conventional bike lanes and protected intersection, attracts

more bicyclists as such treatments provide designated roadway space for them, which

enhances perceived safety and comfort. However, the combination of higher bicycling

levels and a not appropriate selection of bicycle treatment types deteriorates bicyclist

safety.

This dissertation focused on the impact of a variety of segment- and intersection-

level treatments when implemented individually or in combination in an effort to

quantify their safety benefits and guide future implementations. While bicycle safety

literature has been receiving an increasing amount of attention during the last 20

years on a global level, there is still limited research on the comparison of different

bicycle treatment types. Moreover, little attention has been given in differentiating

between the safety impact of a treatment at the segment- versus the intersection-

level. This limitation can be attributed to data availability. Assessing the actual

(i.e., not perceived) bicycle safety in conjunction to the presence and type of bicycle

treatments requires bicycle demand and bicycle crash data, in addition to data on

bicycle treatment location. Such detailed datasets are hard to be obtained, and when

they are available, one should consider that not all bicycle treatments can be assessed

via crash-based analysis.

In this dissertation, the evaluation of the different treatment types was facilitated

using three different traffic safety approaches, namely, (1) crash analysis, (2) traffic
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conflict analysis, and (3) driver behavior analysis (i.e., speeding and glances). Each of

these approaches sheds light to some aspects regarding bicyclist safety and the presence

and type of bicycle treatments. The combination of all approaches allows for a deeper

understanding of how each treatment type affects bicycle safety. Crash analysis may

be inconclusive when studying specific crash types (e.g., right-hook crashes) and in this

case, traffic conflict analysis can be used as an alternative. Traffic conflict analysis can

focus on the specific part of a site and isolate specific road user interactions that are

related to a specific crash type. For example, traffic conflict analysis can focus on one

intersection approach and analyze right-turning motorized vehicles and straight-going

bicyclists as in these road users will be involved in a right-hook crash. Similarly,

driving simulator experiments offer the ability to isolate specific parts of a site and road

user interactions but at the same time, they offer additional opportunities compared

to traffic conflict analysis. Driving simulator experiments benefit from the use of

additional equipment to assess road users mental processes, e.g., eye-tracking device

to assess driver’s glancing behavior. Driving simulator can also study treatments not

frequently found in the field. Therefore, using crash analysis, then traffic conflict

analysis and then, driving simulator technology allowed for a complete assessment of

bicycle treatment presence and type. Recognizing that effective monitoring of sites

where bicyclists coexist with other non-motorized and motorized road users is essential

for safety analysis, this dissertation investigated the feasibility of alternative traffic

monitoring technologies, in particular, radar-based sensors. Traffic conflict analysis

and generally field data collection, could also be conducted using radar-based sensors

instead of video cameras.

This Chapter presents the overall findings and contributions of this dissertation.

Bicycle safety-related findings, that relate the type of various bicycle treatments to a

safety outcome (e.g., predicted crashes or driver speeding behavior), are presented
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separately for the segment and the intersection levels, showing the main findings from

Chapters 3-5. Section 7.2 discusses methodological findings with the objective to

summarize new knowledge on how to evaluate bicycle safety. Section 7.3 presents a

step-by-step methodology on data needs and data analysis regarding the assessment of

the safety of bicycle treatments. The objective of this section is to stand as a guideline

for authorities and professionals in the field of bicycle safety. The last section (7.4)

discusses the limitations of this dissertation and paths for future research.

7.1 The impact of bicycle treatment type on bicycle safety

7.1.1 Segment-level bicycle treatments at road segments

This dissertation assessed the safety impact on bicycle safety of the the following

three bicycle treatments for the segment-level: sharrows, protected bike lanes and

conventional bike lanes.

The crash-based analysis found that road segments with bicycle treatments are

overall safer compared to those segments without bicycle treatments in terms of crash

probability. With respect to the bicycle treatment type, the study found that there

is a ranking between segment-level treatments; protected bike lanes, then sharrows

and then conventional bike lanes are safer when compared to road segments with no

bicycle treatments. Essentially, a bicyclist has less chances of being involved in a

crash with a motorized vehicle when traveling on a protected bike lane or a sharrow

compared to a conventional bike lane. This finding can guide cities in the selection

of bicycle treatments and motivate a shift from conventional bike lanes to protected

ones.

Driver behavior in terms of speeding and glancing data in the presence of bicycle

treatments was assessed through a driving simulator experiment. Driver speeding data
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analysis showed that drivers develop a lower speed when driving next to protected

versus conventional bike lanes. As the protected bike lanes require the presence of

a physical barrier between the bike lane and the traffic lane, they cause a reduction

of the effective (traffic) lane width and so, reduce speeds. Implementing protected

bike lanes can thus be seen as a means of achieving lower speed limits in urban areas.

Driver glancing data analysis suggested that drivers are less likely to glance at a

bicyclist when he/she travel at a protected versus a conventional bike lane. The fact

that drivers may not glance at the bicyclist raises concerns regarding their ability to

perceive and detect the bicyclist. In this case, it is important that countermeasures

are introduced to improve driver awareness and increase the probability of drivers’

searching for bicyclists at the intersection, when the twp road users might interact.

Previous research found that the presence of the “yield to bicyclists” signage placed

at the intersection increased the right side mirror scanning of right-turning drivers at

the intersection by 9% [261]. To address view blocking of the protected bike lane, one

could terminate the parking lane before the intersection to improve driver situational

awareness of bicyclist presence as they are approaching the intersection.

7.1.2 Segment-level bicycle treatments at signalized intersections

All three safety-related studies conducted for this dissertation assessed the safety

benefits of segment-level treatments at signalized intersections.

The crash prediction models (i.e., crash-based analysis) found that signalized

intersections where bicycle treatments are placed at more than one of the intersecting

roads are associated with higher crash frequency. Specifically, the following situations

were associated with increased crash frequency: (a) when the intersection has one

road with conventional bike lanes and no other treatment on the other intersection

road, (b) when the intersection has a road with conventional bike lanes and a road
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with protected bike lanes, and (c) when the intersection has two roads both of which

with conventional bike lanes. The combination of bicycle treatments described in

point (a) above correspond to a safer case, in terms of crash frequency, compared

to the one described in point (b), and so on. This finding suggests that when both

protected and conventional bike lanes are present at a signalized intersection the crash

risk is the highest compared to (signalized) intersections where no protected bike

lanes are present. This finding should be carefully interpreted. The developed crash

prediction models should be seen as a tool of prioritizing high risk sites for further

investigation. For example, a road safety inspection or a traffic conflict analysis at

signalized intersections where both protected and conventional bike lanes are present

could reveal potential unsafe situations between bicyclists and motorized vehicles, and

in turn, recommend appropriate countermeasures.

In contrast to the crash-based analysis that assessed the safety performance of

entire signalized intersections (i.e., all of the approaches) in terms of crash frequency,

the traffic conflict study as well as the driving simulator experiment focused on one

approach. The focus of these two studies was on right-hook traffic conflicts that occur

between a right-turning driver and a straight-going bicyclists during the green phase.

The bicyclist is located on the right side of the right-turning vehicle and the driver

might not notice the bicyclist and potentially collide with him/her.

The traffic conflict study concluded that the segment-level bicycle treatment type

does not affect the frequency of the observed right-hook traffic conflicts at signalized

intersections. This study assessed sharrows, conventional and protected bike lanes at

the intersection approach. Right-hook traffic conflicts always take place downstream

the stop bar and so, the (upstream) segment-level bicycle treatment type does not

affect bicyclist path while crossing the intersection.

The driving simulator experiment findings were similar in the sense that driver
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behavior while turning right at an intersection was not found to be affected by the

bicycle treatment type upstream the intersection. The speeding and glancing analysis

showed that speed differences as well differences with respect to drivers’ glancing were

not statistically significant when turning right in the presence of protected versus

conventional bike lanes.

Overall, as the segment-level bicycle treatment type does not play a role when it

comes to right-hook conflicts and driver right-turning behavior, other safety measures

should be implemented to eliminate right-hook conflicts and in turn, right-hook crashes

at signalized intersections. For example, the placement of a protected intersection has

the potential to increase the number of drivers that glance right before making a right

turn. Hence, this treatment could potentially reduce the number of right-hook traffic

conflicts.

7.1.3 Intersection-level treatments at signalized intersections

With respect to the intersection-level treatments at signalized intersections, the

three following treatments were studied in this dissertation: bike boxes, intersection-

crossing pavement markings (or simply crossing markings) and protected intersection

design.

The crash-based analysis found that intersections with bike boxes or crossing

markings increase crash frequency. This finding should be carefully interpreted by

transportation professionals and authorities. The developed crash prediction models

should be seen as a tool for identifying high-risk sites (i.e., signalized intersections)

across a network. Bike boxes and intersection-crossing pavement markings aim to

increase driver awareness of bicyclist presence and provide potential paths for bicyclists

while navigating an intersection. Therefore, signalized intersections with bike boxes

or crossing markings at one or more approaches need be inspected as additional
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countermeasures might be needed to enhance bicycle safety.

The right-hook traffic conflict analysis considered signalized intersections with bike

boxes or crossing markings. The findings indicate that none of these bicycle treatments

significantly affects the frequency of right-hook traffic conflicts between right-turning

drivers and straight-going bicyclists. Bike boxes are useful for a signalized intersection

during the red phase, as bicyclists can wait there and be in the front of drivers and so

visible to them. However, by design bike boxes cannot affect bicyclist safety during

the green phase; these treatments may only increase driver awareness of bicyclists.

The driving simulator experiment found that protected intersection design is

safer in terms of driver glancing behavior compared to the non-protected intersection

design featuring crossing-markings. Specifically, drivers turning right at a protected

intersection are more likely to glance right at the intersection compared to the non-

protected design. Additionally, it was found that those drivers that glanced right at

the intersection, developed lower average speed while making the right turn compared

to those drivers who did not glance.

7.1.4 Contributions

The work carried out in this dissertation contributes in the following ways in the

bicycle safety literature:

1. At the segment-level, it was shown that it is meaningful to differentiate between

the bicycle treatment type, and specifically protected bike lanes are safer than

conventional bike lanes and sharrows.

2. At the intersection-level, the presence of segment-level bicycle treatments in-

creases crash risk however, the type of segment-level treatments does not play a

role for right-hook conflicts.
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3. At the intersection-level, the implementation of intersection-level treatments

needs to be carefully selected.

7.2 Methodological findings

7.2.1 Strengths and limitations of the three safety assessment approaches

The analysis of historical crash records is the main approach for the assessment

of road safety. The outcome of this analysis is the identification of high-risk sites,

i.e., sites that experience more crashes compared to a defined threshold (e.g., average

crash frequency across all studied sites). Detailed crash records with respect to the

crash severity level, crash type (e.g., rear-end crash), and conditions during the crash

event (e.g., day vs night) help to better identify the most critical crash contributing

factors per case and so, propose appropriate countermeasures.

For this dissertation, crash analysis was used to relate (i) segment-level bicycle

treatments to the probability of a bicycle-motorized vehicle crash at the segment and

(ii) intersection bicycle-motorized vehicle crash frequency to the presence and type

of bicycle treatments. In the first case, the outcome of the analysis can fully guide

future implementation of bicycle treatments for road segments; for example, protected

bike lanes are safer for bicyclists compared to conventional bike lanes. In the case

of signalized intersections, both developed models produce results that need to be

carefully interpreted. Further analysis is needed at sites that are found more risky,

e.g., signalized intersections with bike boxes.

Ideally, crash analysis for intersections should differentiate based on the crash

type (e.g., right-hook crashes vs left-hook crashes) as certain crash types can be

reduced by certain countermeasures. However, in the case of bicycle-motorized vehicle

crashes this differentiation is not feasible as the number of crashes is low; bicycle
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crashes are few because the number of bicyclists is much lower compared to other

modes and at the same time, they tend to be underreported. A detailed crash dataset

was not the case for signalized intersection crash analysis in this dissertation, and

so to better understand the impact of bicycle treatment types at the intersection,

additional analyses were needed. It should be highlighted that not having a detailed

(i.e., regarding the crash type) bicycle-motorized vehicle crash dataset is not specific

to Portland, and so in turn, it does not only affect the analysis of this dissertation. In

the bicycle safety literature only one study has been found to differentiate between

the crash type and concerns unsignalized intersections [220]. On the contrary, for

motorized vehicle crashes there are multiple studies that center on specific crash types:

e.g., rear-end crashes [91, 259, 270], left-turn crashes [89, 260].

In a nutshell, crash analysis can be inconclusive regarding the safety impact of

a treatment. Therefore, different safety approaches can be useful for cases where

crash analysis cannot guide the selection of interventions and countermeasures. Traffic

conflict analysis is a non-crash based safety approach and traffic conflict occurrence

has been related to crash occurrence [112]. Traffic conflict analysis requires on-site

data collection (e.g., with video cameras) that capture road users’ movement and

interactions. For the assessment of bicycle safety, traffic conflict analysis is a powerful

tool as it can assess multiple interactions between bicyclists and motorized users, e.g.,

right-hook conflicts, and see how those interactions are impacted by the presence and

type of bicycle treatments. On-site/video data collection benefit the safety analysis are

the researcher/inspector can see how bicyclists and motorists behave in the presence of

bicycle treatments, e.g., do bicyclists use the bike box during and do drivers encroach

the bike box area?

There are two shortcoming related to traffic conflict analysis for bicycle safety.

First, there are no guidelines on the amount of data needed for traffic conflict analysis;
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crash data should be at minimum of three years to address regression-to-the-mean bias.

It is unclear how many sites, how many hours of data in total or per site is needed

to assess a treatment or what time of the week/year should these data be recorded.

Second, research on traffic conflict analysis is based on motorized vehicles and some of

the existing thresholds should be adjusted to for the case of bicyclists. For example,

questions can be raised regarding the the PET traffic conflict indicator and the road

user sequence in the case of right-turning vehicles and straight-going bicyclists: is the

conflict between a bicyclist followed by a motorized vehicle equally risky as the conflict

of a motorist followed by a bicyclist? In Chapter 4 it was showed that motorists keep

a greater time distance between themselves and the leading bicyclists compared to

bicyclists following a motorized vehicle.

Driving simulator experiments are another non-crash-based approach to assess the

impact of bicycle treatments on bicycle safety. This approach is ideal for treatments

that are cannot be found in the field, such as the protected intersections that are

not commonly placed in the U.S compared to other treatments (e.g., bike boxes).

Driving simulator technology benefits from technological equipment that can be used

in the experiment. In this driving simulator experiment driver glancing behavior was

recorded via an eye-tracking device, offering the analysis to check whether drivers

glance towards certain areas of interest (e.g., at a bicyclist traveling at the protected

bike lane or at the protected intersection). Glancing information which is a proxy of

drivers’ awareness cannot be assessed in crash-based on traffic conflict-based studies.

Overall, bicycle safety analysis can be benefited from different safety approaches.

Due to the low number of bicycle crashes, crash-based analysis may be limited. In this

case, traffic conflict analysis is an appropriate alternative when the studied bicycle

treatments can be found in the field.
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7.2.2 Sensors for conducting traffic monitoring studies

Throughout this dissertation two different sensors, namely a radar-based sensor

and video cameras, were used to collect field data from intersections where pedestrians,

bicyclists, and motorized vehicles are present. The objective was to test the feasibility

of using radar-based sensors in multi-modal traffic environments. The first step for

the deployment of radar-based sensors in field studies is to ensure that recorded

trajectories can be correctly classified. A mode classification framework was developed

to classify recorded trajectories in three modes, namely motorized vehicle, bicycles,

and pedestrians. The framework is capable of operating in multiple traffic scenes (e.g.,

signalized intersection vs corridor) by considering a difference balancing approach and

a different set of features, such as speed and vehicle length or speed and acceleration.

7.2.3 Safety-in-numbers effect

All of the safety-related studies agree with the safety-in-numbers effect; the presence

of more bicyclists improves safety for all bicyclists [107]. Road segments with more

bicyclists are more likely to experience a crash compared to segments with fewer

bicyclists, meaning that the per bicyclist crash risk is lower in the former case.

Additionally, a single bicyclist present at the segment was found to cause a reduction

in driver speed, compared to the case that no bicyclist was present at the segment.

At signalized intersections, the number of bicyclists per year and per 15 minutes

were associated with higher crash frequency and traffic conflict frequency, respectively.

This means that signalized intersections with more bicyclists have a lower risk per

bicyclist. The fact that drivers were more likely to glance right at the intersection

when a bicyclist was present confirms that even one bicyclist has the potential to

increase driver awareness of bicyclist presence.
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There are several take-away remarks from this finding. First, cities should try to

increase bicycle mode share in an effort to improve safety for all bicyclists. Campaigns,

traffic calming measures, and the provision of bicycle facilities (e.g., bicycle parking)

can motivate more people to shift to bicycling. Then, bicycle networks should be in a

way that (1) allow drivers to detect bicyclists and so, be aware of bicyclist presence

and potential routes (2) and be well-connected. Well-connected bicycle networks

have the potential to attract the great majority of bicyclists to certain segments and

intersections (i.e., those that are part of the bicycle network). At those segments

and intersections the safety-in-numbers effects will be present. If due to poor design,

bicyclists check alternative segments and intersections where drivers do expect to see

them, they are at a higher risk.

7.2.4 Contributions

The work carried out in this dissertation makes the following contributions from a

methodological perspective:

1. Strengths and limitations for three safety assessment methods have been demon-

strated regarding their appropriateness for assessing bicycle safety.

2. The analysis of right-hook traffic conflicts between bicyclists and motorized

vehicles showed that user sequence is important when studying conflict between

different road users.

3. A mode classification framework was developed for classifying trajectories

recorded via radar-based sensors in multi-modal environments. The frame-

work is flexible to operating in various traffic scenes.
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7.3 Practical implications and methodology transferability

The results of this research have numerous practical implications for transportation

practitioners, policymakers, officials, and researchers. In brief, the findings can assist

professionals with the selection of new bicycle treatment types but also provide

guidelines on how to evaluate of the effectiveness of existing treatments or the overall

safety of a multimodal site.

At the segment level, for high volume streets, protected bike lanes stand as the

safest treatment. Their implementation has also been found to reduce driving speed,

a measure that enhances safety for all road users. Shared bicycle treatments are ideal

for low-traffic, low-speed streets in residential areas.

At the intersection level, the signalized intersection approach has the potential to

reduce right-hook crashes between bicyclists and motorized vehicles and also turning

speeds. Treatments like bike boxes and intersection-crossing pavement markings

should continue be implemented as they provide an indication on which roadway space

should bicyclists occupy when they present or navigating a signalized intersection.

However, transportation practitioners and officials should carry out additional analysis

on a per site basis to understand which other countermeasures are needed to enhance

safety.

Several takeaways can be drawn from this research regarding ways to evaluate

bicycle safety. Crash analysis is the most common approach, however, 3 to 5 years

of crash data are needed to obtain representative crash history of the sites, traffic

volume and bicycle volume data are needed to account for exposure, while detailed

road-related data are also needed for understanding which sites are more prone to

crashes. Agencies need to actively collect and update these data, which can be time

and resource consuming. None of these data type should be omitted when conducting
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crash-based analysis, while the analysis should not be considered if the data are

limited or not reliable. Overall, crash analysis is not applicable for new roads or

newly implemented treatments and these are cases that different approaches become

essential.

For new interventions or limited/unreliable data field data collected with a video

camera is a cost-effective way to assess safety. Each intersection approach can be

isolated and studied in detail, while per approach different movements can also be

isolated and studied, e.g., right-hook and left-hook conflicts. Segments can also be

evaluated using this technology. In segments it is interesting to observe the distance

between bicyclists and motorized vehicles when conventional bike lanes are present

and potentially consider implementing some sort of physical separation. Video-based

traffic monitoring offers an agency a rich dataset that can be used for multiple analyses

in addition to safety assessment. Multiple data types are recorded (e.g., bicycle flows,

pedestrian flows, signal timing, red-light runners, traveling speeds, etc.) and they can

be translated into variables for an analysis. For example the developed models for

the prediction of right-hook conflict can be extended to include of motorized vehicle

speed, acceleration, signal timing, pedestrian flows, etc.

Video-based traffic monitoring studies are ideal for short-term data collection as

one camera can be easily set-up to multiple sites (segments and intersections). For

longer periods of data collection, it would be meaningful for agencies to purchase

radar-based sensors that can operate during all lighting and weather conditions. In

addition to their capabilities compared to video cameras, radar-based sensors require

more time to set up and at the same time, more equipment to be operate. For those

reasons are more appropriate for long-term implementations. The agency should also

invest in developing a data processing system to analyze the recorded data.
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7.4 Future extensions

This work has allowed for a better understanding of how various bicycle treatment

types affect bicycle safety. Additionally, it has tested the feasibility of using alternative

sensors for collecting field data for safety analysis. Future research in the field of

bicycle safety should consider the following directions in terms of treatment types,

methodological approaches, and incorporation of additional objectives (e.g., equity):

1. Additional bicycle treatment types for road segments

Segment-level treatments were grouped in three categories, namely sharrows,

conventional bike lanes, and protected bike lanes. Future research should consider

removing this grouping and differentiating between bike lanes and buffered bike

lanes, contra-flow bike lanes, as well as the various types of protected bike lanes

(see Figure 2.7). As both road space and curb space in urban areas is limited,

practitioners should have strong evidence on the safety effectiveness on various

bicycle treatments types as safer bicycle treatment might also take more space.

Lastly, bicycle and bus interactions should be assessed in the case of mixed bike

and bus lanes.

2. Design aspects and level of congestion of segment-level bicycle treatments

With regards to segment-level bicycle treatments, future research should also

evaluate the dimensions of the various bike lane types and how they impact

bicycle safety. Essentially, the width of bike lanes and its ability to serve

bicyclists becomes critical in higher bicycling levels. Congested and narrow bike

lanes might force bicyclists to use the adjacent traffic lane to overtake a bicyclist

or in the case of congested protected bike lanes, bicyclists might choose to use

the traffic lanes.
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3. Additional bicycle treatment types for intersections

Three intersection treatments, namely: intersection-crossing pavement markings,

bike boxes, and protected intersections, were studied in this dissertation. Ad-

ditional treatments exist for bicyclists such as merge zones and bicycle signals

accompanied by various timing strategies have not been studied in depth. The

various intersection-level treatments should be examined in terms of bicycle

safety in conjunction with signal strategies, with and without bicycle signals.

4. Traffic signal timing optimization

As indicated earlier, control strategies should be studied in addition to bicycle

treatments at intersections. Intersection delay has been found to affect bicyclists’

route choice who try to avoid signalized intersections [20, 99]. Hence, signal

timing should be optimized to equitably accommodate all users at an intersection

and extend current person-based signal timing optimization schemes [36, 38, 39].

5. Bicycle treatments in rural areas

This dissertation focused on urban or suburban (for the case of crash analysis)

environments. There is limited research on bicycle safety in rural areas and also,

as many conditions are different compared to urban roads (e.g., lack of lighting,

absence of bicyclists, presence of horizontal curves, etc.), the findings might not

be transferable.

6. Bicycle safety and social equity

There are several research studies showing that bicycle facilities (e.g., bikesharing

schemes) and treatments are more frequently adopted by higher income level

communities [100, 229]. This could result in making bicycling an accessible

transportation mode for only certain socioeconomic and demographic groups.

At the same time, lower income and marginalized populations are more likely
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to experience higher crash risk while bicycling [49, 248]. However, there are no

in-depth studies on the factors that contribute to crashes at those neighborhoods.

For example, is it the overall poor road conditions or specifically the lack of

bicycle treatments that increase crash risk in those settings? Given that bicycle

is a relatively cheap mode to own and use and at the same time has the potential

to increase access to opportunities [154, 166], ensuring that it is a safe and

convenient mode for low income communities is of paramount importance for

ensuring transportation and health equity.

7. Transferability of the findings

Traffic safety analysis is affected by road user characteristics, road network

design, weather, vehicle characteristics, presence of enforcement, etc. Therefore,

it is unlikely that the findings of one study are directly transferable to a different

setting; many U.S. States for example, have developed their own Safety Per-

formance Functions instead of calibrating the ones provided in Highway Safety

Manual as the achieved a better prediction performance for the same type of

roads, e.g., [86, 158]. The three safety-related studies undertaken as part of

this dissertation took place in a certain spatial and temporal context. Portland,

Oregon and Boston and Cambridge, Massachusetts have a strong bicycling

culture [245] and this might have affected the findings. Similar studies should

take place in different locations that vary in terms of bicycle and driving culture,

road and bicycle network design, land use, weather, population demographics,

etc. These are only a few factors that have been found to impact bicycle safety

[32] and can in turn affect the transferability of this dissertation’s findings.

In addition to assessing bicycle treatments in various environments (e.g., cities

with more treatment types or rural areas), it is important to consider how the presence
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and type of bicycle treatments affects modern mobility. New micromobility modes

are emerging (e.g., e-scooters, segways, e-bikes, etc.) that demand for roadway space,

while at the same on-vehicle sensors are advancing and the world is eventually shifting

towards automated driving.

1. Bicycle treatments and micromobility users

Laws and regulations as well as attitudes related to micromobility users vary

per city [150, 277]. E-bikes and usually e-scooters tend to use the bicycle

infrastructure, and it remains unclear whether the presence of these road users

affects bicyclist safety and convenience. Essentially, as e-bikes and e-scooters

develop higher speeds compared to the average bicyclist a set of regulations

might be needed to accommodate all users in bicycle treatments.

2. On-vehicle sensors and automated driving

In light of the automated driving, multiple on-vehicle sensors are placed on

cars to enable some level of driving assistance or automation. As urban roads

are more complex (e.g., stop-and go traffic, presence of pedestrians, etc.) the

majority of these sensors are trained and tested in motorways or large arterials

and so, the sensors have reduced capabilities in detecting and responding to

bicyclists. Some advanced driving assistance systems (ADAS) are placed in the

windshield of the car and so can only detect risks in the front of the vehicle

(e.g., Mobileye sensor, see the work by Emami [66]). A right-turning driver,

that has not checked on their right for bicyclists, cannot be alerted that is

about to collide with a straight-going bicyclist. Manufacturers of on-vehicle

sensors, either these sensors fall under the umbrella of ADAS or are part of

automated driving technology, should consider different types of interactions

between motorized vehicles and bicyclists while taking into account the presence
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of bicycle treatments to develop detection and warning systems that enhance

bicycle safety. For example, the sensor should be aware of the presence of a

protected bike lane behind the parking lane or it should maintain a steady

distance from the bike lane in case a bicyclist enters the traffic lane

Future research can center on the following methodological extensions of the current

work:

1. Development of Safety Performance Functions and Crash Modification Factors

The developed crash prediction models for road segments and signalized intersec-

tions should motivate the development of Safety Performance Functions (SPFs)

to predict the expected crash frequency for (i) road segments and (b) signalized

intersections using exposure variables as predictors, i.e., AADT and AADB.

Crash modification factors are also needed to complement the developed SPFs

and account for the bicycle treatment present and type. While the developed

models predict crashes and can be used to extract CMFs for the treatment

types, they cannot be considered SPF as defined in the Highway Safety Manual

as they (a) have been developed using data from one area instead of multiple

and (b) predict crashes rather than the expected crash frequency; the later is

estimated using the Empirical Bayes theorem. Highway Safety Manual CMFs

are estimated using before-after analysis to assess the effectiveness of a treatment

type.

2. Surrogate safety analysis and field studies as proactive safety approach Crash

analysis stands as the starting point for traffic safety studies, however, it is

important that authorities and agencies take advantage of the technology and

shift towards safety assessment approaches that rely on traffic monitoring data

(i.e., field data). This is a proactive safety approach in the sense that remedial
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actions are taken before crashes occur. Field studies have the potential to

assess multiple bicycle-motorized vehicle interaction data but also, once field

data is collected it can be used for different purposes (e.g., demand studies,

pedestrian safety studies, or unsafe interactions at trucks and taxis pick-up/drop-

off points). However, authorities and agencies are in need of guidelines on how

to conduct such studies. The current literature while it has associated traffic

conflict occurrence to crash occurrence and other metrics such as speed and

red-light running to crash occurrence, it is limited from conclusive guidelines

on: (i) the amount of data needed to support decisions on countermeasures

implementation and (ii) how different types of surrogate safety measures can be

combined (e.g., how can PET events combined with speed acceleration events at

an intersection?).

3. Alternative sensor types for field studies Traffic monitoring is mainly relied on

video cameras while other sensors such as radar-based sensors are used for speed

enforcement. The feasibility of using radar-based sensors in field studies was

explored in this dissertation and future work should exploit recorded trajectories

for assessing motorized vehicle, bicyclist, and pedestrian safety.

4. Exploiting the capabilities of driving simulator In this dissertation driving simu-

lator technology was used mainly because protected intersections can be found

in the field. In addition to testing treatments not frequently found in real

world, driving simulator experiments can be designed to assess critical events

(e.g., near-misses) between drivers and simulated (i.e., virtual bicyclists) in the

presence of various bicycle treatments, or to test user interface designs that alert

drivers of potentially risky interactions with bicyclists (or micromobility users).
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(a) Simple bike lanes

(b) Simple bike lanes with parking buffer

(c) Green-colored bike lanes

Figure 2.5: Different configurations of conventional bike lanes

227



Figure 2.6: Buffered bike lanes
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(a) Protected bike lane separated from traffic with a parking lane

(b) Raised protected bike lane

(c) Two-ways cycle track

Figure 2.7: Different configurations of protected bike lanes
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(a) Bicycle boulevards

(b) Sharrows

Figure 2.8: Bicycle treatments that enhanced bicyclists to use the full traffic lane
along with motorized vehicles
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Figure 2.9: Bike box

Figure 2.10: Intersection-crossing pavement marking and turning queue box

Figure 2.11: Protected or “Dutch” intersection
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Figure 3.1: Segments with Ride app data (in total annual rides) and bicycle counter
locations in the City of Portland
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Figure 3.2: Scatter plot of the 23 road segments for which is available both Ride app
and counter data.

Figure 3.3: Bicycle-motorized vehicle crashes at road segments.
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Figure 3.4: Bicycle-motorized vehicle crashes at signalized intersections.
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(a) AADT and crash occurrence across the different bicycle treatment types

(b) Ride app trips and crash occurrence across the different bicycle treatment types

Figure 3.5: Distribution of motorized vehicle and bicycle demand for the studied road
segments
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Figure 4.1: Right-hook collision between a bicycle and a right-turning vehicle (Adopted
from [75])

Figure 4.2: Example of green-colored intersection crossing markings (Seattle, WA)
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Figure 4.3: Example of bike box (Cambridge, MA)

Figure 4.4: Cambridge Street at Springfield Street (Cambridge, MA). [Segment:
sharrows; Intersection: None]
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(a) Binney & First St

(b) Binney & Third St

Figure 4.5: Binney street (Cambridge, MA). Bicycle treatment type: protected bike
lanes with green-colored intersection crossing markings

Figure 4.6: Western Ave at Memorial Drive (Cambridge, MA). [Segment: protected
bike lanes; Intersection: None]
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(a) Massachusetts Ave & Sidney St

(b) Massachusetts Ave & Albany

Figure 4.7: Massachusetts Avenue at... (Cambridge, MA). Segment: conventional bike
lane; Intersection: crossing Markings]

Figure 4.8: Cambridge Street at Sudbury Street (Boston, MA). [Segment: conventional
bike lane; Intersection: bike box]
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Figure 4.9: Massachusetts Avenue at Beacon Street (Boston, MA). [Segment: protected
bike lane; Intersection: bike box and crossing markings]

Figure 4.10: Massachusetts Avenue at Commonwealth Avenue (Boston, MA). [Segment:
conventional bike lane; Intersection: bike box and crossing markings]

Figure 4.11: Beacon Street at Street (Somerville, MA). [Segment: conventional bike
lane; Intersection: bike box and crossing markings (not visible on Google Maps imagery
due to recent installation)]
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Figure 4.12: Post Encroachment Time graphical representation; adopted from [7]

Figure 4.13: Conflict rates per bicycle treatment type
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(a) Conflicts where a bicycle is followed by a motorized vehicle

(b) Conflicts where a motorized vehicle is followed by a bicycle

Figure 4.14: Heatmaps for the percentage of the number of traffic conflicts per PET
value and per site over the total conflicts
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(a) Protected bike lane with
a fixed, raised barrier

(b) Protected bike lane with
parking buffer

(c) Raised protected bike
lane

Figure 5.1: Different configurations of protected bike lanes (PBL); these bicycle
treatments are also known as separated bike lanes or cycle tracks.

Figure 5.2: University of Massachusetts Amherst Human Performance Lab driving
simulator and eye-tracking device
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Figure 5.3: Bicycle infrastructure treatment combinations

(a) Non-protected (or conventional)
intersection

(b) Protected intersection [53]

Figure 5.4: Simulated conventional and protected intersections
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Figure 5.5: Scenario geometric configuration. The orange arrow shows the participants’
driving path. The drive parts AB and CB denote the areas for which speed and glance
data were collected and analyzed.

Figure 5.6: Intersection areas of interest.

Figure 5.7: Driver is glancing at the bicyclist
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(a) Right glance at the intersection (non-
protected intersection).

(b) Right glance at the intersection (protected
intersection).

(c) Right glance at the intersection through the
right side mirror.

Figure 5.8: Areas of interest for right glances
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Figure 5.9: Percentage of drives within each scenario that participants glanced right
at the intersection at least once (Zone 1 or 2)

Figure 5.10: Speed violin plots for segment AB (Blue: no bicyclist is present; Brown:
a bicyclist is present)
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Figure 5.11: Interaction between bicycle infrastructure treatment at the segment and
bicyclist presence

Figure 6.1: Radar-based sensor data visualization
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Figure 6.2: Data processing interface in MATLAB

(a) Studied direction of traffic as captured
from a camera mounted next to the radar-
based sensor

(b) Radar-based
sensor installa-
tion on a light
pole

(c) Intersection’s bird’s eye-view (Source:
Google Maps)

Figure 6.3: Test site 1: Unsignalized intersection

249



(a) Studied direction of traffic captured
as approaching the signalized intersec-
tion and the radar-based sensor

(b) Radar-
based sensor
installation

(c) Intersection’s bird’s eye-view (Source:
Google Maps)

Figure 6.4: Test site 2: Signalized intersection

(a) Test site 1: Unsignalized intersection (b) Test site 2: Signalized intersection

Figure 6.5: Motorized vehicle speed profiles
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(a) Test site 1: Unsignalized intersection (b) Test site 2: Signalized intersection

Figure 6.6: Motorized vehicle acceleration profiles

(a) Test site 1: Unsignalized intersection (b) Test site 2: Signalized intersection

Figure 6.7: Pedestrian speed profiles

(a) Test site 1: Unsignalized intersection (b) Test site 2: Signalized intersection

Figure 6.8: Pedestrian acceleration profiles
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(a) Bicycle speed (b) Bicycle acceleration

Figure 6.9: Bicycle speed and acceleration profiles

(a) Unbalanced

(b) Balanced

Figure 6.10: Precision for the motorized vehicle, bicycle, and pedestrian classification
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(a) Unbalanced

(b) Balanced

Figure 6.11: Recall for the motorized vehicle, bicycle, and pedestrian classification

Figure 6.12: Accuracy of the classifier across all eight models for all three modes
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