
!"#$%&$'"(&)*!"*+"(,-$."/*0*/1/&"'$/*
1(2)%'3&14)/*"*1(,"(1"%5$*!"+*/)2&6$%"*

2$4-+&$!*!"*1(2)%'3&14$*

-(17"%/1!$!*#)+1&84(14$*!"*'$!%1!*

*

*

*

!)4&)%$+*&9"/1/*

*

!"#$%&%'()*+%,-',./"*0'1#+,/
.,2,&*34,-'/3+*5,""/

*

*

*

*
#!'6*+/

+$-%$*4$%7$.$+*

378.8/"!3,+2%"*+"/
!%:*$($*'$%5$*')%"()*

!%:*'$%5$*1/$;"+*/3(49"<=/",-%$*
**

>?@>*

Need a dissertation on a similar topic? Check out how our dissertation services can help you.

https://www.researchprospect.com/dissertation-writing-services/

 4

!"#$%!&$'

Usability is the capability of the software product to be understood, learned, used and
attractive to the user, when used under specified conditions. Many studies demonstrate the
benefits of usability, yet to this day software products continue to exhibit consistently low
levels of this quality attribute. Furthermore, poor usability in software systems contributes
largely to software failing in actual use.

One of the main disciplines involved in usability is that of Human-Computer Interaction
(HCI). Over the past two decades the HCI community has proposed specific features that
should be present in applications to improve their usability, yet incorporating them into
software continues to be far from trivial for software developers. These difficulties are due to
multiple factors, including the high level of abstraction at which these HCI recommendations
are made and how far removed they are from actual software implementation. In order to
bridge this gap, the Software Engineering community has long proposed software design
solutions to help developers include usability features into software, however, the problem
remains an open research question.

This doctoral thesis addresses the problem of helping software developers include specific
usability features into their applications by providing them with a structured and tangible
guidance in the form of a process, which we have termed the Usability-Oriented Software
Development Process. This process is supported by a set of Software Usability Guidelines
that help developers to incorporate a set of eleven usability features with high impact on
software design.

After developing the Usability-oriented Software Development Process and the Software
Usability Guidelines, they have been validated across multiple academic projects and proven
to help software developers to include such usability features into their software applications.
In doing so, their use significantly reduced development time and improved the quality of the
resulting designs of these projects. Furthermore, in this work we propose a software tool to
automate the application of the proposed process.

In sum, this work contributes to the integration of the Software Engineering and HCI
disciplines providing a framework that helps software developers to create usable applications
in an efficient way.

 6

 7

!"#$%&'(&)'*!%*!+&
Chapter 1. Introduction 12!

1.1 Importance of usability 12!
1.2 Human-computer interaction recommendations 13!
1.3 The Problem 18!
1.4 Thesis structure 19!

Chapter 2. Related Works 20!
2.1 Introduction 20!
2.2 Review Protocol 21!

2.2.1 Research questions 21!
2.2.2 Search process 21!

2.2.2.1 Search terms and key phrases 21!
2.2.3 Study selection 21!

2.2.3.1 Inclusion criteria 21!
2.2.3.2 Exclusion criteria 21!

2.2.4 Data Extraction 22!
2.2.5 Results 22!

2.3 Relationship between usability and software architecture 26!
2.3.1 Software Architecture Analysis of Usability 26!
2.3.2 Analysing the impact of usability on software design 27!

2.4 Architectural patterns 29!
2.4.1 Linking usability to software architecture patterns through general scenarios 29!
2.4.2 A Software Architectural View of Usability Patterns 30!
2.4.3 Bringing usability concerns to the Design of Software architecture 32!
2.4.4 Reconciling usability and interactive system architecture using patterns 34!
2.4.5 A Responsibility-Based Pattern Language for Usability-Supporting Architectural Patterns 35!

2.5 Systematic literature review results 36!
Chapter 3. Hypothesis and approach to solution 38!

3.1 Introduction 38!
3.2 Hypothesis 38!
3.3 Approximation to solution 39!

3.3.1 Functional Usability Features 39!
3.3.2 Usability-oriented software development process overview 40!
3.3.3 Usability Guidelines for Software Development 41!

Chapter 4. Usability-oriented software development process 43!

 8

4.1 Introduction 43!
4.2 Process overview 43!
4.3 Process detail 45!

4.3.1 Requirements elicitation and analysis for usability 45!
4.3.1.1 Functional usability requirements elicitation 46!
4.3.1.2 Usability use case modeling 52!
4.3.1.3 Identification of system responsibilities for usability 54!

4.3.2 OO Software design activities for usability 55!
4.3.2.1 Identification of high-level design component responsibilities for usability 56!
4.3.2.2 Identification of low-level design component responsibilities for usability 58!
4.3.2.3 Object Oriented software design for usability 60!

4.4 Process Automation 62!
4.4.1 Pre-load application 62!
4.4.2 Support Tool for Usability-Oriented Development 65!

Chapter 5. Usability Guidelines for Software Development 70!
5.1 Introduction 70!
5.2 “Undo” Usability Guideline for Software Development 71!

5.2.1 Usability Guideline for Software Development: Analysis artifacts 71!
5.2.1.1 Usability Elicitation Guideline 71!
5.2.1.2 Usability Elicitation Clusters Clusters 75!
5.2.1.3 Use Case Meta-model 77!
5.2.1.4 System Responsibilities for Usability 78!

5.2.2 Usability Guideline for Software Development: Design artifacts 80!
5.2.2.1 High-level Design Component Responsibilities 80!
5.2.2.2 Low-level Design Component Responsibilities for MVC 83!
5.2.2.3 Usability Software Design Meta-models 86!

5.3 “Abort” Usability Guideline for Software Development 90!
5.3.1 Usability Guideline for Software Development: Analysis artifacts 90!

5.3.1.1 Usability Elicitation Guideline 90!
5.3.1.2 Usability Elicitation Clusters 93!
5.3.1.3 Use Case Meta-model 94!
5.3.1.4 System Responsibilities for Usability 95!

5.3.2 Usability Guideline for Software Development: Design artifacts 96!
5.3.2.1 High-level Design Component Responsibilities 97!
5.3.2.2 Low-level Design Component Responsibilities for MVC 99!
5.3.2.3 Usability Software Design Meta-models 101!

5.4 Usability Guideline: ‘Step-by-step’ 105!
5.4.1 Usability Guideline for Software Development: Analysis artifacts 105!

5.4.1.1 Usability Elicitation Guideline 105!
5.4.1.2 Usability Elicitation Clusters 107!
5.4.1.3 Use Case Meta-model 109!
5.4.1.4 System Responsibilities for Usability 110!

5.4.2 Usability Guideline for Software Development: Design artifacts 112!
5.4.2.1 High-level Design Component Responsibilities 112!
5.4.2.2 Low-level Design Component Responsibilities for MVC 114!
5.4.2.3 Usability Software Design Meta-models 117!

5.5 “Progress Feedback” Usability Guideline for Software Development 122!
5.5.1 Usability Guideline for Software Development: Analysis artifacts 122!

5.5.1.1 Usability Elicitation Guideline 122!
5.5.1.2 Usability Elicitation Clusters 124!
5.5.1.3 Use Case Meta-model 126!
5.5.1.4 System Responsibilities 127!

5.5.2 Usability Guideline for Software Development: Design artifacts 128!
5.5.2.1 High-level Design Component Responsibilities 128!
5.5.2.2 Low-level Design Component Responsibilities for MVC 129!
5.5.2.3 Usability Software Design Meta-models 130!

5.6 “System Status Feedback” Usability Guideline for Software Development 132!

 9

5.6.1 Usability Guideline for Software Development: Analysis artifacts 132!
5.6.1.1 Usability Elicitation Guideline 132!
5.6.1.2 Usability Elicitation Cluster Map 135!
5.6.1.3 Use Case Meta-model 135!
5.6.1.4 System Responsibilities for Usability 136!

5.6.2 Usability Guideline for Software Development: Design artifacts 137!
5.6.2.1 High-level Design Component Responsibilities 137!
5.6.2.2 Low-level Design Component Responsibilities for MVC 138!
5.6.2.3 Usability Software Design Meta-models 140!

5.7 “Warning” Usability Guideline for Software Development 142!
5.7.1 Usability Guideline for Software Development: Analysis artifacts 142!

5.7.1.1 Usability Elicitation Guideline 142!
5.7.1.2 Usability Elicitation Cluster Map 144!
5.7.1.3 Use Case Meta-model 145!
5.7.1.4 System Responsibilities 146!

5.7.2 Usability Guideline for Software Development: Design artifacts 147!
5.7.2.1 High-level Design Component Responsibilities 147!
5.7.2.2 Low-level Design Component Responsibilities for MVC 148!
5.7.2.3 Usability Software Design Meta-models 151!

5.8 “Multi-level Help” Usability Guideline for Software Development 153!
5.8.1 Usability Guideline for Software Development: Analysis artifacts 153!

5.8.1.1 Usability Elicitation Guideline 153!
5.8.1.2 Usability Elicitation Clusters 155!
5.8.1.3 Use Case Meta-model 157!
5.8.1.4 System Responsibilities 158!

5.8.2 Usability Guideline for Software Development: Design artifacts 159!
5.8.2.1 High-level Design Component Responsibilities 159!
5.8.2.2 Low-level Design Component Responsibilities for MVC 160!
5.8.2.3 Usability Software Design Meta-models 161!

5.9 “Commands Aggregation” Usability Guideline for Software Development 163!
5.9.1 Usability Guideline for Software Development: Analysis artifacts 163!

5.9.1.1 Usability Elicitation Guideline 163!
5.9.1.2 Usability Elicitation Clusters 165!
5.9.1.3 Use Case Meta-model 167!
5.9.1.4 System Responsibilities for Usability 168!

5.9.2 Usability Guideline for Software Development: Design artifacts 169!
5.9.2.1 High-level Design Component Responsibilities 169!
5.9.2.2 Low-level Design Component Responsibilities for MVC 170!
5.9.2.3 Usability Software Design Meta-models 172!

5.10 “Preferences” Usability Guideline for Software Development 175!
5.10.1 Usability Guideline for Software Development: Analysis artifacts 175!

5.10.1.1 Usability Elicitation Guideline 175!
5.10.1.2 Usability Elicitation Clusters 177!
5.10.1.3 Use Case Meta-model 179!
5.10.1.4 System Responsibilities for Usability 180!

5.10.2 Usability Guideline for Software Development: Design artifacts 181!
5.10.2.1 High-level Design Component Responsibilities 181!
5.10.2.2 Low-level Design Component Responsibilities for MVC 183!
5.10.2.3 Usability Software Design Meta-models 185!

5.11 “Favorites” Usability Guideline for Software Development 188!
5.11.1 Usability Guideline for Software Development: Analysis artifacts 188!

5.11.1.1 Usability Elicitation Guideline 188!
5.11.1.2 Usability Elicitation Clusters 190!
5.11.1.3 Use Case Meta-model 192!
5.11.1.4 System Responsibilities 193!

5.11.2 Usability Guideline for Software Development: Design artifacts 194!
5.11.2.1 High-level Design Component Responsibilities 194!
5.11.2.2 Low-level Design Component Responsibilities for MVC 196!
5.11.2.3 Usability Software Design Meta-models 197!

 10

5.12 “Personal Object Space” Usability Guideline for Software Development 200!
5.12.1 Usability Guideline for Software Development: Analysis artifacts 200!

5.12.1.1 Usability Elicitation Guideline 200!
5.12.1.2 Usability Elicitation Clusters 202!
5.12.1.3 Use Case Meta-model 204!
5.12.1.4 System Responsibilities 205!

5.12.2 Usability Guideline for Software Development: Design artifacts 206!
5.12.2.1 High-level Design Component Responsibilities 206!
5.12.2.2 Low-level Design Component Responsibilities for MVC 207!
5.12.2.3 Usability Software Design Meta-models 209!

Chapter 6. Validation 215!
6.1 Introduction 215!
6.2 Hypothesis 215!
6.3 Methods 216!
6.4 Variables 217!

6.4.1 Development Time 217!
6.4.2 Resulting design quality 217!
6.4.3 Perceived complexity of usability mechanisms 218!

6.5 Subjects 218!
6.6 Data 219!

6.6.1 Development time data 219!
6.6.2 Design quality data 220!
6.6.3 Perceived complexity data 220!

6.7 Analysis 221!
6.7.1 Development time data analysis 222!

6.7.1.1 Global Analysis 222!
6.7.1.2 Analysis per development phase 224!
6.7.1.3 Analysis phase by feature 227!

6.7.2 Design quality data analysis 230!
6.7.2.1 Global Analysis 230!
6.7.2.2 Analysis per development phase 232!

6.7.3 Perceived complexity data analysis 233!
6.7.3.1 Global Analysis 234!
6.7.3.2 Analysis per development phase 235!

6.8 Results and Findings 239!
6.9 Threats to validity 242!

Chapter 7. Conclusions and Future Work 243!
7.1 Introduction 243!
7.2 Conclusions 243!
7.3 Future Work 245!

Chapter 8. References 247!
Chapter 9. Appendixes 249!

9.1 Example application of the proposed Usability-Oriented Software Development Process
 249!

9.1.1 Requirements elicitation and analysis for usability 249!
9.1.2 Functional usability requirements elicitation 249!
9.1.3 Usability use case modeling 250!
9.1.4 Identification of system responsibilities 251!

9.2 OO software design activities for usability 251!
9.2.1 Identification of High-level design component responsibilities for usability 251!
9.2.2 Identification of Low-level design component responsibilities for usability 252!
9.2.3 Object Oriented software design for usability 252!

9.3 Full results of systematic literature review 255!
9.4 Functional Usability Features. Color codes. 265!

 11

9.5 System Requirement Specifications 266!
9.5.1 Online task manager (Gestor de Tareas Online) 266!

9.5.1.1 Software Requirements 266!
9.5.2 Home automation system (sistema de domótica del hogar) 268!

9.5.2.1 Front-End 269!
9.5.2.2 Back-end 271!

9.5.3 Auction site 272!
9.5.3.1 Alta Usuario Externo 272!
9.5.3.2 Identificación 273!
9.5.3.3 Edición de Perfil 274!
9.5.3.4 Visualización de Perfil 274!
9.5.3.5 Búsqueda de Productos 275!
9.5.3.6 Puja en Subasta 275!
9.5.3.7 2.3.2.7 Compra de Producto en Oferta 276!

 12

),"-!%.&/0 1*!.'23)!1'*&

1.1 Importance of usability
The term “usability” has been defined in a variety of ways throughout literature. In spite of
the differences among these definitions, most of them categorize usability as a quality
attribute that is desirable in a product and makes it easy to use.

One popular definition, offered by Jakob Nielsen, who is a leading usability researcher and
consultant, states that:

“usability is a quality attribute that assesses how easy user interfaces are
to use” [38]

He adds that “the word ‘usability’ also refers to methods for improving ease-of-use during the
design process” and further breaks down the concept into the following five quality
components:

• Learnability: How easy is it for users to accomplish basic tasks the first time they
encounter the design?

• Efficiency: Once users have learned the design, how quickly can they perform tasks?
• Memorability: When users return to the design after a period of not using it, how easily

can they reestablish proficiency?
• Errors: How many errors do users make, how severe are these errors, and how easily

can they recover from the errors?
• Satisfaction: How pleasant is it to use the design?

Another widely-known definition of usability is the one offered by the ISO 9126 standard for
product quality in software engineering since 1991, which also classifies usability as a quality
attribute and defines it as follows:

“Usability is the capability of the software product to be understood,
learned, used and attractive to the user, when used under specified
conditions” [16]

 13

This standard decomposes usability in understandability, learnability, operability,
attractiveness and usability compliance, and is further expanded by its superseding version,
the ISO 25010 issued in 2011, to include the following final set of sub-characteristics:

• Appropriateness recognizability: degree to which users can recognize whether a
product or system is appropriate for their needs.

• Learnability: degree to which a product or system can be used by specified users to
achieve specified goals of learning to use the product or system with effectiveness,
efficiency, freedom from risk and satisfaction in a specified context of use.

• Operability: degree to which a product or system has attributes that make it easy to
operate and control.

• User error protection: degree to which the system protects users against making errors
• User interface aesthetics: degree to which the user interface enables pleasing and

satisfying interaction for the user.
• Accessibility: degree to which a product or system can be used by people with the

widest range of characteristics and capabilities to achieve a specified goal in a specified
context of use.

Separately, the ISO 9241-11 standard for Ergonomics and Human-Computer interaction in
1998 states that:

“Usability is the extent to which a product can be used by specified users
to achieve specified goals with effectiveness, efficiency and satisfaction in
a specified context of use” [28]

Yet another highly recognized standard, the IEEE Std. 1061 for Software Quality Metrics
Methodology issued in 1998, offers the following definition:

“Usability is the ease with which a user can learn to operate, prepare
inputs for, and interpret outputs of a system or component.” [26]

While the first two approaches focus mainly on the usability of the product, regarding
whether it has the characteristics needed to make it easy to use, the last two have a wider
scope, covering also the process and results of using the product.

Many other definitions and decompositions of usability can be found in literature. Kumar
Dubey et al. compile over two dozen of them in [34] spanning multiple disciplines and three
decades of research results, prompting works like that of Seffah et al. [40] who point out the
difficulty of approaching usability in practice due to this wide variety of definitions.

Regardless of this seeming lack of consensus among the disciplines involved in nailing down
the specifics of a definition for usability, it’s safe to say that they all agree in the fact that it is
a critical aspect in interactive software systems [32]. In fact, its relevance is made evident by
several studies [33][10][18][23][44], which demonstrate usability’s many benefits, including
reduction of documentation and training costs, improvement of productivity, increase in
morale and e-commerce revenue, and more. Accordingly, large-scale companies like IBM
and Boing Co. have begun to consider usability a key factor to consider when developing and
buying software [31].

1.2 Human-computer interaction recommendations
One of the main disciplines involved in usability is that of Human-computer interaction
(HCI). As defined by the Special Interest Group on Computer Human Interaction (SIGCHI),
HCI is the “discipline concerned with the design, evaluation and implementation of
interactive computing systems for human use and with the study of major phenomena
surrounding them” [46].

 14

SIGCHI further defines HCI as an interdisciplinary area, rooted in computer science
(application design and engineering of human interfaces) working together with the following
supporting disciplines: psychology (the application of theories of cognitive processes and the
empirical analysis of user behavior), sociology and anthropology (interactions between
technology, work, and organization), and industrial design (interactive products).

Over the past two decades, the HCI community has proposed specific recommendations for
features that should be present in software systems in order to improve their usability [31]. In
spite of overlaps and varied terminology, contributions such as Nielsen’s design heuristics
[38], Constantine and Lockwood’s usability principles [16], Welie’s patterns for interaction
design [49] and Tidwell’s usability patterns [42], to name a few, provide valuable guidelines
on how to design usable GUI.

The following two examples are part of Welie’s and Tidwell’s collections respectively, and
illustrate what these HCI recommendations look like and the different kinds of usability
features they might cover.

The first example, shown in Figure 1.2-1, shows Jennifer Tidwell’s Grid of Equals usability
pattern. This pattern has five sections:

• What: States what the pattern does, in this case, arranging items in a grid on screen.
• Use when: Describes the context in which this pattern should be applied. In this

example, the Grid of Equals pattern is applicable when content items have similar style
and importance.

• Why: Explains the rationale behind the pattern. For this example, representing
components in a grid announces that they have equal importance

• How: Describes the manner in which the interface items are to be arranged so that they
conform to the pattern. In this example, decisions must be made regarding the size of the
images, what they link to, the size of the text within them, etc.

• Examples: Provides examples of real-life applications that apply this pattern, as is the
case of Nike.com and others in this example.

 15

Figure 1.2-1 HCI Recommendation example. "Grid of Equals". Jennifer Tidwel [42]

 16

The second example, shown in Figure 1.2-2, shows Welie’s Processing page pattern. Welie’s
patterns have the same sections as Tidwel’s, save for Tidwel’s “What” section, which is
represented as two separate fields in Wellie’s patterns: Problem and Solution.

Figure 1.2-2 HCI Recommendation example. "Processing Page". Welie [49]

 17

The above example details Welie’s “Processing Page” pattern and it has the following parts:

• Problem: The problem that this pattern addresses, in this case the user’s need for
feedback while his request is being processed

• Solution: The author’s proposed solution. In this example it’s providing visual feedback
information to the user

• Use when: Similarly to Tidwel’s patterns, Welie’s detail the situations when these
patterns are useful. For this example it’s when the application connects to an external
system and communications may take more than a few seconds to be established

• How: Explains what should be present in the interface. In this case, an animated
progress indicator, ideally showing the actual progress of the communications.

• Why: The reasons for providing this type of feedback
• More examples: As in Tidwel’s case, the pattern ends with one or more real-life

applications of this pattern.

As can be seen in these examples, the types of patterns offered by the HCI community are
very comprehensive in terms of the usability problems that developers can encounter when
developing applications and what these applications should look like in order to solve them. It
can also be observed from these two examples alone, that the HCI patterns tackle a wide
range of usability features that can be classified in different groups. For example, “Grid of
Equals” deals solely with interface elements and how to lay them out visually to convey the
right message, while “Processing page” deals more with the application functionality and
implementing it may require the interface to communicate with underlying software
components to determine the actual progress to be shown.

Juristo, Moreno and Sanchez examine a wide variety of such HCI recommendations for
usability in [31]. In this work, the authors categorize these recommendations in three different
groups, depending on their effect on software development.

The first proposed group is made up of usability recommendations whose impact is limited to
the user interface, affecting only the system presentation through buttons, pull-down menus,
check-boxes, background color, fonts, etc. Such a recommendation may suggest changing the
color of certain interface elements or the size of a font to emphasize certain aspects of interest
for the user. The authors suggest that such changes would be confined to altering the value of
some source code variable related to the window or buttons, involving only slight
modifications to the UI design, having no impact on the system core.

The second group is made up of usability recommendations that have an impact on the
development process. These are recommendations that are not limited to specific software
system products, but that require modifications to the development process in itself. Such is
the case of “involving the user in software construction”, as proposed by [24] and [25]. These
kinds of recommendations would require making the development process more user-
centered, including more powerful elicitation techniques, etc.

The third and final group proposed by the authors are recommendations that have an impact
on software design. These recommendations involve building certain functionalities into the
software to improve user–system interaction. For example, features like cancel an ongoing
task [11], undoing a task [49][36][45], and receiving feedback on what is going on in the
system [25][45] are examples of this type of HCI recommendations.

The authors have termed this last group of HCI recommendations Functional Usability
Features, as they describe functionalities that the software should provide for the user. The
focus of this doctoral thesis will be on this group, as the recommendations within it have the
greatest impact on software design and, as shown in [31], incur the highest re-work costs
when not considered in a timely manner during application development.

 18

1.3 The Problem
In spite of the demonstrated rewards of developing usable software, to this day software
products continue to exhibit consistently low levels of usability [41][10][32]. What is more,
poor usability in software systems is likely the single largest reason that they fail in actual use
[42].

Two possible groups of factors may explain the low usability of most current systems. The
first group is made up of business-related factors that may range from market pressures to
deliver software products before they are fully ready, to cost issues and even unawareness of
the importance of usability in software development. The second group has to do with the
technical difficulties that arise during software development when incorporating usability
features into a system [5]. This last group of difficulties will be addressed within this work.

Even as the Software Engineering community has long struggled to consistently transform the
usability principles proposed by the HCI community into actual software code over the past
two decades, incorporating them into software is not a trivial task. As was shown in the
second usability pattern example above in Figure 1.2-2, the HCI field may recommend that in
order to solve the usability need of “providing the user with information on the action they are
performing” the application may need to show “real progress feedback”. While this is a very
sound recommendation, it is also very abstract from a software engineering point of view, in
that it doesn’t really provide information on how this is to be done.

Another example of why incorporating usability into software is not a trivial task, especially
in the case of functional usability features, is presented in [32]. The authors explain the task
of building a cancel functionality for specific commands into an application. HCI experts
[43][39] suggest that users should be able to interrupt time-consuming operations with no
side-effects. In order to do so, the software application would need to be equipped with the
functionality to gather information such as the data modifications that the action triggers, the
state of the system prior to its execution, etc. It would also need to be able to restore the
system to said previous state after cancellation, reallocate resources that were otherwise
occupied while executing the action, etc. Such an example shows that this type of HCI
recommendation has an effect that goes far beyond minor changes to the user interface and
well into software design rework, making them complex to implement without further
guidance than that stated in a few lines of text describing what it should look like on the GUI.

In their work, Seffah et al. [40] also refer to the complexities faced by software developers
when attempting to include usability features with impact on design into their applications.
The authors explain how usability features such as feedback information, application status
and error messages are not trivial to implement, emphasizing the tight relationship between
usability and the underlying software architecture.

As the results of the literary review of related works will show in Chapter 2, many attempts
have been made to bridge the gap between these usability recommendations made by the HCI
community and their consistent, reliable inclusion into software applications. While many
valuable contributions have been made in this regard, the problem still remains an open
research topic.

This work is focused on addressing this problem by providing software developers with
structured, tangible guidance for including functional usability features into their software
applications. The help provided to developers with this approximation to a solution spans
multiple phases of the software development process, yet its main contribution is centered in
the software design phase(s) of a project.

 19

1.4 Thesis structure
In the following pages, Chapter 2 describes the related works and existing approaches to
solving the problem of helping software developers include usability into their applications.
This chapter explains how the systematic literature review was performed and how the
selection of these works was carried out.

Chapter 3 presents the proposed hypothesis for this research and provides and an overview
of the proposed solution to the problem.

In the two chapters that follow, the proposed solution is described in detail. This solution is
composed of two elements. The first is what we have termed the Usability-Oriented Software
Development Process, described in Chapter 4. The second, presented in Chapter 5, are our
proposed Usability Guidelines for Software Development.

After detailing the proposed solution, Chapter 6 explains how this solution was put to the test
in multiple experiments in order to validate it for conformance to the proposed hypotheses.

Once experimentation is carried out and its results are analyzed, Chapter 7 presents our
conclusions for the present work, as well as the opportunities it opens up for future lines of
research.

Finally, Chapter 8 lists all the works referenced within this doctoral thesis and Chapter 9
presents all relevant appendixes.

This volume is accompanied by a CD containing additional material referenced in the
Validation chapter.

 20

),"-!%.&40 .%$"!%2&5'.6+&

2.1 Introduction
The present work undertakes the open research question of providing software developers
with guidelines to include functional usability features into their software. However, before
attempting to propose a solution a thorough review of existing literature relevant to this
research topic was conducted. The purpose of this review was to:

• Gain a wider perspective of the subject matter (software usability)
• Identify where and how the problem to address lies within this subject matter and how it

might relate to other proposed solutions, if any exist.
• Clearly define the scope of the problem as it is to be addressed by this work, expanding

or modifying the original research question
• Avoid reproducing documented unviable solutions or partial results, if any exist.
• Keep up to date with possible new contributions related to the problem being addressed.

In order to conduct this review rigorously and reliably, this work follows Kitchenham’s
methodology for Systematic Literature Reviews for Software Engineering [34].

A Systematic Literature Review, as defined by Kitchenham in [34] is “a means of identifying,
evaluating and interpreting all available research relevant to a particular research question, or
topic area, or phenomenon of interest.”

Though originally intended for reviewing research results in the medical field [15], in her
work, Kitchenham modifies the existing methodology and adapts it to the Software
Engineering field. By following her guidelines, researchers in the Software Engineering field
can compile existing information about a particular research topic in a repeatable, reliable and
unbiased manner.

Section 2.2 below presents the protocol that was observed during the systematic literature
review for this work, as well as the resulting list of chosen research publications. Later, in
sections 2.3 and 2.4, these works are presented in detail. Finally, section 2.5 presents a
summarized view of the results of the literature review and how they relate to the present
work.

 21

2.2 Review Protocol
The protocol for a systematic literature review specifies the research questions being
addressed and the methods that will be used to perform the review.

2.2.1 Research questions
The purpose of this literature review was to find all publications that studied the relationships
between usability software architecture and design.

2.2.2 Search process
The main search engine used for this systematic literature review is Google Scholar
(scholar.google.com) which has access to a vast array of published books, as well as to the
contents of the following digital libraries, among others:

• IEEExplore
• ACM Digital library
• Citeseer library
• Inspec
• ScienceDirect

These sources were of particular interest to the present review because they are known to
collectively cover the most relevant sources for research results in the field.

2.2.2.1 Search terms and key phrases
The following list of key phrases was used to perform the searches. It was designed to cover
all aspects of the aforementioned research question

Table 2.2-1 Search key phrases
Software architecture usability
Usability patterns software design
Architectural patterns usability
Usability patterns architecture
Software engineering usability

It is worth noting that the above search terms were input into Google Scholar using the ‘with
all of these words’ option. The ‘with any of these words’ option was discarded as repeated
use did not yield any relevant results not already included in the first type of search.

2.2.3 Study selection
The following criteria were used to produce an initial list of selected publications. As the
systematic literature review is an iterative process, these criteria were applied repeatedly
throughout the development of this work to keep the resulting list up to date.

2.2.3.1 Inclusion criteria
From the lists of studies that matched the key phrases above, those meeting the following
criteria were automatically included for initial reviewing:

1. Studies focusing on providing any kind of design or architectural solutions to the
problem of including aspects of usability into software

2. Any works that studied the relationship between software usability and software
architecture and/or design

2.2.3.2 Exclusion criteria
The following exclusion criteria helped trim down the initial list of studies to review:

 22

1. Multiple publications of the same data (only the most complete and/or recent study
was preserved)

2. Unpublished data
3. Papers written in languages other than English and Spanish
4. Lack of validation

2.2.4 Data Extraction
Once the initial set of studies was established, the process of data extraction was conducted
manually on physical media. With the exception of books, all studies were printed out,
organized in a binder and relevant content either was highlighted (relevant text, author names,
etc.) or written in (topic, strength of study, etc.). This process was conducted iteratively,
adding new papers that matched, or didn’t, respectively, the criteria above.

For each study, the following fields were considered:

• Title
• Source
• Publication date
• Author(s)
• Publication type (conference proceeding, paper, etc.)
• Topic area (architectural solutions, study of the architecture/usability relationship, etc.)

2.2.5 Results
Five searches were performed in Google Scholar, one for each key phrase in the order shown
in Table 2.2-1. The process followed determined that if a study was found using more than
one set of keywords it was assigned to the first set with which it was found (duplicate results
using subsequent sets of keywords were immediately excluded). In other words, from the
second set of keywords onwards, only non-duplicate studies were gathered, explaining why
the vast majority of studies are assigned to the first set of keywords: “software usability
architecture”.

Appendix 9.3 includes the full Google Scholar search results obtained for the key phrases that
produced relevant results. It is worth noting that the four and fifth key phrases in Table 2.2-1
yielded no results that were a) not included in the results obtained from the first three
searches, nor b) consistent with any of the inclusion criteria

After a first sweep of the raw results shown in Appendix 9.3 only those that appeared to meet
the inclusion criteria (and to not meet the exclusion criteria) based on the title and abstract
alone were preserved. These studies are shown in Table 2.2-2. After fully reviewing each of
these studies, those that were found to meet any of the exclusion criteria and were further
discarded. The nine studies that were ultimately kept are highlighted.

The reasoning behind the exclusion of each discarded study (the exclusion criterion by which
they were left out or the inclusion criteria they initially appeared to meet but ultimately did
not) is presented in Table 2.2-2.

 23

Table 2.2-2 Selected studies
GOOGLE SCHOLAR RESULTS FOR key phrase #1:

“software architecture usability”
Authors Title Source Year Type

1
1 Bass, L.; John, B. E. Linking usability to software architecture patterns through general scenarios Journal of Systems and Software 2003 JA
2 Folmer,E.; van Gurp J.; Bosch J. Scenario-based assessment of software architecture usability Bridging the Gaps Between Software Engineering and Human-Computer Interaction 2003 JA
3 Bass, L.; John, B. E. Achieving Usability through software architecture CMU/SEI Technical Report 2001 TR
4 Bass, L.; John, B. E. Supporting usability through software architecture IEEE Computer 2002 JA
5 Folmer,E.; van Gurp J.; Bosch J. Software architecture analysis of usability Engineering Human Computer Interaction and Interactive Systems 2005 JA
62 Golden,E.; Bass, L.; John, B. E. The Value of Usability-Supporting Architectural Pattern in Software

Architecture Design: A Controlled Experiment
International Conference on Software Engineering 2005 CP

7 Bass, L.; John, B. E. Juristo, N.;
Sanchez-Segura, M.I.; Adams, R.J.

Bringing Usability Concerns to the Design of Software Architecture Lecture Notes in Computer Science 2005 JA

8 Bass, L.; John, B. E.; Kates, J. Achieving Usability through software architectural styles CHI 2000 2000 CP
9 Folmer,E.; Bosch J. Usability patterns in software architecture Human-computer interaction: theory and practice 2003 JA

10 Bosch,J.; Juristo, N. Designing software architectures for usability Proceedings of the 25th International Conference on Software Engineering. IEEE
Computer Society

2003 TO

11 Folmer,E.; Bosch J. Architecting for usability: a survey Journal of Systems and Software 2004 JA
12 Juristo,N.; Lopez M.; Moreno A. M.;

Sanchez M. I.
Improving software usability through architectural patterns Bridging the Gaps Between Software Engineering and Human-Computer Interaction 2003 JA

13 Seffah,A.; Metzker E. The obstacles and myths of usability and software engineering Communications of the ACM 2004 JA
14 Adams, R.J.; Bass, L.; John, B. E. Applying general usability scenarios to the design of the software architecture

of a collaborative workspace
Human-Centered Software Engineering: Integrating Usability in the Software
Development Lifecycle. Netherlands

2005 CP

15 Juristo,N.;Moreno,A.M.;Sanchez-
Segura,MI

Analysing the impact of usability on software design Journal of Systems and Software 2007 JA

16 Golden,E.; John B. E.; Bass L. Quality vs. quantity: Comparing evaluation methods in a usability-focused
software architecture modification task

International Symposium on Empirical Software Engineering 2005 CP

17 Juristo,N.;Moreno A. M.;Sanchez M. I.

Guidelines for Eliciting Usability Functionalities IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2007 JA

18 Juristo,N.;Moreno A. M.;Sanchez M. I. Clarifying the Relationship between Software Architecture and Usability Proceedings of the Sixteenth International Conference on Software Engineering and
Knowledge Engineering

2004 CP

19 Seffah,A.;Mohamed,T.;Habieb-
Mammar,H.;Abran,A.

Reconciling usability and interactive system architecture using patterns The Journal of Systems and Software 2008 JA

20 Golden,E.; Bass, L.; John, B. E.; Helping software architects design for usability ACM SISGSOFT 2009 CP

1 JA = Journal Article, TR = Technical Report, CP = Conference Proceedings, TN = Technical Note, Tutorial
2 Validation for results presented in study #7 addressed in section 2.4.3

 24

GOOGLE SCHOLAR RESULTS FOR KEY PHRASE #2:
“usability patterns software design”

Authors Title Source Year Type
21 John,B. E.; Bass L.; Sanchez-Segura M. I.;

Adams R. J.
Bringing usability concerns to the design of software architecture Engineering Human Computer Interaction and Interactive Systems 2005 JA

22 Folmer,E.; van Gurp J.; Bosch J. Scenario-based assessment of software architecture usability Bridging the Gaps Between Software Engineering and Human-Computer
Interaction

2003 JA

23 Ferre, X.; Jusisto N.; Moreno A. M.; Sanchez M.
I.

A software architectural view of usability patterns Proceedings of INTERACT 2003 JA

243 Golden,E.; John B. E.; Bass L. The value of a usability-supporting architectural pattern in software
architecture design: a controlled experiment

Proceedings of the 27th international conference on Software engineering
ACM

2005 CP

25 Folmer,E.; van Gurp J.; Bosch J. A framework for capturing the relationship between usability and software
architecture

Software Process: Improvement and Practice 2003 JA

26 Nielsen, J. The usability engineering life cycle Computer iEEE 2002 JA
27 Bass, L.; John, B. E. Juristo, N.; Sanchez-

Segura, M.I.
Usability-supporting Architectural Patterns 26th International Conference on Software Engineering 2004 CP

GOOGLE SCHOLAR RESULTS FOR KEY PHRASE #3:
“architectural patterns usability”

Authors Title Source Year Type
28 Bass, L.; John, B. E.; Golden,E.; Stoll, P. A responsibility-based pattern language for usability-supporting architectural

patterns
Proceedings of the 1st ACM SIGCHI symposium on Engineering interactive
computing systems

2009 JA

29 Stoll, P.; John, B.E.; Bass, L.; Golden, E. Preparing Usability Supporting Architectural Patterns for Industrial Use Proceedings of the International Workshop on: Interplay between Usability
Evaluation and Software Development

2008 CP

!

3 Validation for results presented in study #7 addressed in section 2.4.3

 25

Table 2.2-3 Reasoning for exclusion of studies in final list
Excluded Paper Crit. Reasoning
2 Scenario-based assessment of software architecture

usability
ec4 #1 More complete results are presented two years later in study #5

“Software architecture analysis of usability”
3 Achieving Usability through software architecture ec #1 More complete results are presented four years later in study #7

“Bringing Usability Concerns to the Design of Software
Architecture”

4 Supporting usability through software architecture ec #1 More complete results are presented three years later in “Bringing
Usability Concerns to the Design of Software Architecture”

8 Achieving Usability through software architectural styles ec #1 More complete results are presented three years later in “Bringing
Usability Concerns to the Design of Software Architecture”

9 Usability patterns in software architecture ec #1 More complete results are presented two years later in study #5
“Software architecture analysis of usability”

10 Designing software architectures for usability ic #1 ic
#2

Though the abstract seemed to meet the inclusion criteria, the
content was a short tutorial outline that in itself did not

11 Architecting for usability: a survey ec #1 More complete results are presented one year later in study #5
“Software architecture analysis of usability”

12 Improving software usability through architectural patterns ec #1 More complete results are presented one year later in study #23
“A software architectural view of usability patterns”

13 The obstacles and myths of usability and software
engineering

ic #1 ic
#2

Though the abstract seemed to meet the inclusion criteria, this
paper is a more general analysis of software usability

14 Applying general usability scenarios to the design of the
software architecture of a collaborative workspace

ic #1
ec #1

Only part of the results in this study are relevant to our topic,
specifically those presented in a study of the same year: #7
“Bringing Usability Concerns to the Design of Software
Architecture”

16 Quality vs. quantity: Comparing evaluation methods in a
usability-focused software architecture modification task

ec #1 More complete results are presented four years later in study #7
“Bringing Usability Concerns to the Design of Software
Architecture”

17 Guidelines for Eliciting Usability Functionalities ic #1 ic
#2

Though a precursor of this present work, this paper deals solely
with the relationship between usability and requirements
elicitation, with only brief allusions to design

18 Clarifying the Relationship between Software Architecture
and Usability

ec #1
ec #4

Part of the results presented in this work are present in study #23
“A software architectural view of usability patterns” of the previous
year. Additional results are in the very early stages and thus not
validated.

20 Helping software architects design for usability ec #1 More complete results are presented in study #29 “Preparing
Usability Supporting Architectural Patterns for Industrial Use” of
the same year

21 Bringing usability concerns to the design of software
architecture

ec #1 More complete results are presented in study #7 “Bringing
Usability Concerns to the Design of Software Architecture” of the
same year

22 Scenario-based assessment of software architecture
usability

ec #1 More complete results are presented two years later in study #5
“Software architecture analysis of usability”

25 A framework for capturing the relationship between usability
and software architecture

ec #1 More complete results are presented two years later in study #5
“Software architecture analysis of usability”

26 The usability engineering life cycle ic #1 ic
#2

This study does not address software architecture directly, but
rather a more general view of usability and diverse aspects of
software development

27 Usability-supporting Architectural Patterns ec #1 More complete results are presented one year later in study #7
“Bringing Usability Concerns to the Design of Software
Architecture”

29 Preparing Usability Supporting Architectural Patterns for
Industrial Use

ec #1 More complete results are presented one year later in study #28
“A responsibility-based pattern language for usability-supporting
architectural patterns”

The selected studies were organized into two groups, depending on the subject matter they
covered within our research question: Firstly, we have the studies that focus on analyzing the
extent of the relationship between usability and software architecture, namely papers 5 and 15
above. Secondly, there are the studies that propose different kinds of architectural patterns to
including usability into software 1, 7, 19, 23 and 28. Sections 2.3 and 2.4 describe each of the
studies in these two groups, respectively.

4 ec = “exclusion criteria that was met by the study”, ic = “inclusion criteria that was not met by the study”

 26

2.3 Relationship between usability and software architecture
The following sections detail the studies that have delved into determining the nature of the
relationships that may exist between the usability needs of a software application and its
architecture.

Arranged chronologically, the results presented herein provide substantial evidence of the
quantifiable relationship between usability and software architecture. Furthermore, they
highlight the importance of addressing usability issues as early as the design phase of the
development process.

2.3.1 Software Architecture Analysis of Usability
Folmer, E.; van Gurp, J.; Bosch, J. Journal Article. LNCS 2005 [20]

In this work, the authors present an assessment technique to assist software architects in
designing the architecture of their systems in a way that supports usability. This assessment
technique (SLUTA, for Scenario based architecture Level UsabiliTy Analysis) promotes
explicit evaluation of usability during architectural design, with the purpose of discovering
usability issues during this early stage of development, as opposed to doing so during system
maintenance to a higher cost. The authors point out that while this type of software
architecture analysis contributes to the support of usability within the software architecture, it
also highlights the limitations that a software architecture may impose on its intended level of
usability.

The foundation for this assessment technique is a framework proposed by the authors that
expresses the relationships between usability and software architecture. More specifically,
this framework is made up of three layers:

• Usability Attributes: Complied from usability literature, these attributes represent the
most common notions of usability, such as learnability, efficiency, reliability, etc.

• Usability Properties: These are heuristics and design principles that usability
researchers have found to directly influence system usability. They represent the link
between the usability attributes (above) and the usability patterns (below) proposed by
the authors of this work. Such properties are high-level design primitives with known
architectural implications, such as providing feedback, consistency, etc.

• Architecture Sensitive Usability Patterns: These patterns express potential
architectural implications (rather than specific design solutions) that software developers
will encounter in attempting to solve the problem posed by a specific pattern, such as
“user profiles” or “actions on multiple objects”. They were identified by the authors
from various case studies, existing applications and pattern collections and literature
surveys.

The SALUTA technique itself consists of four steps, namely:

1. Creating the usage profile. This step entails identifying the users of the system, the
tasks they will be expected to perform and the context of use. Furthermore, for each
valid combination of the three, the authors quantify each usability attribute from their
proposed framework described above, assigning them a priority for every scenario.
Ultimately, this step in the technique results in a set of usage scenarios that express
the required usability of the system to develop.

2. Describing the provided usability: This is where the information about the software
architecture is collected, specifically, its support for usability, based to the proposed
framework.

3. Evaluating the scenarios: Which is an evaluation of the support provided by the
architecture for each of the scenarios in the usage profile.

 27

4. Interpreting the results: The authors propose that the results of this technique can
be useful during iterative developments. For example, in cases when the architecture
has been identified as having poorly developed a certain needed usability property,
said property can be improved in a future iteration. These results are also proposed as
useful in comparing two architectures in regards of their usability, by looking at the
‘scores’ obtained by each for the scenarios being compared.

Figure 2.3-1 Partial view of the Usability Framework proposed by Folmer et al. 2005

SLUTA was evaluated over three industry projects, yielding encouraging results, though the
need for further validation and additional case studies is suggested by the authors. The
framework it is based upon, however, would benefit from a more case studies to determine its
validity.

2.3.2 Analysing the impact of usability on software design
Natalia Juristo, Ana Maria Moreno, Maria-Isabel Sanchez-Segura. JSS Vol 80/2007 [31]

In this study, the authors look to determine, measure and quantify the effects of incorporating
certain usability features into the design of a software application.

The authors begin by analyzing the Human-Computer Interaction (HCI) literature in order to
pinpoint those usability heuristics or recommendations that might have an impact beyond the

 28

user interface and into the software design. Then, by studying different real-world
applications where these heuristics are included, the authors can determine what this impact
entails in terms of new classes, methods and relationships in the application’s design. With
this data, the authors not only demonstrate the existence of a relationship between these
usability recommendations and the software architecture, but are also able to estimate the
implications of including these recommendations into a system.

After performing the HCI literature research and merging different authors’ terminologies and
recommendations, the authors produced a preliminary list of the usability features that they
identified as having an impact on software design. This list along with the HCI author(s)
who’ve addressed each usability feature in literature, is shown in Figure 2.3-2

Figure 2.3-2 Preliminary list of usability features with impact on software design proposed by Juristo et al. 2007

In this work, the above usability features are termed Functional Usability Features (FUFs)

In order to determine the impact, if any, that these FUFs would have on software design, the
authors had them applied over several university projects. For each project, the developers
were asked to design their software without including any FUFs. After design was completed,
they were asked to modify them to include each of the FUFs mentioned above.

One example is given, of a project that altered its design to include a particular flavor of the
Feedback FUF, namely the System Status Feedback. After being given the list of
responsibilities that the system must carry out in order to properly include this type of
feedback, the developing team in question reported needing to include three new classes, five
new methods and four new associations to their existing designs. Six other groups reported
similar results, from which the authors were able to quantify the following criteria, based on
standard metrics used to measure object-oriented systems complexity:

• FUF Impact on system functionality
• Number of new classes derived from including the FUF
• Complexity of new methods derived from including the FUF
• Number of new interactions stemming from the inclusion of the new classes

The results of this study can be seen in Figure 2.3-3.

Figure 2.3-3 Mean values for design impact for all FUFs considered by Juristo et al. in 2007

 29

With the results of these experiments, the authors provide initial proof of the importance of
dealing with these types of usability features as early as the design phase of the development
process, due to the demonstrated cost of including them a posteriori.

In the two works presented above, the authors show that there is a clear relationship between
certain usability factors and the underlying software architecture, and as such, it’s one that
must be carefully regarded during software development.

2.4 Architectural patterns
The studies grouped in this section propose solutions to addressing usability concerns at
design time during application development. The solutions include general, text-based
architectural recommendations, usability-specific architectural patterns, assessment
techniques to determine the needs of an architecture in regards to usability and matching
existing design patterns to existing usability needs.

In the following sections detail the five most representative studies, as selected by the
systematic literature review, from least to most recent. This will give the reader a perspective
of the work carried out in this field thus far by the various research groups that have
attempted to or are currently tackling the matter, the advances that have been made and the
present shortcomings to address.

2.4.1 Linking usability to software architecture patterns through general
scenarios
Len Bass and Bonnie John. Journal of Systems and Software. 2003 [3]

In this 2002 work, the authors identify a set of usability scenarios that appear to have
architectural implications, determine their potential usability benefits and propose software
architectural (SA) patterns to help users realize those benefits.

The usability scenarios selected by Bass and John in this work resulted from literature
searches, discussions with colleagues and their own personal experience. All of the 27
scenarios that were chosen were described as architecturally significant, in that a solution for
them would always affect the software architecture.

The selected usability scenarios are presented in Table 2.4-1.

Table 2.4-1 General Usability Scenarios, Bass, John et al. 2002

Aggregating data Aggregating commands Canceling commands
Using applications concurrently Checking for correctness Maintaining device independence
Evaluating the system Recovering from failure Retrieving forgotten passwords
Providing good help Reusing information Supporting international use
Leveraging human knowledge Modifying interfaces Supporting multiple activities
Navigating within a single view Observing system state Working at the user’s pace
Predicting task duration Supporting comprehensive searching Supporting undo
Working in unfamiliar context Verifying resources Operating consistently across views
Making views accessible Supporting visualization Supporting personalization

For each of the selected scenarios, the authors generate a solution in the form of a high-level
software architectural pattern and present it as a possible way to implement said scenarios.

The SA pattern that is provided as a solution for the Cancelling Commands usability scenario
in this work, is shown in Figure 2.4-1.

 30

Figure 2.4-1 SA pattern proposed for the Canceling Commands scenario. Bass, John et al. 2002

Each of the proposed scenarios is solved in a similar manner, a high-level depiction of the
proposed architectural pattern followed by a textual description of it. The full set of patterns is
presented in a CMU/SEI Technical Report titled “Achieving Usability Through Software
Architecture”, by Len Bass, Bonnie E. John and Jesse Kates.

Aside from providing an architectural solution to each of the twenty seven scenarios, they
were also classified in two ways

• From the point of view of the usability benefits that could be reaped by the user from its
implementation

• From the point of view of classifying the architectural patterns proposed as solutions for
each of them

This two-way classification yielded a usability benefit vs. architectural tactic matrix, termed
‘benefit/tactic matrix’ for short. The goal of this matrix is to provide help for the user in
understanding the benefits of each scenario and also in evaluating and designing their
system’s architecture.

This benefit/tactic matrix was applied for a couple of scenarios (‘working in an unfamiliar
context’ and ‘multiple languages’) to a large commercial information system, leading to the
examination of its existing designs and to ultimately solving difficulties present in the system
for both scenarios.

As future work in this study, Bass and John propose, among other goals, quantifying the value
of the potential benefits of the proposed scenarios to the users and fleshing out the
architectural solutions into usable patterns like those of Gamma et al. [37].

It was later reported by the authors in [4] that only the Canceling Commands was ever fully
fleshed out in this manner.

2.4.2 A Software Architectural View of Usability Patterns
Xavier Ferre, Natalia Juristo, Ana Maria Moreno, Maria-Isabel Sanchez-Segura. Conference
Proceedings of INTERACT 2003 [19]

In this study, the authors identify twenty usability patterns that, when present in a system,
improve its usability. For each of these patterns and through the inductive process
summarized below, the authors produce a possible design solution for incorporating them into
the architecture of software applications.

 31

In order to identify the usability patterns for which to propose architectural solutions, the
authors took a top-down approach, decomposing well-known usability attributes as defined in
literature by Nielsen and others into what the authors have termed usability properties, and
finally further down into usability patterns. Figure 2.4-2 shows a partial view of this
decomposition as proposed by the authors.

Figure 2.4-2 Relationships between usability attributes, properties and patterns. Ferré et al. 2003

The purpose of producing these usability patterns was to bring the high-level usability
attributes down to a level of abstraction for which specific architectural solutions could be
proposed. The full list of usability patterns obtained in this work is shown in Table 2.4-2.

Table 2.4-2 Final list of usability patterns produced by Ferré et al. 2003
Different languages Different access methods
Alert Status indication
Shortcuts Form/field validations
Undo Context-sensitive help
Wizard Standard help
Tour Workflow model
History logging Provision of views
User profile Cancel
Multi-tasking Commands aggregation
Action for multiple objects Reuse information

For each of these usability patterns, an architectural pattern was identified inductively: In
several laboratory studies, the authors asked the software designers to build their systems
without considering any of the usability patterns. Once designed, designers were asked to
modify their systems in order to include the usability patterns. Then, from the modifications
made by each of the teams, the authors abstracted an architectural pattern for each pattern.

Though the authors report not having validated the feasibility of the resulting patterns, they
state the importance of applying them in real software developments for this purpose.

The resulting architectural patterns that were abstracted conformed to a template that
contained the following information:

• Pattern name
• Problem: When to apply the pattern and in which context
• Solution: A high-level, generic architectural diagram (see Figure 2.4-3) and a description

of the participants involved in the interaction.
• Usability benefits: The specific usability aspects that can be improved by this pattern
• Usability rationale: The impact of the present pattern in final usability
• Consequences: Impact of the pattern in other quality attributes of the system
• Related patterns
• Implementation of the pattern in OO: A textual description of how the generic diagram

could be translated into an object-oriented design.
• Example: One of the designs used to produced the present pattern

 32

Figure 2.4-3 Architectural pattern proposed for the Reusing Information usability pattern. Ferré et al. 2003

Though no formal validation was ever reported on this particular set of patterns, this study
represents a step forward in ratifying the positive relationship between architectural decisions
and software usability.

2.4.3 Bringing usability concerns to the Design of Software architecture
Bonnie John, Len Bass, Maria-Isabel Sanchez-Segura, Rob J. Adams. Lecture Notes on
Computer Science. 2005 [30]

In this work, the authors introduce what they have termed Usability Supporting Architectural
Patterns, or USAPs. Each USAP describes a usability concern, provides a set of
responsibilities that must be fulfilled to satisfy the forces involved in said concern, and
describes an MVC-based sample solution for it.

This work follows the same research line as the 2002 work presented above, with one major
difference: the consideration of the aforementioned forces.

The authors point out that in their previous approaches to this problem, including their own
previous approach, no good traceability was provided between the solutions provided and the
specific aspects of the usability scenarios being addressed. This disconnect was proposed to
be remedied by the concept of forces [1].

Forces are defined as emanating from different parts of an organization unto a system of
people and machines and causing a particular task to be undertaken. When pertaining to
software architecture, the authors focus on forces coming from “the task the software is
designed to accomplish, the environment in which it exists and the desires and capabilities of
humans using the software”. The authors propose combining these forces in order to produce
the usability problem to address, along with a set of responsibilities that must be present in
the software design in order to solve the problem.

Each USAP, as proposed by the authors, is meant to conform to a table template containing
the following main elements:

• Usability context: the name of the pattern, the situation, or description of the pattern
from the point of view of the user, and any potential usability benefits

• Problem: The forces that motivate the usability situation, separated as exerted by: the
environment and the task, human desires and capabilities and the state of the software.

• General Solution: Textual description of general responsibilities the must be present in
the a system purporting to solve the problem. These general responsibilities as well as
the problem they address were deduced by the authors after examining prior research in
usability and software architecture.

 33

• Specific Solution: The usability-supporting architectural patterns, derived by the authors
from the general responsibilities described above, as well as from the forces exerted
prior design decisions. These patterns are made up of component and sequence diagrams
along with textual descriptions of the rationale behind the chosen responsibility
allocation, and the forces exerted by the choice of over-arching architecture (J2EE-
MVC). These patterns

The authors present one full example USAP for the Cancellation scenario. Figures Figure
2.4-4 and Figure 2.4-5 show the proposed component diagram for this pattern as well as one
of the proposed sequence diagram for the solution, respectively.

Figure 2.4-4 Component diagram for the SA pattern of the Cancellation scenario. Bass, John et al. 2005

Figure 2.4-5 Sequence diagram for the SA pattern of the Cancellation scenario. Bass, John et al. 2005

The ultimate goal of this work was to construct a collection of USAPs formatted as described
in this study, to be used by architectural and design teams in the development of projects

 34

The USAPs were presented to professional audiences receiving encouraging feedback and
some were also validated in practice, but in both cases this was done prior to the inclusion of
forces as proposed in this work.

2.4.4 Reconciling usability and interactive system architecture using patterns
Seffah, A; Mohamed, T; Habieb-Mammar, H; Abran, A. JSS. 2008 [39]

In this study the authors identify and model specific scenarios that illustrate how internal
software components, referred to as ‘invisible’ components may affect a system’s usability.
For each of the proposed scenarios, an existing or improved software design pattern is
suggested as a potential solution to the scenario. These scenario-pattern pairs are ultimately
documented and their application within a MVC architectural model is detailed.

In this work, the authors chose the following set scenarios, extracted from literature reviews
and day-to-day experiences:

• Time consuming functionalities
• Updating the interface when the model changes its sate
• Performing multiple functionalities using a single control
• Invisible entities keep the user informed
• Providing error diagnostics when features crash
• Technical constraints on dynamic interface behavior

Following their identification of the scenarios, the authors propose existing design and
interaction (HCI) patterns as solutions for them. For example. The “Working Data
Visualization” design pattern is proposed as a solution for the “Updating the interface when
the model changes its state” scenario. Similarly, the “Progress Indicator” interaction pattern is
proposed as solving the “Time consuming interactions” scenario.

Each pattern is described extensively, providing its name, the problem to solve, the context in
which it exists, the forces involved, a textual solution, the resulting context after applying the
pattern and the ultimate effects on the resulting usability.

Though this process is repeated for a limited number of patterns, the long-term goal of this
work is said to be proposing a general theoretical framework for identifying scenarios such as
the ones mentioned above and defining patterns for developers that need to be used in order to
solve them.

In working towards this goal, the authors propose a model of the cause-effect relationships
between software elements and usability, identifying the most probably types of cross-
relationships between usability and software architecture (bold links in Figure 2.4-6).

Figure 2.4-6 Most probable types of relationships between usability and architecture. Seffah et al. 2008

 35

The authors suggest that the proposed model is useful in helping developers understand where
to look for relationships between architecture and usability, though stating that one of their
future objectives is validating their results.

2.4.5 A Responsibility-Based Pattern Language for Usability-Supporting
Architectural Patterns
Bonnie John, Len Bass, Elspeth Golden, Pia Stoll. Conference Proceedings. ACM SIGCHI
EICS 2009 [5]

Following their research on Usability-Supporting Architectural Patterns (USAPs) described in
section 2.4.2, the authors looked to test them in industry. Though the authors report having
only had success in creating one full exemplar, the Cancellation pattern, (due to difficulties
encountered in creating and maintaining their originally intended catalogue of about two
dozen patterns) this particular pattern was proven to improve the quality of architecture
designs for supporting this usability characteristic. To further study and validate the rest of
the partial USAPs in the catalogue a select few were initially chosen by the company
involved in this study, ABB, to include in their current product line. The authors were quickly
made aware of the multiple challenges posed by the use of the patterns as they were. This led
to the alteration of the USAP structure as well as to the proposal of a pattern language based
on software responsibilities, alongside a web-based tool for evaluating an architecture with
respect to those patterns.

During the beginning stages of this industry-set experiment, the authors, together with an
architecture team of ABBs, completed and reformatted the USAPs (down to the UML
sequence diagrams as the Cancellation pattern had been) for two specific usability scenarios:
User Profiles and the Warning/status/alert feedback.

Upon presenting these new USAPs to a different architecture team, the authors realized that
the general response was a resistance to the use of a UML-based solution, particularly one
based on an over-arching pattern such as MVC. The architects in question felt pressured into
redesigning their systems to comply with the patterns, instead of perceiving them as helpful
tools for including the usability characteristics in question.

The architects were also put off by the nearly hundreds of responsibilities expected of the
system, and further wondered whether three or more of these large patterns could be used
together within a single architecture design.

Such feedback led the authors to remove the UML diagrams altogether from their patterns,
and replace them with textual descriptions of implementation details. These descriptions
explained the structure and behavior of the solution, without imposing a particular
architecture.

Furthermore, the many responsibilities contained in each USAP were grouped into categories,
leading to a two-level structure with emphasis on the hierarchical relationships between the
structure’s elements. Furthermore, the concepts of End-user USAP and Foundational USAP
were proposed, leading to the creation of a pattern language, based on Alexander’s principles
[1] Figure 2.4-7 depicts part of the structure of this language.

 36

Figure 2.4-7 Scales of proposed pattern language. Bass, John et al. 2009

By expressing the USAPs through this pattern language, the authors were able to reuse 84%
of the responsibilities across all patterns, resulting in a 63% reduction of the number of
responsibilities that had to be presented to the software architects. This fact, together with a
proposed checklist-based delivery tool which automated the tailoring of patterns for a
project’s particular needs, made architects more welcoming to the USAPs design suggestions,
with some reports of highly increased productivity stemming from its use.

While the authors acknowledge that actual validation of results still remains to be carried out,
they are optimistic about the viability of their proposed pattern language judging by the
results of this experiment.

2.5 Systematic literature review results
The past two decades have seen extensive amounts of research carried out in regards to
understanding and quantifying the strong relationship that exists between software
architecture and usability. These results highlight the importance of said relationship and the
need to address usability concerns from a software architecture perspective. Multiple
approaches have been explored for addressing said concerns, mainly proposing diverse forms
of architectural frameworks, guidelines and patterns in order to include usability into software
systems correctly and effectively.

While the results obtained thus far are encouraging, there is still work to be done in this field.
For instance, most of the aforementioned works are substantially backed up by prior research
proving the usability features the authors chose to address are in accordance to usability
principles that have been proposed in the HCI field. Furthermore, no empirical validation was

 37

performed in any of these works, save for the three case studies carried out by Folmer, et al.
(2005) in [20] and one, under way at publication time, by Ferré, et al. (2003) in [19].

Furthermore, the usability issues addressed in existing works as starting points are identified
mostly by heuristic-based approaches. Ideally, the usability concerns to consider when
proposing architectural and/or design patterns should be relevant from an HCI perspective
and have proven implications on software architecture and/or design.

Most of the previous works deal with solutions at a high-level architectural level, which are
not adequately validated. While architectural patterns can be very useful in depicting how a
system should behave as a whole, our work explores the option of lower-level design
solutions being more effective in detailing the responsibilities of its components.

In addition, none of the works studied provide any means of traceability between their
proposed solutions and software requirements, which is of utmost importance for validation
and maintenance purposes.

Therefore, we are presented with an open research problem related to providing users with
efficient design and implementation artifacts to incorporate usability into a software system,
and we intend to address it within the scope of this doctoral thesis.

A sumarized view of the aformentioned shortcomings of existing research results is presented
in Table 2.5-1, alongside our proposed solution.

Table 2.5-1 Summarized view of systematic literature review resutls
Authors Study Title Working set of usability

features or scenarios
Characteristics of proposed

design solutions
(if applicable)

Full
empirical
validation
of results

Traceability
between

proposed
design

solutions
and software
requirements

Source Focus on those
with proven
impact on

design

Abstraction
level

Usage of
existing

patterns vs. new
solutions

5 Folmer, et al. Software architecture
analysis of usability

Literature
searches

No - - Yes None

15 Juristo, et al. Analyzing the impact
of usability on softare
design

Research
results

Yes - - Yes None

1 Bass, et al. Linking usability to
software architecture
patterns through
general scenarios

Literature
searches and
heuristic
approach

No HIgh New Partial None

23 Ferre, et al. A software
architectural view of
usability aptterns

Research
results

Yes High New No None

7 Bass, et al. Bringing usabilitiy
concers to the design
of software
architecture

Literature
searches and
heuristic
approach

No High and
low
(partial)5

New and
existing

No None

19 Seffah et al. Reconciling usability
and interactive system
architecture using
pattenrs

Heuristic
approach

No High Existing No None

28 Bass et al. A responsibility-based
pattern language for
usability-supportig
architectural patterns

Heuristic
approach

No High New and
existing

No None

PRESENT WORK Research
results

Yes High and
low

New and
existing

Yes Yes

5 Only for one of the more than two dozen scenarios was a low-level solution ever fleshed out

 38

!"#$%&'()* "+$,%"&-.-(#/0(
#$$',#!"(%,(-,12%.,/(

3.1 Introduction
As explained in Chapter 2, developing software that properly includes usability characteristics
with impact on application logic is not a trivial task. Given this fact, the objective of this work
is to provide a process to help developers include such usability characteristics into their
applications throughout their development life cycle. This is accomplished with the aid of a
set of Software usability guidelines, also proposed in this work.

In order to address the shortcomings of existing solutions, the proposed guidelines are to:

1. Focus only on usability characteristics with proven impact on software design.
2. Be properly validated empirically.
3. Provide software design solutions that reach a low level of abstraction.
4. Be traceable to requirements.

3.2 Hypothesis
The hypothesis for this work states that:

“Applying the proposed usability-oriented software development process will:
• Reduce development time of the usability-related functionalities and, as a consequence,

of the project over all,
• improve the quality of resulting software designs,
• facilitate the inclusion of functional usability features into software projects by reducing

the perceived complexity of usability features by developers,
over applying the process partially and over not applying it altogether.”

The corresponding null hypothesis is the following:

“When applying the proposed usability-oriented software development process,
• development time is not reduced,
• quality of the resulting designs is not improved,
• perceived complexity of usability features is not reduced,

over applying the process partially and over not applying it altogether.”

 39

3.3 Approximation to solution
In order to validate these hypotheses, we propose a process for including usability
characteristics with impact on software design into software applications, which we have
termed the Usability-oriented Software Development Process. This process is supported by a
set of Software Usability Guidelines for Software Development that we propose for
addressing these high-impact usability characteristics. These characteristics are described in
section 3.3.1, followed by an overview of the proposed process in section 3.3.2, and an
outline of the proposed guidelines in section 3.3.3.

3.3.1 Functional Usability Features
This work focuses on eleven usability characteristics whose effects go beyond the user
interface. In [31] Juristo, Moreno and Sanchez-Segura show how these characteristics have a
considerable impact on the software logic (in terms of additional classes, methods and
relationships that must be implemented) when they are included in an application. Termed
Functional Usability Features by the authors, they are grounded on solid HCI principles as
shown in [32], and our proposed process focuses on helping developers properly include them
into their software application when needed.

Table 3.3-1 Functional Usability Features, originally proposed in [32]
FUNCTIONAL

USABILITY FEATURE
HCI Authors’ Label GOAL

System Status Feedback Modeless Feedback Area [17]

Status Display [42]

To inform users about the internal status of the system

Progress Feedback
(a.k.a Long Action
Feedback)

Progress Indicator [42]

Show Computer is Thinking [11]
Time to Do Something Else [11]

Progress [49]
Modeless Feedback Area [17]

Let Users Know What is Going On [7]

Informs the users that the system is processing an action that will take
some time to complete

Warning Think Twice [11]

Warning [49]

To inform users of any action with important consequences

Undo Multi-level Undo [42]

Undo [49]

Global Undo [36]
Allow undo [11]

Go Back One Step [42]
Object-Specific Undo [36]

To undo system actions at several levels, either globally or over an
individual object

Abort Go Back One Step [42]

Emergency Exit [11]

Cancellability [42]

To cancel the execution of an action or the whole application

Step-by Step Execution Step-by-Step [42]

Wizard [49] [42]

Go Back One Step [42]
Go Back to a Safe Place [42]

To help users do tasks that require different sptes with user input and
correct such input

Preferences User Preferences [42]

Preferences [49]

To record each user’s options for using system functions

Personal Object Space Personal Object Space [42] To record each user’s options for using the system interface

Favorites Favorites [49]

Bookmarks [42]

To record certain places of interest for the user

Multilevel Help Multilevel Help [42] To provide different help levels for different users

Command Aggregation Composed Command [42]

Macros [42]

To express possible actions to be taken with the software through
commands that can be built form smaller parts

The original set of functional usability features proposed in [32] is made up of fifteen
features. The focus set in this work is made up of only eleven, as they are the result of
merging and reconfiguring some of the originally proposed features.

 40

3.3.2 Usability-oriented software development process overview
The usability-oriented software development process proposes activities to be carried out by
software developers during different phases of development of their applications. Regardless
of specific project life cycle or development method choices, the proposed activities are to be
applied during the analysis and design phases of a project (or a project’s iteration, sprint,
etc.). Figure 3.3-1 shows a graphic representation of the proposed process.

The first part of the proposed process takes place during the Elicitation and Analysis phase of
the project (or project iteration, sprint or similar). During this phase, the development team,
most typically the analyst(s) will carry out activities inherent to the development process
through which the project is being built. Figure 3.3-1 refers to these activities as “Traditional
requirement elicitation and analysis activities”. These activities typically include interaction
with the project stakeholders (end-users, clients, etc.) and other software analysis activities
with the goal of gathering and documenting the user’s needs for the project. This could be
done as a Software Requirements Specification (SRS), a collection of user stories, a set of
expanded use-cases, user interface prototypes, etc.

Together with these traditional activities, the analyst(s) would also carry out those proposed
by our process, represented in Figure 3.3-1 as the “Requirement elicitation and analysis
activities for usability” sub-process. These activities gather and document requirements
related to the functional usability features with the help of the proposed Usability Guideline,
specifically its analysis artifacts.

Figure 3.3-1 Usability-oriented software development process overview in BPMN [50].

How these traditional activities will be performed together with the proposed activities will
depend on multiple factors inherent to the project being developed. Such factors may be the
type and size of the project, the amount of requirements, the problem domain, the team’s
experience, etc. In some cases it may prove useful to first perform all the traditional
requirements elicitation activities and then follow with all the usability-related ones, while in
others the team might go back and forth between the two until a final requirements document

 41

(including usability) is produced. This document, represented in Figure 3.3-1 as the
“Requirements with usability”, is the final product of this stage (represented in bold letters).

Other intermediate and/or optional analysis products are also part of the output from this
Elicitation and Analysis phase, represented by the multi-document icon labeled “Intermediate
analysis products”. One of these products is a use case model for the project, produced with
the help of the analysis artifacts of the Usability Guideline for teams (optionally, for teams
who model use cases). Another intermediate product of this stage is a list of System
Responsibilities for Usability, which are a representation of the user’s needs regarding
usability expressed as general functionalities that should be present in the resulting system.

The Requirements with usability (bold text) and the intermediate products (plain text) for this
phase are explained in detail in Chapter 4.

Our proposed process also provides for a similar scheme to be applied during the design
phase of a project or iteration. During this phase, traditional software design activities are
carried out, along with the design activities proposed by our process. As in the case of
analysis, the way in which these two sets of activities will be carried out (in parallel,
sequence, etc.) will depend on the characteristics of the project, team and system being
developed.

The main result of the design phase is a software design document which represents the
usability needs that were elicited previously as MVC-based class and sequence diagrams.
This document is shown in Figure 3.3-1 as “OO software design with usability”, and is the
final product for this phase, represented in bold letters.

Also during this phase, other intermediate design products that are also produced. One such
product, produced before the OO designs, describes the System Responsibilities for Usability
from the point of view of design, describing them in terms of software component
responsibilities yet not posing constraints on a specific architecture to be used. This product is
termed the High-level component responsibilities for usability and is useful as a guide on how
to distribute responsibilities among components when not producing the final designs.
Another intermediate product, also produced before the OO designs, is what we have termed
the Low-level component responsibilities for usability, which textually express the System
Responsibilities for Usability at an even lower level of abstraction, breaking them up and
assigning sub-responsibilities to implementable objects and classes.

The OO software designs with usability (bold text) and the intermediate products (plain text)
for this phase are also explained in detail in Chapter 4.

It is worth noting that our proposed process caters mainly to projects whose software design
is object-oriented. For projects that apply a different design paradigm, our proposed process
can be applied partially, specifically up to the High-level component responsibilities for
usability. In such cases, developers would benefit from early tasks in the process and would
carry on the software design independently. This flexibility is also present within the different
activities of our proposed process, as described later in Chapter 4, allowing for it to be
customized to the development team’s needs.

3.3.3 Usability Guidelines for Software Development
Each of the aforementioned tasks that make up the full usability-oriented software
development process proposed in this work, relies on a tangible product to perform their
duties. This product is the Software Usability Guideline, shown in Figure 3.3-2, which is a set
of analysis and design artifacts proposed to support the inclusion of the functional usability
features presented earlier in section 3.3.1 into software applications.

 42

Figure 3.3-2 Structure of the Software Usability Guideline.

One Software Usability Guideline is proposed for each of the functional usability features.
Chapter 5 describes each of these guidelines for all of the features addressed in this work.

Each Software usability guideline is comprised of nine artifacts, each of which is to be used
during a single task. Their structure, purpose and function within it are described in depth the
following section.

• The Usability Elicitation Guideline is an existing contribution by [32], extended for this
work, whose aim is to help analysts in eliciting usability requirements

• The Usability Elicitation Clusters are a graphic representation of the Usability Elicitation
Guideline that help analysts understand the flow of the requirements discussion items

• The Usability Use Cases Meta-model is a use case representation of the usability needs
covered by the Usability Elicitation Guideline to help developers include them in their
use case models

• The System Responsibilities are the main functionalities that the system should
accomplish in order to potentially fulfill all of what has been elicited with the Usability
Elicitation Guideline.

• The High-level design component responsibilities for usability describe the System
Responsibilities at a lower abstraction level, that of high-level design components.

• The Low-level design component responsibilities for usability describe the System
Responsibilities at a lower abstraction level, that of design components for a Model-
View-Controller (MVC) architecture

• Finally, the Software Design Meta-models are the graphic representation, as class and
sequence diagrams, of the low-level design component responsibilities for usability.

 43

!"#$%&'()* +,#-./.%012'.&3%&4(
,25%6#'&(4&7&/2$8&3%($'2!&,,(

4.1 Introduction
This chapter provides a detailed description of our proposed process for helping software
developers include usability into their applications through the use of software usability
guidelines, also proposed in this work.

Section 4.2 presents an overview of the usability-oriented software development process,
followed by section 4.3 describes each phase of the process in detail and explains how the
proposed software usability guidelines are used for their application. Finally, section 4.4
describes a preliminary software tool for automating the proposed process.

4.2 Process overview
Figure 4.2-1 presents a more detailed view of the “Requirements elicitation and analysis
activities for usability” and the “OO software design activities for usability” sub-processes,
shown collapsed earlier in Chapter 3.

 44

Figure 4.2-1 Usability-oriented software development process overview

The first task of the “Requirements elicitation and analysis activities for usability” sub-
process is the “Functional usability requirements elicitation”. This task enhances the original
requirements document (elicited through traditional means, as explained earlier in this
section) with the end user’s needs regarding usability (in the case of a SRS, these needs
would be expressed as functional requirements). A second, non-mandatory task in this sub-
process is the “Usability use case modeling” which enhances the Use Case model for the
application being developed, if one exists, with usability use cases.

Once these initial tasks are completed, the proposed process can either end, in which case its
final outputs will have been the “Requirements with usability” and, optionally, the “Use case
model with usability”, or it can continue, depending on the developer team’s needs. If the
process is to continue, the next task is the “Identification of system responsibilities for
usability”. This task produces a list of usability-related system responsibilities that the
application under development should ultimately perform. This ensures that the resulting
application will conform to the usability-related functionality introduced into the
requirements during the first two tasks.

 45

After these system responsibilities for usability have been identified, the development team
can either stop applying the proposed process or continue applying it through to the design
phase of their project or iteration. If continuing onto design with our proposed process, the
next task is the “identification of high-level design component responsibilities for usability”.
This task takes the system responsibilities for usability as input and produces an intermediate
output document containing a list of high-level design components proposed to carry out
those system responsibilities. This document also explains how these high-level components
are to carry out those system responsibilities by expressing them into more finely-grained
responsibilities to be distributed among the proposed components.

After these high-level design component responsibilities for usability have been identified,
the proposed process can again stop, keeping the output produced so far, or continue on. If it
is to continue, the next task is the “identification of low-level design component
responsibilities for usability”. This task takes the earlier high-level design component
responsibilities as input and further divides and distributes them, this time among proposed
objects and classes, most of which are directly implementable. Furthermore, it specifies the
required mechanics of the interactions between those objects and classes in order to attained
the corresponding higher-level responsibility.

Finally, once the low-level design component responsibilities for usability have been
identified, the process may continue on to the last task: “Object Oriented software design for
usability”. This task takes the low-level design component responsibilities for usability as
input to help developers produced their final designs including usability, namely the “OO
software designs with usability”, which is the final product of the proposed process when
applied in full.

4.3 Process detail
This section describes each of the six tasks that make up the two main sub-processes of the
proposed process: the Requirements elicitation and analysis for usability, and the Object
oriented software design for usability. They are described below in sections 4.3.1 and 4.3.2
respectively.

Every task in the proposed process uses one or more artifacts of the proposed Usability
Guideline. Each of these artifacts is described also in the following sections.

4.3.1 Requirements elicitation and analysis for usability
This section covers the first three tasks of the proposed process, specifically those that make
up the “Requirements elicitation and analysis for usability” sub-process, first shown in Figure
4.2-1 as part of the full Elicitation and Analysis phase of a project. Figure 4.3-1 below shows
the tasks involved in this sub-process, now also depicting the usability guideline artifacts
involved (dark gray).

 46

Figure 4.3-1 Requirements elicitation and analysis for usability process with the artifacts of the usability guideline for

software development

4.3.1.1 Functional usability requirements elicitation
This task enhances the functional requirements of a project and enhances them with usability
requirements related, as elicited from the relevant stakeholders.

The next section describes the guideline artifacts that are involved in this task, followed by a
description of how they support its application.

4.3.1.1.1 Artifacts involved
Two guideline artifacts are involved in this task, namely the Usability Elicitation Guidelines
and the Usability Elicitation Clusters, described in-depth in the following two sections.

4.3.1.1.1.1 Usability Elicitation Guideline

The Usability Elicitation Guideline was originally proposed by [32] to provide help to
development teams to correctly elicit all aspects related to a single functional usability
feature. For a concrete example of this artifact, section 5.2.1.1 of Chapter 5 shows the full
Usability Elicitation Guideline for the Undo feature.

The original Usability Elicitation Guideline had the structure shown below in Table 4.3-1.
They were comprised of, firstly, identification information for the feature in question, a short
definition of the problem being address by said feature and the context in which a software
would benefit from its inclusion.

Secondly, and at the core of every Usability Elicitation Guideline, was the proposed solution.
This solution consisted on a set of HCI recommendations, compiled from an extensive
literature review for each Functional Usability Feature in [32], which fully describe the

 47

Functional Usability Feature from a HCI perspective. The second part of the solution was a
list of proposed discussion items. These were meant to be established with project
stakeholders to determine how each of the HCI recommendations for the present Functional
Usability Feature would be applicable to the system being developed, if at all. These
discussion items would be grouped by HCI Recommendation (i.e. for each HCI
recommendation there would be one or more items to be discussed with stakeholders).

The results of the stakeholders’ discussions was then processed and incorporated into a
Software Requirements Specification document. The last part of the Usability Elicitation
Guideline, called the Specification Guide, proposed recommendations on how to incorporate
this text into a Software Requirements Specification document.

Table 4.3-1 Original Structure of a Usability Elicitation Guideline [32]
IDENTIFICATION:
Name: [FUF name]
Family: [FUF Family]
Alias: [Other names by which this FUF is also known in literature]
PROBLEM: [the problem being addressed by this FUF]
CONTEXT: [the context in which this mechanism is applicable]
SOLUTION
Usability Mechanism Elicitation Guide:

HCI Recommendation Issues to be discussed with stakeholders
[List of compiled HCI recommendations describing what software
should accomplish in order for it to be considered to correctly include
the present FUF]

[List of issues to be discussed with stakeholders, organized by HCI
recommendations. These were mainly in the form of questions directed
at the software users, clients and other project stakeholders about their
needs regarding the present FUF and ways in which it would be
included and used within the software]

Usability Mechanism Specification Guide:
[Recommendations on how the results of the stakeholder discussions should be incorporated textually into a formal Requirements Specification
document]

Upon revisiting the existing structure of the Usability Elicitation Guideline within the scope
of the usability-oriented software development process proposed in this work, some additions
and modifications were made to its basic structure. These are described below and are shown
in Table 4.3-2.

New ‘Intent’ field

To give a clearer view of what the Functional Usability Feature described in the Usability
Elicitation Guideline does, an intent field was added, adhering slightly more closely to the
pattern-like structure already followed by the Usability Elicitation Guidelines [32].

The Intent field states briefly, and right after the identification information of the feature,
what the feature does, helping the reader to determine as soon as possible the goal of the
present feature and decide on its relevance for their project.

Removal of ‘Usability Mechanism Specification Guide’ field
The original structure of the Usability Elicitation Guideline contained these recommendations
on how to include the results of the discussions with stakeholders into a Software
Requirements Specification document, down to a template of what the included text should
look like. While such an aid would be valuable for systems in which a standard Software
Requirements Specification document is always produced, for this work we have tried to keep
the format in which the results of the elicitation process are gathered open. It is suggested that
some form of requirements and/or use cases document is produced, but no single format is
enforced, thus the original contents of the Usability Mechanism Specification Guides was no
longer as widely applicable as it once was, and was thus removed from the structure.

 48

New ‘Interrelationships’ field
At the end of the introductory information for the Usability Elicitation Guideline and right
before the Solution section, a new field was added detailing the interrelationships that the
present feature has with other features being addressed in this work. The reason for including
this new field is to give the reader an idea of the impact that the inclusion (or, more
importantly, the exclusion) of the present feature would have on other features.

Interrelationships included in the Usability Elicitation Guideline for feature ‘A’ are expressed
in the following form:

In order to be able to fully include feature ‘A’ into the system, features B
and E must also be considered

Almost all features relate and/or have other features as preconditions. Such interrelationships
must be carefully looked at during elicitation, as to not risk excluding a feature that seems
unnecessary to stakeholders, but is actually needed internally by another (included) feature.

New ‘Elaboration’ column
It was found that there was too large a ‘gap’ between what was expressed in the HCI
recommendations and the discussions with stakeholders, to the point that it wasn’t always
clear to analysts using these guidelines how the proposed discussions derived from their
corresponding HCI recommendation. The problem seemed to lie in the fact that the HCI
recommendations were expressed not only at a very high level of abstraction, but also from a
point of view too far removed from that of the more software-oriented discussions. To bridge
this gap, an in-between column called Elaboration was added to the initial structure of the
Usability Elicitation Guideline.

The Elaboration column presents a Software Engineering view of each of the HCI
recommendations and it elaborates on topics not fully covered by the latter. For example,
where a HCI recommendation would say ‘actions with important consequences should be
undoable’ the Elaboration column would advise to go a little more in-depth into what
‘important consequences’ could mean for different systems during the stakeholders’
discussion, and also the consideration of a cost/benefit ratio of providing particular actions
with said feature.

The addition of this Elaboration column thus makes for an easier transition between the HCI
Recommendations column and the Stakeholders Discussion column, as it also clarifies, from
an engineering perspective, what is expressed within the HCI Recommendations.

New ‘Usage Examples’ Column
Another addition to the basic structure of the Usability Elicitation Guideline was the Usage
Examples column. This column is optional to use during elicitation, and its purpose is to
further clarify the real-life applicability of each HCI Recommendation, or row of the
Usability Elicitation Guideline table, when needed.

Table 4.3-2 shows the resulting structure of the Usability Elicitation Guideline after the
proposed additions and modifications.

 49

Table 4.3-2 New Structure of the Usability Elicitation Guideline
IDENTIFICATION:
Name FUF name
Family FUF Family
Aliases Other names by which this FUF is also known in literature
INTENT
A short definition and the main goal of this FUF
PROBLEM
The problem being addressed by this FUF
CONTEXT
The context in which this mechanism is applicable
FUF INTERRELATIONSHIPS
Descriptions of interrelationships that the present feature has with other features

Usability Elicitation Guideline
HCI Recommendation Elaboration Discussions with stakeholders Usage Examples

(optional)
List of compiled HCI recommendations
describing what the software should
accomplish in order to correctly include
the present FUF.
Expressed as:
[FUF ID]_HCI-[i]: [Title] [Description]

SE perspective of the HCI
recommendation and
further, lower-level
explanations of unclear
topics.
Expressed as:
[FUF ID]_ELAB-[i]: [Title]
[Description]

List of issues to be discussed with
stakeholders. One or more per HCI
recommendation. Mainly in the form of
questions directed at the project stakeholders
about their needs regarding the present FUF
and ways to include/use it within the system
Expressed as list of:
[FUF ID]_Q-[j]: [Text of issue]

Real-life examples of
how this HCI
recommendation is
presented in existing
systems
Expressed as:
[FUF ID]_EX-[i]: [Title]
[Description]

A final addition to the original Usability Elicitation Guideline structure is the use of
identifiers. As the guideline grew and more artifacts where developed, the need for clarity and
traceability became paramount. In order to achieve both these goals, each item in the table
above was assigned a unique identifier and given a defined structure, homogenous throughout
the guideline, as explained below:

1. Each HCI recommendation in the first column is expressed using the following syntax:
[FUF ID]_HCI-[i]: [Title] [Description], where:

a. FUF ID, is a three-to-five letter abbreviation of the full name of the present feature.
It can be either an acronym for the feature name (mostly in the case of multiple-
word names) or its first few letters.

b. HCI, meaning that this is a HCI recommendation
c. [i], is a sequential number assigned to each HCI recommendation. There will be

one HCI recommendation per row, hence there will be i rows in each Usability
Elicitation Guideline.

d. [Title], a self-explanatory, one-line title assigned to the present HCI
recommendation.

e. [Description], the full description of the present HCI recommendation
2. For every HCI Recommendation there is one or more Elaboration items, each of which

is expressed using the following syntax: [FUF ID]_ELAB-[j]: [Title] [Description].
a. FUF ID
b. ELAB, meaning that this is an Elaboration item
c. [j], is a sequential number assigned to each Elaboration item.
d. [Title], a self-explanatory, one-line title assigned to the present Elaboration item.
e. [Description], the full description of the present Elaboration item.

3. For every Elaboration item there is one ore more Discussion Items to be had with
stakeholders. Each issue is expressed in the following format: [FUF ID]_Q-[k]: [Text
of issue], where

a. FUF ID
b. Q, meaning that this is a Question (Issue) to be discussed.
c. [k], is a sequential number assigned to all issues of the present Usability Elicitation

Guideline. It is used to identify each issue throughout the entire Usability
Guideline, as they are referenced in other artifacts (namely the Usability Elicitation
Clusters).

d. [Text of Issue], is the full text of the question or issue to be discussed.

 50

4. Finally, for each HCI Recommendation there is one Usage Example, meaning there
will be i usage examples per table. Each example is expressed as follows: [FUF
ID]_EX-[i]: [Title] [Description].

a. FUF ID
b. EX, meaning that this is a Usage Example.
c. [i], is the same sequential number used for the corresponding HCI

Recommendation.
d. [Title], a self-explanatory, one-line title assigned to the present Example.
e. [Description], the full description of the present Example.

4.3.1.1.1.2 Usability Elicitation Clusters

The Usability Elicitation Clusters are a visual guide to the stakeholder discussion items
presented in the Usability Elicitation Guideline. It maps them graphically in a flow-chart-style
diagram to provide an at-a-glance view of what needs to be discussed, providing the direction
of the flow in which discussions need to take place and grouping related discussions in
clusters to give a more abstract view of the elicitation process. A concrete example of this
artifact is shown in section 5.2.1.2 of Chapter 5 shows for the Undo feature.

In every UEG, stakeholder discussion items are presented in linear lists. For each HCI
Recommendation there will be one ore more discussion items that need to take place among
stakeholders. From examining each discussion item individually, a reader is able to deduce if
it is related to a previous discussion item (i.e. the output of discussion A is needed as input for
discussion B). However, due to the high number of proposed discussion items for most of the
UEGs and the sometimes complex relationships among them, it was found to be useful to
represent these relationships graphically. This representation would make it easier for the
reader to determine, for example, whether or not to follow down a path of discussion items,
depending on what was previously discussed.

Aside from depicting the order in which discussions are to be held, the Discussion Clusters
also group discussion items that relate to a single topic or goal that must be achieved by the
system being developed.

The benefit of having these higher level clusters available is twofold: firstly, it gives the
analyst(s) a more abstract view of what will be discussed, so that, for a UEG with dozens of
discussion items, looking at the headers of the handful of clusters that comprise it will give
them a clear idea of the topics that will be discussed, prior to reading all the discussion items
in detail.

The second benefit of having the discussions grouped in clusters is that these clusters
represent the core goals that need to be achieved by the system being developed. As such,
they will give way to what will later become the general responsibilities to be fulfilled by the
system, described in-depth later in this chapter.

Figure 4.3-2 shows the basic structure of an Elicitation Clusters. The chosen notation for the
Elicitation Clusters loosely resembles that of flow chart diagrams. It’s a simple and clear
notation where the rectangles represent open discussions (those that give way to different
types of output), the rhomboids represent the output, if any, of those open discussions and the
rhombuses represent discussions of the form of binary questions: those with only two possible
answers.

An arrow going from one discussion item (question), or more specifically, its answer, to
another, denotes that not only does the second discussion item needs to take place after the
first, but that it uses the output (answer) from the first discussion item as input. Finally, a line
coming out of a rhombus (binary question) and ending in the ‘ground’ symbol represents the
answer which brings that particular branch of the discussion to an end.

 51

Figure 4.3-2 Structure of Elicitation Clusters

Furthermore, each discussion item is labeled with the same identifier as it is in the Usability
Elicitation Guideline for traceability purposes.

Answers are assigned the same number as the question they respond to, with two notable
consequences: Firstly the list of answer identifiers will be missing a number for each binary
question present (in the example above there is no answer labeled A-2, as Q-2 is a binary
question). This drawback is however outweighed by the clarity provided by the matching
numbers between question and answer, which would otherwise be offset. Secondly, in the
instances where an open question (rectangle) may have two answers, these two are labeled
with the same number as the question, appending sequential letters (see A-3a and A-3b)

Finally, Discussion Clusters are identified as: [FUF ID]_C-[l] [Cluster Title], where [FUF
ID] is the same identifier assigned to the present feature, C stands for Cluster, and [l] is a
sequential number given to every cluster.

4.3.1.1.2 Functional usability requirements elicitation: Task description
Once a set of functional requirements is defined (partially or totally and with more or less
detail, depending on the software process and life cycled used) project stakeholders should
meet to discuss the inclusion of usability requirements. In this discussion, led by the software
analyst(s) and typically including end users and/or clients, the Usability Elicitation Guideline
will serve as a script for what discussions need to take place in order to determine which
Functional Usability Features will be required for the system being developed and the precise
way in which they will be included.

In many cases, the discussion items in the Usability Elicitation Guideline, though listed
sequentially due to its table structure, are not necessarily intended to be addressed in
sequence. The Usability Elicitation Clusters tackle this issue by graphically mapping out the
intended order in which each of these discussion items is to be addressed. Furthermore, it
specifies what the expected output (or type of answer) is for each of the discussion items.

With the help of the Usability Elicitation Clusters, depending on the outcome of particular
discussion items, entire ‘branches’, or series of discussion items, can be discarded and thus
skipped, making the elicitation process more efficient.

By following this script, the software analyst ensures covering all the bases for each of the
functional usability features, making sure that those that are expected of the system are indeed

 52

included in the final requirements documentation as would any other functional requirements.
The final output of this task is an enhanced version of the requirements document, in the
sense that it includes the stakeholders’ needs regarding the functional usability features, aside
from the original functional requirements.

Appendix 9.1 shows an example of how this task is applied. As mentioned earlier, the
proposed process can either continue on to the next task or stop here, preserving the output
produced so far.

4.3.1.2 Usability use case modeling
This task is optional within the “Requirement elicitation and analysis activities for usability”
sub-process, applicable only when the development team makes use of use case models. If
they do, this task takes a use case model (either partial or complete depending on the
development life-cycle being followed) and enhances it with the appropriate usability use
cases.

4.3.1.2.1 Artifacts involved
The usability guideline artifact involved in this task is the Usability use case meta-model,
described below.

4.3.1.2.1.1 Usability Use Case Meta-model

The Usability Use Case Meta-model is in part a model in itself, in the sense that it contains
specific use cases for the Functional Usability Feature that it pertains to, and in part a meta-
model, as it also contains ‘template’ use cases where actual use cases will be filled in during
development. A concrete example of this artifact is shown in section 5.2.1.3 of Chapter 5
shows for the Undo feature.

The main goal of the Usability Use Case Meta-model is to assist a development team in the
depiction of their use case models when including a Functional Usability Feature.

Figure 4.3-3 shows the basic structure of the Usability Use Case Meta-model.

Figure 4.3-3 Structure of the Usability Use Case Meta-model

The notation used to represent the use cases contained in the Usability Use Case Meta-model
is fully compliant with UML2 [22]. Some additional color coding and font changes are used
to represent additional concepts, as described below.

 53

Any single Usability Use Case Meta-model can contain any or all of the following:

1. Concrete Usability Use Cases: These are the use cases that embody functionality that
corresponds solely to the present feature. This use case would not exist within a
system’s greater use case model, if said system does not include the present feature.
Concrete Use Cases are represented in the current feature’s assigned color (light blue in
Figure 4.3-3. See Appendix 9.4 for color legend)
Following UML2 notation, any of these use cases can be a Parent or Child, an Included
or Including use case or an Extending or Extended use case.

2. Concrete Usability Use Cases (Borrowed): These are Concrete Use Cases that belong
to a different feature but have some kind of connection or interaction with the use cases
of the present feature. They are included in the Usability Use Case Meta-model of the
present feature to emphasize said connection, but are represented using the color
assigned to the feature they belong to (green in Figure 4.3-3).
Whenever a Borrowed Use Case exists in the Usability Use Case Meta-model of a
usability feature, the corresponding interrelationship must be noted and described in the
feature Interrelationships field of the Usability Elicitation Guideline.

3. Template Use Cases: As their name indicates, Template use cases represent the place
in the diagram where the development team must substitute the corresponding domain-
specific use case. Most Functional Usability Features do not exist on their own; they
are tied or triggered by other events in the system (a user executing a particular event
or clicking a particular button, etc.). These actions naturally vary from system to
system, but the way in which they relate to other Concrete Usability Use Cases remains
a constant, so their place is reserved within the Usability Use Case Meta-model, along
with the relationships it will have with the other elements present within it.
These Template Use Cases are always represented in gray with italic font, to
distinguish them from Concrete and Concrete Borrowed use cases.

Use cases, regardless of setting, with the exception perhaps of the simplest of systems, tend to
be interrelated. For example, when choosing which use cases to implement during a particular
phase or iteration of development, one must carefully determine the composition of such a set
of use cases, as to not leave out any that will inevitably have to be included later for having
some sort of dependency with one that is already included, or vice versa. Because of these
dependencies, the Usability Use Case Meta-model in every guideline of this work is
accompanied by a Usability Use Case Dependencies table like the one shown in Table 4.3-3,
where the “X” identify every pair of use cases that are dependent on each another.

Table 4.3-3 Usability use case dependencies table
 [FUF_ID]_UC-1

[FUF_NAME]
[FUF_ID]_UC-2
[FUF_NAME]

… [FUF_ID]_UC-n
[FUF_NAME]

[FUF_ID]_UC-1 [FUF_NAME] - X
[FUF_ID]_UC-2 [FUF_NAME] X -
… - X
[FUF_ID]_UC-n [FUF_NAME] X -

4.3.1.2.2 Usability use case modelling: Task description
When software analysts decide to create a use case model for their system, the Usability Use
Case Meta-models serve as a template for the usability requirements. Concrete use cases will
be transferred directly to the project’s use case model, while the so called ‘template’ use cases
depicted in gray will be substituted for the appropriate, project-specific use case as needed.

The Use Case Meta-model contains all use cases related to the Functional Usability Feature
that they belong to. However, in many cases the entirety of the feature will not be needed
within a project, and only a sub-set of these use cases will be part of the final model.

 54

Once all needed use cases in the meta-model have been included, the resulting use case model
will be said to contain all the elicited usability information. At this point the proposed process
can continue on to the next task or stop, keeping the output documents produced so far.

Appendix 9.1 shows an example of how this task is applied.

4.3.1.3 Identification of system responsibilities for usability
The System Responsibilities that are defined for each Functional Usability Feature represent
what is expected of the resulting software in order to fulfill the elicited Functional Usability
Features. Analysts can identify which of these responsibilities will be needed within their
system with the help of the UEC / SR mapper.

4.3.1.3.1 Artifacts involved
The guideline artifacts involved in this task is the System Responsibilities list, described in-
depth in the following section.

4.3.1.3.1.1 System Responsibilities

As explained earlier in the elicitation and analysis phase, the stakeholder discussion items of
the UEG are grouped into clusters according to their topic of discussion. These clusters
represent the basis for the goals expected to be fulfilled by the system, and as such, serve as a
blueprint for what the core System Responsibilities of such a system will need to be.

In order to determine the exact System Responsibility, each cluster is studied, and the main
goal expected of the system is extracted. Each cluster will give way to one or more System
Responsibilities, except in seldom cases where the goal of a given cluster might need to be
separated into multiple System Responsibilities for clarity. A concrete example of this artifact
is shown in section 5.2.1.4 of Chapter 5 shows for the Undo feature.

Table 4.3-4 shows the structure of a System Responsibility list.

Table 4.3-4 Structure of System Responsibility list
System Responsibilities List for [Name of FUF]

List of all System Responsibilities for this FUF, in the following notation:
[FUF ID]_SR_[i] [Title]:[Description]

In the System Responsibilities List, each System Responsibility is labeled as follows: [FUF
ID]_SR_[i] [Name of System Responsibility i]: [Description of System Responsibility i],
where:

1. FUF ID, is the three-to-five letter identifier assigned to the Functional Usability Feature
in question during elicitation.

2. SR, represents that this is a System Responsibility.
3. [i], is a sequential number assigned to every responsibility
4. [Title], is a short sentence describing the goal of the System Responsibility, using an

infinitive verb
5. [Description], is the full description detailing, at an initially abstract level, what the

system should do in order to fulfill this System Responsibility
Every System Responsibility list is accompanied by a Usability Elicitation Clusters / System
Responsibilities mapper. This mapper helps analysts determine which of the proposed System
Responsibilities for a feature are applicable for their project, depending on the results of the
elicitation process.

Table 4.3-5 shows the structure of this Usability Elicitation Clusters / System Responsibilities
mapper.

 55

Table 4.3-5 Structure of the Usability Elicitation Clusters / System Responsibilities Mapper
Usability Elicitation Cluster Dependent System Responsibilities

List of Usability Elicitation Clusters
expressed as: [FUF ID]_EC_i

List of dependent system Responsibilities for each Usability Elicitation Cluster expressed as:
[FUF ID]_SR_n [Name of System Responsibility n]
…
[FUF ID]_SR_m [Name of System Responsibility m]

The UEC / SR Mapper is a two-column table. In the first column there is a list of all the
elicitation clusters, identified their id and name. The second column contains all the System
Responsibility dependencies for each clusters.

Every cluster may have one ore more System Responsibilities that depend on it, meaning that
they will only be implemented if said cluster is present after elicitation.

The System Responsibilities are expressed in the following notation: [FUF ID]_SR_n [Name
of System Responsibility n].

4.3.1.3.2 Identification of system responsibilities for usability: Task description
In order to determine which System Responsibilities are to be included in the system, the
development team (most commonly, the analyst role) must look at which Usability Elicitation
Clusters were found to be applicable in the elicitation and analysis phase (see section
4.3.1.1.1.2). With the use of the UEC/SR mapper, the team then determines, for each
applicable cluster, which System Responsibility is relevant to the system. After doing this for
all applicable clusters, the team will have determined the subset of System Responsibilities
that must be designed in this phase of development (i.e. solely those that embody what was
elicited for each functional usability feature).

Appendix 9.1 shows an example of how this task is applied.

At this point the proposed process can continue on to the next task or stop, keeping the all the
analysis and elicitation documents produced so far, namely the requirements document and
and the use case model including usability

4.3.2 OO Software design activities for usability
This section covers the last three tasks of the proposed process, specifically those that make
up the “OO software design activities for usability” sub-process, first shown in Figure 4.3-1,
as part of the full Software Design process. Figure 4.3-4 below shows the tasks involved in
this sub-process, now also depicting the usability guideline artifacts involved (dark gray).

 56

Figure 4.3-4 Object oriented designs for usability process with the use of the software usability guideline artifacts

4.3.2.1 Identification of high-level design component responsibilities for usability
Based on the System Responsibilities that were found to be applicable in the previous task
(see section 4.3.1.3), developers identify the corresponding high-level component
responsibilities that are relevant to their systems. These express the more abstract System
Responsibilities as groups of more finely-grained responsibilities, assigned to one or more
parts (components) of the system to be developed.

This is an optional task, and is applicable for developments which do not us an MVC-based
architecture and therefore would not benefit from the outputs of the next two tasks in this sub-
process which are MVC-based (see sections 4.3.2.2.2 and 4.3.2.3). For developments which
do use an MVC-based architecture, this task can be skipped and the process continues on the
following task, described in section 4.3.2.2.2.

4.3.2.1.1 Artifacts involved
The artifact involved in this task is the high-level design component responsibilities for
usability, described below.

4.3.2.1.1.1 High-level design component responsibilities for usability

The High-level software component responsibilities specify, at a lower abstraction level than
that of System Responsibilities, what each part of the software would need to accomplish in
order to fulfill the grater goal of a System Responsibility. A concrete example of this artifact
is shown in section 5.2.2.1 of Chapter 5 shows for the Undo feature.

The High-level software component responsibilities table (see Table 4.3-6) is a two column
table. In its first column, it lists all System Responsibilities, followed, in the second column,
by textual descriptions of which high-level design components are needed to carry it out.

 57

Furthermore, it specifies which responsibilities should be assigned to each component in
order to do so.

Taking any broad system responsibility such as the ones presented in this work, and assigning
tasks to multiple design components to carry it out is not a clear-cut task. Many different
valid solutions can be proposed, as such a process inevitably involves a certain level of
subjectivity.

Many questions arise when determining which components to consider, and, once even that
step has been covered, the question of which of the defined components is better suited to
take on which task to produce an adequate distribution of responsibilities (and future software
design) arises.

There is no definite ‘optimal’ in this regard, but there is a long history of sound principles and
patterns that, when applied correctly within a particular context, will guarantee to some extent
certain desirable quality aspects when assigning responsibilities [37].

Due to the nature of this work, where each guideline is conceived to be used repeatedly and
across multiple projects of diverse nature, the principles that were chosen have a common
goal of preserving a high level of maintainability, clarity and reuse of the resulting
components. These range from Gamma’s broader ‘low cohesion’ principle [37] to the use of
more specific GoF patterns where appropriate, producing as a result an adequate distribution
of responsibilities. It is one solution among many possible ones that could be created, but a
solution with a certain guaranteed level of quality in the more relevant aspects to the
successful use and applicability of the guidelines.

Table 4.3-6 shows the basic structure of the High-level software component responsibilities
for usability.

Table 4.3-6 Structure of the High-level software component responsibilities for usability
System Responsibility High-level design component responsibilities for usability

List of all System Responsibilities, expressed as:
[FUF ID]_SR_i [Name of System Responsibility i]

[FUF ID]_ HLCR _n: [Textual description of High-level software
component responsibilities. Suggested design components are
italicized.]
…
[FUF ID]_ HLCR _m: [Textual description of High-level software
component responsibilities. Suggested design components are
italicized.]

The first column lists all System Responsibilities, one per row, identified as [FUF ID]_SR_n
[Name of System Responsibility i], where FUF ID is the identifier of the usability feature, SR
stands for System Responsibility and i for the number of the responsibility, this is followed by
the name of that responsibility.

The second column contains one or more textual descriptions per System Responsibility.
These descriptions explain, in free text format, which generic components should be involved
in fulfilling the current System Responsibility, and, in general terms, which tasks should be
under the care of each one of those components. All component names are capitalized and
italicized for clarity. Component responsibilities are identified as [FUF ID]_ HLCR _n:
[Textual description] where FUF ID identifies the usability feature, HLCR stands for “high-
level component responsibility” and n is the number of that responsibility.

4.3.2.1.2 Identification of High-level design component responsibilities for usability: task description
In order to identify which of the High-level software component responsibilities for usability
are applicable for their system, the development team must refer to the subset of System
Responsibilities that was determined to be applicable in the previous task (see section

 58

4.3.1.3). With this information, the team must look at the High-level software component
responsibilities for usability table and select all of those that correspond to the applicable
System Responsibilities.

The output of this task will be a subset of High-level software component responsibilities for
usability. This output is however optional, and will be produced as an actual document only
in the instances where the development team does not wish to continue applying the proposed
process. This can be due to the fact that, for example, the development team for a particular
project uses a vastly different architecture from MVC, and would thus find limited use for the
lower-level usability artifacts.

Regardless of producing it as an output document however, the High-level software
component responsibilities for usability serve as a blueprint for what the Low-level software
component responsibilities will be, as is described in section 4.3.2.2.1 below.

Appendix 9.1 shows an example of how this task is applied.

4.3.2.2 Identification of low-level design component responsibilities for usability
Based on the System Responsibilities that were found to be applicable (see section 4.3.1.3),
developers identify the corresponding low-level component responsibilities that are relevant
to their systems. These express the more abstract System Responsibilities as groups of more
finely-grained responsibilities, assigned to individual classes and objects of the final design of
the system to be developed.

4.3.2.2.1 Artifacts involved
The artifact involved in this task is the Low-level design component responsibilities for
usability, described below.

4.3.2.2.1.1 Low-level design component responsibilities for usability

These low-level responsibilities are the least abstract representation of the System
Responsibilities for each of the Functional Usability Features, as they describe how they
would be designed (in terms of classes and methods) into a MVC-based system. A concrete
example of this artifact is shown in section 5.2.2.2 of Chapter 5 shows for the Undo feature.

By examining each System Responsibility and further describing them as MVC elements,
certain compromises must be made, the main one being the obvious loss of generality of the
results, as a specific architecture needed be chosen in order to descend to the level of
abstraction of objects, classes, instances, etc.

In choosing a specific architecture, we restrict the wide applicability of the resulting models,
as only systems using said architecture would benefit from them. However, in order to bring
results to the desired level of abstraction—one that development teams can use directly to
implement their software, closer to software code than has ever been provided in previous
works—the benefits of such a restriction outweigh their drawbacks.

In any case, the proposed process as a whole does not lose its generality and applicability, as
it need not be used in its entirety to produce applicable results. As explained earlier, a
development team not using MVC could still fully benefit from the proposed process all the
way to the identification of High-level software component responsibilities for usability. Such
a team would be able to assign these responsibilities to the appropriate components of their
systems, instantiating them for whatever objects make up their specific architecture. This still
represents a significant improvement over not having a process to go by when attempting to
include the Functional Usability Features into their designs.

 59

Teams who do use MVC (or equivalent), will fully benefit from this task as well as the next
one, the OO Software design for usability, described in section 4.3.2.3.

Table 4.3-7 shows the structure of the Low-level software component responsibilities table.

Table 4.3-7 Structure of the Low-level software component responsibilities (for MVC)

System Responsibility Objects Figure Object 1 … Object n
List of all System Responsibilities, expressed as:
[FUF ID]_SR_i [Name of System Responsibility i]

Description of each of the low-level
responsibilities referencing their source
high-level responsibility.

Reference to the Software
Design Diagram Meta-
models involved in this
System Responsibility

Similarly to the High-level software component responsibilities table, the Low-level software
component responsibilities table starts off with a list of System Responsibilities in its left
column. These System Responsibilities are expressed in the same syntax as in the previous
table: [FUF ID]_SR_i [Name of System Responsibility i].

The second column of this table is the Objects column. This column is divided in as many
sub-columns as objects are involved in carrying out all System Responsibilities, (even though
not all objects may be involved in all System Responsibilities). For each System
Responsibility (row), the Object columns list the specific task(s) to be carried out by that
Object (the cells of Objects not involved at all in the current responsibility are grayed out).
Each task is preceded by a number, indicating the order in which the task must take place,
across all objects.

Most of the objects listed in the Low-level software component responsibilities table
represent actual objects to be implemented directly into a software system requiring the
System Responsibility in question. There are, nevertheless, instances when responsibilities
are assigned to an object of the system’s own domain, which cannot exists nor be instantiated
until the proposed process is applied to a specific project. Such objects are represented as
DomainObjects), and emphasized here in italics for distinction from the rest of the concrete
objects. Each guideline describes exactly how and when to substitute the actual domain object
for this ‘template’.

Finally, the last column in the Figure column, which simply provides a reference to the OO
Software Design Meta-models that depict these low-level software component responsibilities
for usability.

4.3.2.2.2 Identification of low-level software component responsibilities for usability: Task description
In order to identify which of the Low-level software component responsibilities for usability
are applicable for their system, the development team must refer to the subset of System
Responsibilities that were determined to be applicable (see section 4.3.1.3). With this
information, the team must look at the Low-level software component responsibilities for
usability table and first select all of those that correspond to the applicable System
Responsibilities.

As in the high-level case, the output of this task will be a subset of Low-level software
component responsibilities for usability. This output is however optional, and will be
produced as an actual document only in the instances where the development team does not
wish to continue applying the proposed process. This can be helpful in instances when, for
example, the development team is more open to receiving aid in textual form than in that of
UML diagrams [4].

Appendix 9.1 shows an example of how this task is applied.

 60

4.3.2.3 Object Oriented software design for usability
This is the final task of the proposed process and it entails designing the software application,
or the parts of it being covered in the current iteration. During this design process, the
development team applies the proposed software design meta-models for usability to include
the required usability features

Section 4.3.2.3.1 below describes the guideline artifacts that are involved, followed by a step-
by-step description of the task in section 4.3.2.3.2.

4.3.2.3.1 Artifacts involved
The artifact used in this process is the software design meta-models for usability, described below.

4.3.2.3.1.1 Software design meta-models for usability

The software design meta-models for usability are the graphic representation of the Low-level
software component responsibilities for usability. They are made up of class and sequence
diagrams written in UML that describe the way in which the functional usability feature they
address is to be designed at the lowest level of abstraction possible, and ultimately
implemented. A concrete example of this artifact is shown in section 5.2.2.3 of Chapter 5
shows for the Undo feature.

For every object listed in the Low-level software component responsibilities table, there will
be one class in the Class and Sequence diagrams of this guideline. For every task listed in said
table, the corresponding method(s) will be created within that class, and represented in both
diagrams accordingly.

It is important to note that the proposed Usability Software Design Meta-models (as well as
the chosen responsibility allocation) is but one of perhaps many possible solutions that could
exist for each of the Functional Usability Features addressed. They represent, however, a
sound solution which follows widely accepted design principles, and is as such an important
contribution in this regard.

Figure 4.3-5 and Figure 4.3-6 show the structure of the Software Design Meta-models, in the
form of Class and Sequence diagrams. Each Usability Software Design Guideline will have
one single Class Diagram and one or more Sequence Diagrams, covering all of the System
Responsibilities. However, the relationship between System Responsibilities and Sequence
Diagrams is not one-to-one, as a group of System Responsibilities can be represented in a
single Sequence Diagram and vice-versa.

Figure 4.3-5 Structure of Software Design Meta-model. Class Diagram

 61

Figure 4.3-6 Structure of Software Design Meta-model. Sequence Diagram

Both diagrams follow the UML2 notation [21] with the following additions:

1. The ‘template’ DomainClass objects mentioned above are be depicted in a different
color (gray), to highlight them.

2. Al classes belonging solely to the present feature are depicted in the feature’s assigned
color (see Appendix 9.4 for color legend).

3. Classes belonging to other features are depicted in the color of that feature to
differentiate them. They are often represented as packages for clarity, and assumed to
contain all or some of its classes.

4. Classes or methods belonging completely to an existing software design pattern are
depicted in yet a different color (i.e. red for the Observer Pattern.)

4.3.2.3.2 Object Oriented software design for usability: Task description
The Software Design Meta-models are to be used directly within the software designs when
using a MVC6 architecture. During the system design phase(s) of a project, class and
sequence diagrams, likely among others, will be produced. For those not involving the
Functional Usability Features, software designers will proceed as usual; creating their
software designs as they normally would. However, when they must design the functionalities
that pertain to any of the Functional Usability Features, they are expected to apply these
Software Design Meta-models.

Most classes and methods present in the Software Design Meta-models can be directly copied
into the system’s own design to cover the Functional Usability Feature in question. However,
there are ‘template’ classes in these meta-models that must be substituted by the system’s
own.

The output of this task, and the final output of the proposed process when applied in full, is a
set of software design diagrams that includes all the elicited Functional Usability Features.

Appendix 9.1 shows an example of how this task is applied.

6 Projects using other architectures such as PAC (where a ‘translation’ between MVC components and those of the other architecture is
possible and common) the Low-level software design component responsibilities can still be used. Only this additional step of ‘translation’ will
be required before moving on to the design itself.

 62

4.4 Process Automation
Our proposed process can be applied manually or with the aid of our proposed Support Tool
for Usability-Oriented Development. When applying it manually, the parties involved in use
printouts (or digital versions) of the proposed guidelines, and in the automated case the
process is applied with the aid of the tool.

The purpose of this proposed tool is to help development teams apply the proposed process
more easily and efficiently. In the case of analysts, they would not need to rely on the paper
versions of the guidelines to conduct the stakeholder discussions, and the results of these
discussions can be directly input into the tool (to later transfer them to whatever format of
requirements document is used within the project. In the case of software designers the
benefit is even higher in terms of efficiency. With the manual process, UML diagrams that
need to be copied and instantiated manually one by one from paper into a UML design tool.
When using the proposed tool, however, designers receive a digital version (XML file) of
each diagram, already including only the elements that are relevant to their project. Designers
would only need to open these files with one of many UML editing tools with support for
XML, and include them directly into their projects.

The proposed tool is accompanied by a prototype pre-load application, developed to be used
only once prior to the use of the tool. Its purpose is transforming the paper guidelines into sets
of XML files that are readable by the tool, as explained later in this chapter. Once the
guidelines have been converted, they are loaded into the tool, allowing software developers to
interact with them during the proposed process. Both the pre-load application and the tool are
described in the next two sections.

4.4.1 Pre-load application
The purpose of this application is to transform a Usability Guideline for Software
Development into digital files to be fed into the proposed tool. This task is performed only
once, before first using the proposed tool. This pre-loading application also allows for the
inclusion of new guidelines should any be developed in the future.

Upon opening the pre-load application, the user is shown with a screen as the one shown in
Figure 4.4-1, for loading each of the discussion items of the UEG.

Figure 4.4-1 Loading the Usability Elicitation Guideline into the pre-load application

 63

The first four input fields in this screen are for loading the text of the discussion item, its
identifier and the identifier(s) of the discussion item(s) that follow the present item. The two
buttons that follow are for adding these subsequent items (labeled “si” and “no” for “yes” and
“no” in the case of binary questions that branch in two directions, depending on whether they
are answered in the positive or negative). Once the discussion items are added, they show up
in the text boxes below the buttons. Advanced users may click on the buttons below the text
boxes, labeled “mostrar acciones Si/No” to view the underlying XML code that is generated
for each added discussion item.

Once this information has been filled out, the user clicks on the Accept button at the bottom
of the screen and the present discussion item is closed and added to the main XML file.

When the discussion item being added can be responsible for eliminating an entire cluster of
items, the user must associate it with the corresponding System Responsibility/ies for
Usability that would be discarded. Figure 4.4-2 shows the screen where this association is
performed. In this screen the user must enter the discussion item number, the name of the
table where the system responsibilities are present (which must match the name of the source
.xls file where the system responsibilities are stored, i.e. “Undo.xls”) and the row from that
table to eliminate. Finally, clicking the lower-most button on the screen stores this
information.

Figure 4.4-2 Pre-load Application: Associating elicitation clusters and system responsibilities

The user must repeat this task for every discussion item in the Usability Elicitation Guideline.

Once all the discussion items have been loaded, the user must proceed to load the UML
models. First is the Use Case meta-model. For this, the user selects the option to add an use
case (“Añadir caso de uso”) and clicks the Accept button, as shown in Figure 4.4-3. This will
present him with a set of text fields where he is to introduce one use case at a time, along with
its associations with other elements of the diagram.

 64

Figure 4.4-3 Pre-load tool. Loading use cases.

In the first text field the user would input the name of the use case and would then click on
the button to add the use case to the XML file. The contents of the XML file is shown in the
text box at the bottom of the screen. Any associations would be added by selecting from the
drop down box the type of element that the use case is associate with (i.e. actor, another use
case, etc.), followed by the option to label the association as being of the type “include” or
“extend”. Once all this information is filled in for the present use case, the user clicks on the
button at the bottom of the screen to store it in the XML file. Users would perform this action
for all use cases in the meta-model of the Usability Diagram that they are pre-loading.

Similarly to Use Cases, elements of the software class diagram are added through the screen
shown in Figure 4.4-4.

Figure 4.4-4 Pre-load tool. Loading class diagram

 65

The user must fill out a set of text fields for the name of the class and any associations it may
have with other diagram elements. Clicking in the bottom-left button of the screen “Añadir
nueva clase” adds the current class to the XML file (as shown on the text box above the
buttons) and clears the text fields for adding a new one. Once all classes are added, the user
clicks on the bottom-right button of the screen “Finalizar” to end.

Finally, the sequence diagrams are added through the screen shown in Figure 4.4-5.

Figure 4.4-5 Pre-load tool. Loading sequence diagrams

For every sequence diagram, the user inputs the name of the diagram in the first text field. In
the next two fields, the user inputs all classes and instances that will be present in the
sequence diagram. Once those are added, the user selects them one by one from the list
generated on the left and associates it (by a method call, return message, create directive etc)
with the necessary ones on the right-hand list, until all the associations are complete.

Once the last diagram has been added, the user selects the option to generate the output files
for the present Usability Guideline. Once done for all the Usability Guidelines, the Tool is
ready to be used as explained in the next section.

4.4.2 Support Tool for Usability-Oriented Development
When using the software tool, the analyst logs into the application and selects the first
functional usability feature to address (Figure 4.4-6) during the elicitation process. By
hovering over the available features, the screen presents the user with a description of it,
including the features intent, the problem it addresses and the contexts within it is applicable.

 66

Figure 4.4-6 Software tool: Functional usability feature selection

Once the analyst has selected a feature, the applications loads the guideline and presents a
view of the Elicitation Clusters for that feature, along with text fields for recording the output
of each individual discussion item (Figure 4.4-7). In this example, the selected Functional
Usability Feature will be Undo.

Figure 4.4-7 Software tool: Elicitation clusters for Undo feature

As the discussions move forward, the active discussion is highlighted in red, and discussion
items is marked are grayed out as they are ‘covered’, highlighting the next one in the
sequence. When the result of a discussion item discards one or more future items they are
grayed out and skipped automatically by the tool. In this example, the stakeholders have
stated the need for an undo feature of three levels, global and over specific objects, without
redo, with no viewable history list and no “smart menus” (see Undo guideline in Chapter[G]
for a definition of these terms)

 67

If during the discussion process either the analyst or any of the stakeholders need more
information on a given discussion item, clicking on the (?) icon will present information
pertaining to that item from the Elicitation Guideline (i.e. underlying HCI recommendation,
usage examples, etc.)

Once all the discussion items are covered, and together with the pre-loaded information for
each guideline, the tool now has the necessary information needed to generate all the outputs.
The user is then returned to the first screen (Figure 4.4-6) and clicking on the “Download”
button will produce a zip file containing all the output files as explained below.

The first downloadable file is a plain-text file containing the answers given during the
elicitation process. For the present example, the resulting file is shown in Table 4.4-1.

Undo - Elicitation Results

List of damaging actions
 Deleting files

Damaging undoable actions
 Deleting files

Access method(s) to undo
 Undo will be accessed through the Edit menu

Number of undo and/or redo levels
 Three

List of elements for object-specific undo
 All graphic elements

List of elements for object-specific undo + access method
 right-click over element

Table 4.4-1 Software tool output: Elicited information regarding usability

For the next downloadable product, the tool first accesses the pre-loaded relationships
between applicable Usability Elicitation Clusters and System Responsibilities for Usability.
With this information, it generates a file containing only the applicable System
Responsibilities, making it available for download as an editable spreadsheet document,
should the user be interested in this output. The actual file produced for this example is shown
in Figure 4.4-8, where only the first, second and seventh System Responsibilities for Usability
are applicable.

Figure 4.4-8 Software tool output: System Responsibilities

With the information about which System Responsibilities are applicable, the application
automatically generates documents containing the applicable high and low level software
component responsibilities for usability, making them optionally available for download as
editable spreadsheet documents as well. These two files, as produced for this example, are
shown in Figure 9.1-2 and Figure 9.1-3, respectively.

 68

Figure 4.4-9 Software tool output: High-level software component responsibilities

Figure 4.4-10 Software tool output: Low-level software component responsibilities

Using the pre-loaded information and the results of the elicitation process, the tool also
produces an instantiated version of the Usability use cases for usability meta-model,
containing only the applicable use cases for what was elicited. They are produced in standard
XMI format for UML and are readable by any UML editing application with the option to
import such files. Should the development team be interested in modeling use cases they can
import this file into any freely available UML modeling application, such as StarUML, and
edit it directly, as shown in Figure 4.4-11.

 69

Figure 4.4-11 Software tool: Importing XML output for UML diagrams into StarUML

For this example, the resulting use case diagram, including only the relevant use cases, is
shown inFigure 4.4-117. When compared to the original Usability Use Case Meta-model in
page 77, we can see that the use cases relating to redo and other features discarded in
elicitation, have been excluded.

Figure 4.4-12 Software tool output: Usability use cases meta-model

Finally, and based on the low-level responsibilities that were determined to be applicable, the
system generates all relevant design diagrams and makes them available for download as an
editable UML file as well. The class diagram for this example is shown in Figure 4.4-12,
where, when comparing to the original Software Design Meta-models for usability in page
86, we can see that the methods pertaining to redo aren’t present, as well as the redo-related
Exceptions.

Figure 4.4-13 Software tool output: class diagram

7 All generated XMI files, when opened by StarUML, show the graphic elements correctly on screen yet at random placements. For this
example, the elements have been moved to resemble their original locations on the Usability Guidelines.

 70

!"#$%&'()* +,#-./.%0(1+.2&/.3&,(45'(
,54%6#'&(2&7&/5$8&3%(

5.1 Introduction
This chapter contains the Usability Guidelines for Software Development proposed for the
eleven Functional Usability Features addressed in this work.

The Undo guideline, which covers the user’s need to revert the effects of a previously
executed action, or series of actions, within an application, is described in section 5.2.

Section 5.3 presents the Abort guideline. Abort entails canceling on-going commands within
an application and to exit the application altogether.

In section 5.4 the Step-by-Step guideline is presented, covering allowing tasks with multiple
steps to be represented as a series of navigable windows

The Progress guideline is described in section 5.5. This usability feature aims at providing
the user with accurate visual feedback on the progress of the current task.

The guideline for the System Status Feedback feature, which provides the user with
information on the different statuses the system might be in at any given time, is detailed in
section 5.6.

Section 5.7 presents the guideline for the Warning feature. This feature entails providing
different alert types upon execution of sensitive actions.

The Multi-level Help guideline is described in section 5.8. Multi-level Help allows the user
to access textual help features in different levels of detail throughout a software application

In section 5.9 the Commands Aggregation guideline is presented. This usability feature
allows the user to aggregate commands into macro-like structures for ease of batch execution.

The Preferences guideline, covering the user’s need to receive accurate visual feedback on
the progress of the current task, is described in section Section 5.10.

 71

The guideline for the Favorites feature, which allows the user to bookmark and keep a
collection of favorite places within an application, is presented in section 5.11.

Finally, 5.12 presents the guideline for the Personal Object Space feature. Personal Object
Space covers the users needs to arrange and manipulate objects graphically on screen.

Every one of the aforementioned sections, aside from presenting the Usability Guideline for
Softare Development that it covers, describes every artifact of that guideline in detail. As
mentioned in Chapter 3, these artifacts cover the analysis and design phases. For the analysis
phase, these artifacts are:

• The Usability Elicitation Guideline
• The Usability Elicitation Clusters
• The Usability Use Cases Meta-model
• The System Responsibilities

The artifacts intended for the design phase are the following:

• The High-level design component responsibilities
• The Low-level design component responsibilities for MVC
• The Software Design Meta-models

Each of these is described for every guideline in the following eleven sections. Furthermore
each guideline has an associated color in which it’s use cases and classes are depicted. As the
usability features covered by the guidelines often overlap, color coding is needed to
diferenciate the elements of a specific feature from those that belong to other features. The
colors assigned to each feature throughout this chapter are shown in

Figure 5.1-1 Color Legend for the functional usability features covered in this work

Finally, elements taken from existing software design patterns are also depicted in different
colors, red for the Observer Pattern and yellow for the Command Pattern [37].

 72

5.2 “Undo” Usability Guideline for Software Development
The Undo Functional Usability Feature covers the user’s need to revert the effects of a
previously executed action, or series of actions, within an application. Undo allows users the
liberty to explore the application’s functionality, to make mistakes or to change their minds
during execution without being penalized for it (by being allowed to undo undesired results).

The Usability Guideline for Software Development is made up of Analysis and Design
artifacts, described for the Undo feature in sections 5.2.1 and 5.2.2, respectively.

5.2.1 Usability Guideline for Software Development: Analysis artifacts
There are four artifacts to be used during the analysis phase: the Usability Elicitation
Guideline, the Usability Elicitation Clusters, the Usability Use Case Meta-models, the System
Responsibilities for Usability. These artifacts are described in the following four sections.

5.2.1.1 Usability Elicitation Guideline
Table 5.2-1 shows the Usability Elicitation Guideline for the Undo Functional Usability
Feature. In this guideline, there are six HCI recommendations, described below.

5.2.1.1.1 Undoing actions
HCI authors suggest that the Undo functionality is necessary within applications where users
can perform actions with potentially permanent consequences. This would encourage users to
explore and learn the application functionalities without fear of making irrevocable mistakes
(U_HCI-1). What the terms ‘permanent consequences’ and ‘irrevocable mistakes’ mean
exactly will depend greatly on the application being developed and therefore must be clearly
defined by the project stakeholders (U_ELAB-1) during elicitation. Only after doing so it will
be necessary to discuss which system actions will indeed be required to be undoable (U_Q-1
to U_Q-3). In Table 5.2-1, example U_EX-1: “Costly vs. undoable actions” describes an
example for this HCI recommendation.

5.2.1.1.2 Providing warnings for non-undoable actions
Some actions are simply not undoable, so the need for a warning when users attempt to
perform them is discussed (U_HCI-2). This type of warnings represent what is defined as an
Authorization within the Warning guideline (U_ELAB-2). If such actions exist within the
application to be developed, stakeholders must pinpoint them (U_Q-4) and determine how to
address them, according to the Warning guideline. Example U_EX-2: of Table 5.2-1, “File
deletion w/warning”, describes an example for this HCI recommendation.

5.2.1.1.3 Redoing actions
With the ability of undoing an action comes the possibility of redoing it (U_HCI-3), which
entails reverting the effects of an initial Undo invocation, if any (U_ELAB-3). Similarly to
the elicitation of the undo functionality, the discussions proposed for this HCI
recommendation (U_Q-5 and U_Q-6) will determine if and how to provide the redo
functionality. Example U_EX-3: “Redoing in MS Word” describes an example for this HCI
recommendation, in Table 5.2-1.

5.2.1.1.4 Maintaining history log
Also, the need to undo more than just the latest action is explained, and the possibility of
undoing a series of actions invoked by the user is suggested through the use of some kind of
log or history (U_HCI-4). This history may be linear or have a complex tree structure
(U_ELAB-4) and whether or not it’s required, its potential size and the ways to access it are
discussed with stakeholders in discussions U_Q-7 to U_Q-9. In Table 5.2-1, example U_EX-
4: “MS Word’s undo Stack” describes an example for this HCI recommendation.

 73

5.2.1.1.5 Supporting ‘smart-menus’
Smart menus that tell the user which action is next to undo (U_HCI-5) are also part of the
recommendations put forth by the HCI in this regard. They are easily provided within an
application that holds a log or history (U_ELAB-5) and stakeholders must decided if it’s
needed, and if so, how to present it to the user (U_Q-10 and U_Q-11). Example U_EX-5:
“Smart Menus in drawing app” describes an example for this HCI recommendation, in Table
5.2-1.

5.2.1.1.6 Providing object-specific undo
Certain applications require that users be able to undo the latest action invoked over a specific
object rather than over the application as a whole (U_HCI-6). This functionality is fairly
straightforward and can be achieved by filtering the log or history of executed actions
(U_ELAB-6). Discussion items U_Q-11 to U_Q-13 will determine which system objects (if
any) will require this type of specific undo and how to provide the functionality to the user.
Example U_EX-6: “UML Design Program” in Table 5.2-1, describes an example for this HCI
recommendation.

 74

Table 5.2-1 Usability Requirements Elicitation Guideline. Undo.
Identification
Name Undo
Family Undo/Cancel
Aliases Multi-Level Undo [42]; Undo [49]; Global Undo / Object-Specific Undo [36]; Allow Undo [11]
Intent
Undo provides a way for the user to revert the effects of a previously executed action or series of actions within an application.
Problem
Users may need to undo certain actions they perform for a variety of reasons: They could have been exploring new functionality, have made a mistake or simply have changed their minds about what they have just done.
Context
Undo should be considered when developing highly interactive applications where users may perform sequences of steps, or execute actions that have tangible consequences.
Interrelationships
When including Undo in an application, in order to accommodate damaging actions that cannot be undone (and must thus trigger a warning to the user) the Warning feature must be considered
HCI Recommendation Elaboration Discussions with Stakeholders Usage Examples (optional)
U_HCI-1 Undoing Actions
Users typically explore functionality of an application but do not want to be
“punished” when selecting unwanted functions [49]. The ability to undo a long
sequence of operations lets users feel that the interface is safe to explore.
While they learn the interface, they can experiment with it, confident that they
aren’t making irrevocable changes – even if they accidentally do something
bad.

So, first decide which operations need to be undoable [42]: Any action that
might change a file (i.e. anything that could be permanent) should be
undoable, while transient or view-related states often are not.

In any case, make sure the undoable operations make sense to the user. They
can be specific functions or a meaningful group of actions (for example,
changing the printer settings) [49]. Be sure to define and name them in terms
of how the user thinks about the operations, not how the computer thinks
about them.

U_ELAB-1: Choosing undoable actions
All actions with important consequences
should provide the undo feature, save for
those for which there are greater impeding
factors present.
For actions which are expensive to revert,
The cost/benefit ratio of providing it with an
undo feature should be evaluated.

The term ‘important consequences’ must be
clearly defined before deciding which actions
will be undoable.

U_Q-1 Which user actions are considered to have
important consequences?

U_Q-2 Of these actions, which will support undo?

U_Q-3 How will the user be provided access to the
undo functionality?

U_EX-1: Costly vs. undoable actions
Deleting a file from a system will most likely have
important consequences and should be undoable

Sending an email has important consequences (the
email reaches the other party), but it is not directly
undoable. Only such a limitation should keep a
system from providing the undo feature.
Deleting files from a hard drive, though undoable,
tends to be an expensive operation to revert.

U_HCI-2 Warnings for non-undoable actions
If a command has side effects that cannot be undone, warn the user before
executing the command and do not queue it [49]

U_ELAB-2: Warnings: Authorization
Most likely a warning of the type
Authorization will be required. See warning
pattern for the warning process.

U_Q-4 Of the damaging actions that cannot be
undone, which will require a warning to be
displayed to the user?

U_EX-2: File deletion w/warning
If deleting a file from a hard drive is an undoable
operation, the user will need to be warned (OK -
Cancel style authorization) before the deletion is
carried out.

 75

U_HCI-3 Redoing Actions
Users tend to explore a navigable artifact in a tree-like fashion, going down
paths that look interesting, then back up out of them, then down another path
[42]. So, an undo stack will need to be created. Each operation goes on the
top of the stack as it is performed; each Undo reverses the operation at the
top, then the next,... The undo concept must also include the concept of redo
needed in case the user backs up too many steps [36]. Redo works its way
back up the stack in a similar manner. The best undo should preserve the tree
structure of the command execution sequence.

U_ELAB-3: Redo: Availability
Redo should only revert the effects of the
latest applied Undo. Some existing software
currently use the Redo feature as a way to
repeat the execution of any command. In the
way in which we refer to it here, we strictly
mean Redo as a way to revert a previously
executed Undo. In this context, when no
Undo command has been executed, Redo
should not be available

U_Q-5 Will a redo functionality be provided?

U_Q-6 How will the user be provided access to the
redo functionality?

U_EX-3: Redoing in MS Word
When undoing the changing of the font of a
paragraph in MS Word, executing Redo will revert the
text to its original font (before executing undo)

U_HCI-4 Maintaining History Log
Often users want to reverse several actions instead of just the last action [49].
So, the stack should be at least 10 to 12 items long to be useful, and longer if
you can manage it. Long-term observation or usability testing may tell you
what your usable limit is (Constantine and Lockwood assert that more than a
dozen items is usually unnecessary, since “users are seldom able to make
effective use of more levels”. Expert users of high-powered software might tell
you differently. As always, know your users.

Most desktop applications put Undo/Redo items on the Edit menu. Show the
history of commands so that users know what they have done [49]. Undo is
usually hooked up to Ctrl-Z or its equivalent

U_ELAB-4: History: Stack size and type
Ideally undo/redo should use a tree structure
instead of a stack structure to keep record of
the actions, however the tree structure
requires an important coding effort, so have
this in mind when determining which kind of
structure will be needed to keep record of
the actions to be undone/redone. Notice that
the system may have a global stack with a
concrete size, or depending on the system,
the size of the stack may be different for
different functionalities.

U_Q-7 How many levels of undo and/or redo will be
provided?

U_Q-8 Will the user have access to the undo stack
(history)?

U_Q-9 If so, how will the user be presented with the
undo stack?

U_EX-4: MS Word’s undo Stack
MS Word and others provide users with a visual list
(stack) of the latest operations executed within the
application. Within this stack, users can not only view
the operations in the order in which they would be
undone, but they can select an operation deep within
the stack and undo it, along with every operation that
was executed after it.

U_HCI-5 Supporting mart Menus
The most well-behaved applications use Smart Menu Items to tell the user
exactly which operation is next up on the undo stack.

U_ELAB-5: Smart Menus and History
Smart menus are tightly related to the
command history (stack). If one is kept, it’s
relatively simple to offer smart menus
different functionalities.

U_Q-10 Will the user have information about the
expected outcome of performing undo at any
given time (smart menu)?

U_Q-11 If so, how will this information be provided to
the user?

U_EX-5: Smart Menus in drawing app
When the last performed operation in a drawing
program was “paint red”, the undo menu, or
equivalent, should display “undo paint red” as
opposed to the more generic “undo”

U_HCI-6 Providing object Specific Undo
The software system must provide the possibility for the user to easily access
(for example, through the right button) the specific commands that affect such
an object. One should be the undo/redo function. In this case, the system
should filter the global undo stack and show only the operations that affected
the state of the selected object [36].

U_ELAB-6: Object-specific & Global Undo
Redo will only be available at object level if it
is available globally. Same with undo.

U_Q-12 Will the system require Object Specific Undo?

U_Q-13 If so, which system elements will require
object-specific undo/redo?

U_Q-14 How will this feature be accessed by the user?

U_EX-6: UML Design Program
In a UML design program, selecting the graphic
representation of a Class within a diagram would
should provide the option to undo the operations
performed on (and only on) this particular Class.

 76

5.2.1.2 Usability Elicitation Clusters
The Usability Elicitation Guideline in Table 5.2-1 suggests fourteen discussions items (U_Q-
1 to U_Q-14) to be held with stakeholders in order to elicit all aspects of the Undo Functional
Usability Feature. These discussion items can be clearly divided into seven initial groups, or
clusters, as described in the Usability Elicitation Clusters in shown in Figure 5.2-1, according
to the portion of the Undo functionality that they cover.

U_EC-1 Undoing actions: The discussion items in this cluster, shown in Figure 5.2-1,
cover which actions will need to be undone within the system for being considered
‘damaging’. For non-undoable actions (those that are considered ‘damaging’ but
are determined to not be undoable) a warning of some kind may be required,
deferring the discussion to the Warning Feature.

U_EC-2 Providing access to Undo: Following the discussion flow (arrows) onto the next
cluster in Figure 5.2-1, it can be observed that once it has been determined that
Undoing actions will be required, and its details have been specified, this
elicitation cluster discusses how the option to undo will be presented to the user.

U_EC-3 Redoing actions: Once the need for an Undo functionality has been established,
this elicitation cluster will determine if the Redo functionality is needed.

U_EC-4 Providing access to Redo: This cluster embodies the discussion items regarding
the way in which the Redo option will be presented to the user.

U_EC-5 Supporting Multi-level undo and history: This cluster covers thee discussions
concerning the history log. It determines whether the history will be comprised of
multiple levels, thus providing the possibility of undoing multiple actions as
opposed to just the last one. Also, the possibility of accessing this history for
purposes other than undoing/redoing actions (i.e. viewing them) is addressed.

U_EC-6 Providing expected results of Undo/Redo (“smart menus”): Also related to the
history log is the capability of providing ‘smart menus’ within the application,
addressed in this cluster. When a user selects the option to ‘undo’ an action within
an application, if the menu item is of the form of ‘Undo <action name>’ it is
considered to be a ‘smart menu’ (the name of the action to undo is retrieved from
the history log.)

U_EC-7 Undoing/Redoing actions over specific objects: Lastly, this cluster covers the
need of providing the user with the ability to undo the latest action performed over
a specific object within the system.

 77

Figure 5.2-1: Elicitation Clusters. Undo.

 78

5.2.1.3 Use Case Meta-model
The Use Case Meta-model for the Undo feature is shown in Figure 5.2-2 (See page 71 for
color legend), in which seven use cases are identified and described below.

U_UC-1 Undo: the user requests that the system revert the effects of the last invoked action.
This can be done globally or by object. When doing it globally, the user calls Undo
with no further specification, meaning that the last undoable action will be reverted.
When doing it by object, Undo will be called over the object, which will revert the
effects of the last undoable action that was invoked on it.

U_UC-2 Redo: the user requests that the system revert the effects of the latest undo invoked,
be it global or object-specific.

U_UC-3 ShowHistory: The user request that the system display all the elements in the
undo/redo queue (if any). This queue, or History (see U_UC-7) holds the sequence
of undoable actions that have been executed

U_UC-4 ShowNextUndoable: The user requests (through ‘smart menus’, for example) that
the system inform them of the name of the action that would be undone if Undo
were to be executed at that specific moment.

U_UC-5 ShowNextRedoable: The user requests (through ‘smart menus’ for example) that
the system inform them of the name action that would be redone if Redo were to be
executed at that specific moment.

U_UC-6 UndoableUserAction: This use case is depicted in gray to illustrate that it is a
“Template Use Case” and must be replaced by the actual action to undo/redo, if
known (see page 71 for notation). The user orders the execution of an undoable
action within the system. This use case represents the many undoable actions that a
particular system can support. These actions can be either invoked by the user
directly, or by the undo or redo commands when undoing or redoing, respectively.
For example, the user can directly call an action called “turn light #5 on”, or it can
be triggered as part of the invocation of Undo when the user calls to undo an action
such as “turn light #5 off”

U_UC-7 SaveToHistory: Whenever an Undoable User Action is executed, it is saved to the
undo queue or History. This use case is triggered by every execution of an undoable
action, hence an included use case of UndoableUserAction.

Figure 5.2-2 Use Case Meta-model. Undo

 79

The applicability of each of these use cases will depend on the results of the elicitation
process. If during elicitation of the Undo feature it is determined, for example, that no Redo
feature is needed, then that use case will be discarded. Use cases also depend on one another.
These dependencies are shown in Table 5.2-2, where we can see the following:

• The Undo use case needs the SaveToHistory use case, as for there to be anything to
undo it must have been first saved to history. Similarly, it needs the UndoableUseCase
(as does every other use case in this feature), which is the actual action to be undone.

• The Redo use case, aside from needing the SaveToHistory use case, needs the Undo use
case. For there to be anything to redo, it must have been undone first.

• In the case of ShowHistory, aside from needing SaveToHistory, it needs the Undo use
case. For a history list to make sense, actions need to be undone and stored in it.

• ShowNextUndoable and ShowNextRedoable have the same dependencies as ShowHistory.
• The UndoableUserAction needs the Save To History use case, because by definition, if

it’s undoable, it must be stored in history in order to be potentially undone.
• Finally, the SaveToHistory use case need the Undo use case, as if there are no actions

being undone there will never be anything to store in the history list.

Table 5.2-2 Usability Use Case Dependencies: Undo Functional Usability Feature
 U_UC-1

Undo
U_UC-2

Redo
U_UC-3

Show History
U_UC-4

Show Next
Undoable

U_UC-5
Show Next
Redoable

U_UC-6
Undoable
Usr Action

U_UC-7
Save to
History

U_UC-1 Undo - X X
U_UC-2 Redo X - X X
U_UC-3 Show History X - X X
U_UC-4 Show Next Undoable X - X X
U_UC-5 Show Next Redoable X X - X X
U_UC-6 Undoable User Action - X
U_UC-7 Save to History X X -

Looking at the columns of Table 5.2-2, both Undo and SavetoHistory are core to this feature.
If either were discarded no other part of it could be implemented. Furthermore, implementing
these two use cases alone would represent the minimal expression of the Undo feature, i.e. a
system where the user can undo actions (stored in an internal list), and nothing more.

5.2.1.4 System Responsibilities for Usability
Table 5.2-3 shows the proposed System Responsibilities for Usability for the present feature.

Table 5.2-3 System Responsibilities List for Undo
System Responsibilities List for Undo

U_SR-1 Store Undoable Executed Actions:
The system must store all undoable actions that are executed
U_SR-2 Support Undo Functionality
The system must allow users to undo executed (undoable) actions
U_SR-3 Provide Access to Undo
The system must provide access to the Undo feature as agreed with user
U_SR-4 Support Redo Functionality
The system must allow users to redo undone actions
U_SR-5 Provide Access to Redo
The system must provide access to the Redo feature as agreed with user
U_SR-6 Support Multi-level Undo
The system must allow undoing of as many executed actions as agreed
U_SR-7 Support Multi-level Redo
The system must allow redoing of as many undone actions as agreed
U_SR-8 Show History
The system must allow consulting the contents of the history of executed actions
U_SR-9 Provide Expected Results of Undo
The system must provide smart menu functionality for Undo feature
U_SR-10 Provide Expected Results of Redo
The system must provide smart menu functionality for Redo feature
U_SR-11 Provide Object-specific Undo
The system must provide means to undo latest action(s) over an object
U_SR-12 Provide Object-specific Redo
The system must provide means to redo latest action(s) over an object

 80

These System Responsibilities for Usability are derived from the Usability Elicitation
Clusters identified in section 5.2.1.2 as follows:

U_EC-1 Undoing actions: As mentioned earlier, this elicitation cluster contemplates the
stakeholder discussion items regarding the very basics of incorporating the undo
functionality into any given system: firstly, will it be needed, and, if so, for which
system actions will it be provided. This translates into the very core of the undo
feature, which contemplates somehow saving such actions when they are executed,
and eventually undoing them. Thus, this elicitation cluster would yield two such
System Responsibilities, namely U_SR-1 Store Undoable Executed Actions and
U_SR-2 Support Undo Functionality.

U_EC-2 Providing access to Undo: This smaller elicitation cluster covers the details of
how the undo functionality will be presented to the user (i.e. menu item, control
sequence, etc) and thus yields the corresponding System Responsibility U_SR-3
Provide Access to Undo.

U_EC-3 Redoing actions: This elicitation cluster covers the need for a Redo feature for the
actions chosen as undoable in U_EC-1. It yields U_SR-4 Support Redo
Functionality.

U_EC-4 Providing access to Redo: This elicitation cluster tackles the details regarding
how the redo functionality will be presented to the user. In an analogous fashion to
its redo counterpart, this cluster yields System Responsibility U_SR-5 Support
Redo Functionality.

U_EC-5 Supporting Multi-level Undo and Redo: This elicitation cluster covers all
aspects related to the stack or history unto which undoable actions will be stored
for later undoing/redoing. As such it yields two System Responsibilities regarding
the support for traversing this history while undoing/redoing, namely U_SR-6
Support Multi-level Undo and U_SR-7 Support Multi-level Redo. Furthermore,
it covers the potential user need to not only traverse this list of executed actions,
but to see it, hence yielding U_SR-8 Show History List.

U_EC-6 Providing expected results of Undo/Redo: This Elicitation Cluster covers the
need for ‘smart menus’, where upon calling either Undo or Redo, the user will be
informed of the next action to be undone/redone, respectively. It yields the two
corresponding System Responsibilities U_SR-9 Provide Expected Results of
Undo and U_SR-10 Provide Expected Results of Redo.

U_EC-7 Undoing/Redoing actions over a specific object: This Elicitation Cluster
resembles those pertaining to defining the Undo and Redo operations within the
system, with the sole difference that in this case these operations are to be applied
over specific objects. The discussions involved will provide as output a set of
system actions (if any) that will require Undo and/or Redo. It yields two System
Responsibilities: U_SR-11 Provide Object-specific Undo and U_SR-12 Provide
Object-specific Redo.

Table 5.2-4 maps the relationships between the Usability Elicitation Clusters and the
Usability System Responsibilities described above, for easy reference. Any project
determined to require a specific Elicitation Cluster will also require its related System
Responsibilities. Likewise, if a cluster is discarded during elicitation, its related
responsibilities will not be a part of the resulting system.

 81

Table 5.2-4 Usability Elicitation Clusters / System Responsibilities for Usability Mapping for Undo
Elicitation Clusters System Responsibilities for Usability

U_EC-1 Undoing actions U_SR-1 Store Undoable Executed Actions
U_SR-2 Support Undo Functionality

U_EC-2 Providing access to Undo U_SR-3 Provide Access to Undo
U_EC-3 Redoing actions U_SR-4 Support Redo Functionality
U_EC-4 Providing access to Redo U_SR-5 Provide Access to Redo
U_EC-5 Supporting Multi-level Undo and Redo U_SR-6 Support Multi-level Undo

U_SR-7 Support Multi-level Redo
U_SR-8 Show History

U_EC-6 Providing expected results of Undo/Redo U_SR-9 Provide Expected Results of Undo
U_SR-10 Provide Expected Results of Redo

U_EC-7 Undoing/Redoing actions over a specific object U_SR-11 Provide Object-specific Undo
U_SR-12 Provide Object-specific Redo

5.2.2 Usability Guideline for Software Development: Design artifacts
The Undo feature is perhaps the most widely known Functional Usability Feature we cover in
this work. It has been contemplated in literature for the past three decades and since then,
numerous approaches for an architectural solution have emerged.

In the realm of object orientation, Gama et al. [37] propose what many OO languages today
use at the core of their various implementations of the Undo feature: the ‘Command’ pattern.

In our work we have also used this pattern as the basis of the design artifacts for the Undo
feature. It is of little contribution to ‘reinvent the wheel’ in this regard, so we’ve opted to
adapt a pattern already proven successful to our specific needs: the use of an MVC
architecture and additional HCI considerations not covered by the original Command pattern.

In section 5.2.2.1 the System Responsibilities are brought to a lower abstraction level as
High-level Design Component Responsibilities, and section 5.2.2.2 as Low-level Design
Component Responsibilities (for a MVC architecture). Finally, section 5.2.2.3 presents the
Usability Design Meta-models for said Low-level Design Component Responsibilities as
object-oriented class and sequence diagrams.

5.2.2.1 High-level Design Component Responsibilities
In order to support the System Responsibilities identified 5.2.1.4 at design level, the
following sections describe the suggested High-level Design Components and their
responsibilities for the Undo feature.

As mentioned earlier, the Undo feature has been addressed extensively in previous works. As
such, those research results have already addressed significant parts of its expected
functionality. Such is the case of the Command Pattern by the "Gang of Four" (GoF) [37],
which we have chosen as the core of the design artifacts for this feature. Components (and, in
the following sections, classes and objects) like the “Command” component, are taken
directly from this widely known design pattern to fulfill the needs that arise from the
corresponding System Responsibilities.

A smaller portion of the High-level Design Component Responsibilities described in the
following sections, like some contained in the HistoryList and, further down, those of the
History Exceptions, are not addressed by the original GoF Command pattern, and so are
included as part of the original contribution of this work in order to fulfill the entirety of the
expectations of this feature.

Another pattern used across all the guidelines is the GoF Observer pattern, as it is an integral
part of the MVC architecture itself.

When represented graphically, objects and/or classes belonging to the GoF Command pattern
or the Observer pattern are depicted in yellow and red, respectively (see page 71).

 82

5.2.2.1.1 User Interface (UI) Component
This component is responsible for capturing all user invocations and forwarding them
(possibly through a delegating component) to the appropriate part of the domain, usually that
responsible for executing the invoked action. Specifically for this feature, calls to undo or
redo an action (globally or over a specific object) and calls to access the history list are
captured by the UI Component.

The UI Component is also responsible for relaying information to the user, including
appropriate feedback after an action has been executed. Within this feature, such information
entails displaying ‘smart menus’ for the user and keeping them up-to-date every time an
undo/redo is invoked.

For example, if the last action taken was italicizing a block of text, a ‘smart’ Undo menu
would display as “Undo italics”. Once another action is taken within the application, for
example, making a block of text bold, the ‘smart’ Undo menu should instantly change to
“Undo bold”, keeping the user informed at all times (or whenever the Undo menu item is
accessed) of the next undoable action.

Similarly, if the History List is visible to the user, the UI Component is responsible for
keeping it up-to-date by ‘listening’ to all action invocations that may alter it.

5.2.2.1.2 Domain Component
A Domain Component represents the part of the system that is responsible for executing the
actions requested by the user. In an email program, for example, clicking the ‘Send’ button
may have many intermediate effects (checking that the Subject field is not empty, loading
attachments, etc), but the part of the system that is actually responsible for sending the email
would be referred to as the Domain Component in the context of these features.

5.2.2.1.3 Command Component
Based on Gamma’s definition of the Command Pattern [37], the Command Component is
responsible for encapsulating method invocations and any pertinent state information at call-time.

When an action is invoked through the UI Component, it would normally be forwarded
directly to the Domain Component responsible for executing said action. However, when the
action that is called needs to be undoable, additional steps need to be taken before the Domain
Component is allowed to execute it.

After the call is placed in the UI, a new instance of Command is created. This instance is
initialized with the signature of the method that is being called and a reference to the Domain
Component in charge of executing it, for later invocation. It is also initialized with any state
information that will need to be restored if the invoked action is ever ordered to be undone.

Aside from storing this information, the Command Component is responsible for ultimately
calling the invoked method in the Domain Command (once the state information has been
saved), and for properly undoing said action (restoring the previous state information) should
a call to do so come from the UI Component.

5.2.2.1.4 History Component
The History Component is responsible for storing all Command instances ever created within
the system. Once an undoable call is placed in the UI, the Command Component is created, as
described previously, and immediately stored in the History Component. If a call to undo the
latest action is placed in the UI, the History Component is responsible for locating (within
itself) the Command instance which initially executed said action and ordering it to undo. The
History Component is thus responsible for keeping a record of what the next undoable action
is, both globally and for every specific object over which undo can be invoked.

 83

Table 5.2-5: Usability Guideline: High-level Design Component Responsibilities. Undo feature.
System Responsibility High-level Design Component Responsibilities

U_SR-1 Store Undoable Executed Actions The component responsible for handling user events (UI Component) must listen for calls to actions and order their execution
Execution of actions is always the responsibility of the pertinent Domain Component in the application
The component in charge of delegating actions (if any) should determine whether the action is undoable or not, from a pre-established list.
If the action to execute is undoable, it must first be encapsulated as an instance of a Command Component, together with any pertinent state information and the necessary actions
needed to revert its effects.
Such an instance is then stored in a History Component, responsible for keeping a single (ordered) collection of all executed undoable actions.
After encapsulation, the Domain Component is then free to execute the invoked action

U_SR-2 Support Undo Functionality The UI Component must listen for calls to the Undo action (if available) and order its execution
The History Component must then retrieve the last* Command, without discarding it, and order it to ‘undo’ itself.
The Command, in turn, executes the necessary actions, using the stored state information, to return the system to the state preceding its execution

U_SR-3 Provide Access to Undo The UI Component is responsible for providing the mean(s) through which a user can invoke the undo feature. The Undo action should only be available when at least one undoable
action has been executed during application up-time

U_SR-4 Support Redo Functionality The UI Component must listen for calls to the Redo action (if available) and order its execution
The History Component must then retrieve the current** Command, without discarding it, and order it to ‘redo itself.
The Command, in turn, executes the necessary actions, using the stored state information, to return the system to the state that follows its execution

U_SR-5 Provide Access to Redo The UI Component is responsible for providing the mean(s) through which a user can invoke the redo feature. The Redo action should only be available when the Undo action has
been executed at least once before during application up-time.

U_SR-6 Support Multi-level Undo When only one-level undo is supported, the History component holds only the last-executed action. However, when multi-level undo is supported, History supports an ordered
collection of said actions in the form of Commands.
The History Component is also responsible for updating (or ordering the update of) the UI every time a new Command is added to the collection or whenever the next
undoable action changes.

U_SR-7 Support Multi-level Redo As is the case with supporting multi-level Undo, when multi-level redo is supported, History holds an ordered collection of actions in the form of Commands,
The History Component is also responsible for updating (or ordering the update of) the UI every time a new Command is added to the collection or whenever the next
redoable action changes.

U_SR-8 Show History The UI is responsible for listening for updates from History Component
The History Component must keep the View informed at all times of any changes to its contents (i.e. addition/deletion of Commands, etc)

U_SR-9 Provide Expected Results of Undo Whenever the Undo actions is available, the UI Component is responsible for showing the actions’ expected results (smart menus)
The UI gets this information from the History Component, which must notify it of the current undoable action upon every change.

U_SR-10 Provide Expected Results of Redo Whenever the Redo action is available, the UI Component is responsible for showing the actions’ expected results (smart menus)
The UI gets this information from the History Component, which must notify it of the current re-doable action upon every change.

U_SR-11 Provide Object-specific Undo The UI Component must listen for calls to the Undo action over a particular object (if available) and order its execution.
The History Component must then retrieve the last Command executed over that object, without discarding it, and order it to Undo itself.
The Command, in turn, executes the necessary actions, using the stored state information, to return the object to the state preceding its execution.

U_SR-12 Provide Object-specific Redo The UI Component must listen for calls to the Redo action over a particular object (if available) and order its execution.
The History Component must then retrieve the current Command executed over that object, without discarding it, and order it to Redo itself.
The Command, in turn, executes the necessary actions, using the stored state information, to return the object to the state following its execution.

 84

5.2.2.2 Low-level Design Component Responsibilities for MVC
When instantiating for an MVC architecture, the High-level Design Components described
above can be translated into the following system objects.

The User Interface Component is instantiated by the View object(s) and takes over all of its
responsibilities except for the delegation of actions to other objects. This responsibility falls
on the Controller object(s) of the MVC architecture.

The Command Component is defined in the Command interface and implemented by
ConcreteCommand objects, as specified in the GoF Command Pattern. For every undoable
command there will exist a distinct ConcreteCommand class (i.e. EmptyTrashCommand,
DeleteObjectCommand, etc.). Whenever a command is called through the View, the
corresponding ConcreteCommand object will be created, saved to history and ordered to
execute.

The History Component is represented by the HistoryList singleton class, and covers all the
responsibilities of the History Component.

The Domain Component is represented by the DomainClass. This class is represented in gray
in Figure 5.2-3 as a reminder that this is not an actual class nor does it fall within the scope of
the proposed design model, but is rather an entity to be substituted at design time by the class
that actually performs the requested task.

A hierarchy of Exception classes is also provided within this model (HistoryException,
UndoException, RedoException, NothingToUndoException, NothingToRedoException,
NothingToUndoForObjectException and NothingToRedoForObjectException). These
provide error information during the execution of Undo and Redo, both globally and over
specific objects.

Table 5.2-6 details the Low-level Design Component Responsibilities described above and
how they carry out each of the System Responsibilities defined in section 5.2.1.4. For each
System Responsibility, the sequence of actions required by the different objects is presented
as well as a set of UML diagrams that depict each of these interactions.

 85

Table 5.2-6: Usability Guideline: Low-level Design Component Responsibilities (MVC)
System

Responsibility
Objects Fig

View Controller ConcreteCommand HistoryList DomainClass
U_SR-1 Store
Undoable
Executed
Actions

1. The View must listen for invocation of
actions. Upon reception, it must notify the
Controller of said action.

2. The Controller must determine if
the invoked action is undoable. In
such case it must call the
execute() method of the
corresponding ConcreteCommand
object (otherwise invocation goes
directly to the DomainClass).
3. The Controller must then
clone() said ConcreteCommand
and add() it to the HistoryList.

4a. Upon call to its execute() method,
the ConcreteCommand first stores the
necessary state information in its local
variables. It then calls the appropriate method
in the corresponding DomainClass (what was
originally invoked).

4b. The HistoryList saves the cloned
ConcreteCommand atop its collection (so it can
later be available to undo).

5a. The DomainClass
executes the
appropriate method to
carry out what was
originally invoked by
the user through the
View.

Figure 5.2-4

U_SR-2 Support
Undo
Functionality

1. The View must listen for invocation of
the Undo action. Upon reception, it must
notify the Controller.

2. The Controller orders the
HistoryList to undo the last action.

4. Upon call to its undo() method, the
ConcreteCommand calls the necessary
methods in DomainClass (with any needed
state information, stored upon execution) to
revert its effects.

3. The HistoryList determines the
ConcreteCommand to undo and calls its
undo() method.

5. The DomainClass
executes the methods
invoked by
ConcreteCommand.

Figure 5.2-5

U_SR-3 Provide
Access to Undo

1. The View must present the user with
the mean(s) to call the Undo action (i.e.
within the Edit menu, through Ctrl-Z, etc.)

 Figure 5.2-5

U_SR-4 Support
Redo
Functionality

1. The View must listen for invocation of
the Redo action. Upon reception, it must
notify the Controller.

2. The Controller orders the
HistoryList to redo the current
action.

4. Upon call to its redo() method, the
ConcreteCommand calls the necessary
methods in DomainClass (with any needed
state information, stored upon execution) to
reinstate its effects.

3. The HistoryList determines the
ConcreteCommand to redo and calls its
redo() method.

5. The DomainClass
executes the methods
invoked by
ConcreteCommand.

Figure 5.2-6

U_SR-5 Provide
Access to Redo

1. The View must present the user with
the mean(s) to call the Undo action (i.e.
edit menu, Ctrl-Z, etc.)

 Figure 5.2-6

U_SR-6 Support
Multi-level Undo

3. When the View is notified of changes in
the HistoryList it updates its History
Displays accordingly.

 1. The HistoryList stores (clones of)
ConcreteCommands in a FILO-ordered
collection. It keeps a ‘pointer’ of the last action
invoked, and moves it back every time Undo is
called until no more ConcreteCommands exist.
Invoking Redo moves the ‘pointer’ forward in a
similar fashion. ConcreteCommands are never
removed from the HistoryList, except when its
maximum allowed size is reached (in which case
the older elements will be removed in order).
2. Every time a ConcreteCommand is added to
the HistoryList or the ‘pointer’ changes position
(i.e. the next undoable/re-doable action is
updated), the HistoryList notifies the View.

 Figure 5.2-5
Figure 5.2-6

 86

System
Responsibility

Objects Fig
View Controller ConcreteCommand HistoryList DomainClass

U_SR-7 Support
Multi-level Redo

2. When the View is notified of changes in
the HistoryList it updates its next un/re-
doable.

 1. Every time a ConcreteCommand is added to
the HistoryList or the ‘pointer’ changes position
(i.e. the next undoable/redoable action is
updated), the HistoryList notifies the View

 Figure 5.2-6

U_SR-8 Show
History

1. The View must subscribe to and listen
for updates from the HistoryList at all
times.

 2. Every time HistoryList modifies its contents (by
adding a new ConcreteCommand or by ordering
an existing one to undo, thus changing the
position of the pointer) it must notify the View

 Figure 5.2-4
Figure 5.2-5
Figure 5.2-6

U_SR-9 Provide
Expected
Results of Undo

2. The View receives the notification and
updates the text for the next undoable
item

 1. Upon undoing, the HistoryList notifies the View
of its new structure (same as previous minus top
action)

 Figure 5.2-4
Figure 5.2-5

U_SR-10 Provide
Expected
Results of Redo

2. The View receives the notification and
updates the text for the next redoable item

 1. Upon redoing, the HistoryList notifies the View
of its new structure (same as previous except for
new top action)

 Figure 5.2-4
Figure 5.2-6

U_SR-11 Provide
Object-specific
Undo

1. The View must listen for invocation of
the Undo action over a specific object.
Upon reception, it must notify the
Controller.

2. The Controller orders the
HistoryList to undo the last action
over object.

4. Upon call to its undo() method, the
ConcreteCommand calls the necessary
methods in DomainClass (with any needed
state information, stored upon execution) to
revert its effects.

3. The HistoryList determines the
ConcreteCommand to undo by filtering for that
particular object, and calls its undo() method.

5. The DomainClass
executes the methods
invoked by
ConcreteCommand.

Figure 5.2-4
Figure 5.2-5

U_SR-12 Provide
Object-specific
Redo

1. The View must listen for invocation of
the Redo action over a specific object.
Upon reception, it must notify the
Controller.

2. The Controller orders the
HistoryList to redo the last action
over object.

4. Upon call to its redo() method, the
ConcreteCommand calls the necessary
methods in DomainClass (with any needed
state information, stored upon execution) to
restore what was undone.

3. The HistoryList determines the
ConcreteCommand to redo by filtering for that
particular object, and calls its redo() method.

5. The DomainClass
executes the methods
invoked by
ConcreteCommand.

Figure 5.2-4
Figure 5.2-6

 87

5.2.2.3 Usability Software Design Meta-models
This section describes the UML diagrams representing the Low-level Design Component
Responsibilities described in Table 5.2-6. Below, the class diagram for this feature is
presented, along with a short description of the classes involved and their interrelationships.
This is followed by the sequence diagrams for this feature, representing the sequences
explained earlier in (see Table 5.2-6).

5.2.2.3.1 Class Diagram
Figure 5.2-3 below shows the class diagram for the Undo Functional Usability Feature. As
described in the Low-level Design Component Responsibilities Table (see Table 5.2-6), the
main objects involved are the View, Controller, HistoryList, ConcreteCommand and
DomainClass. Two additional elements can be seen in the class diagram and are explained
below: The Command Interface (as implemented by the GoF [37]) and the HistoryException
(and children) to handle all possible errors.

The View and the Controller, fulfilling their role within MVC, respectively capture and
distribute the user calls to perform actions. The HistoryList controls access as well as storage
for the list of actions (or commands) that have been executed and stored for potential
undoing.

Figure 5.2-3: Usability design model. Class diagram. Undo.

The ConcreteCommand class implements the Command interface, and is responsible for
ordering the execution of the requested action (in DomainClass) as well as for storing all
necessary state information required for eventually undoing the command it represents (i.e.
the method it is calling within DomainClass). In any given system there will be as many
ConcreteCommands as there are undoable actions [37], and it is recommended they be
labeled by an appropriate mnemonic. For example, the ConcreteCommand class in charge of
invoking the sendMail() method in an email application should be labeled something like
SendMailCommand or SendMailConcreteCommand, etc.

These classes and interfaces which belong to the Command Pattern of the GoF [37] are
depicted in yellow (see page 71) to differentiate them from the rest of the classes particular to
this meta-model.

 88

It’s worth noting that the Controller class also includes the Invoker functionality specified by
the GoF Command Pattern and is thus depicted as partly belonging to this pattern (half green
for the Undo FUF, half yellow for the GoF Command pattern). Similar is the case of
HistoryList which covers both original functionality and functionality belonging to the GoF
Command pattern.

Lastly, the family of exceptions is defined, rooted at HistoryException. This is the kind of
exception that will be thrown in case an error occurs during undo/redo operations. For undo
operations, an exception of the type UndoException will be thrown, and, likewise, for
exceptions occurring redo operations, RedoExceptions will be thrown. UndoExceptions as
well as RedoExceptions can be thrown for a specific object (when trying to undo the last
action performed over a particular object) or for the application as a whole. For the undo
operation, the concrete exceptions that will be thrown and eventually captured and handled by
the View are NothingToUndoException, when the user is invoking the undo method when
there’s actually no actions to undo, NothingToUndoForObject, for a particular object, and,
similarly, NothingToRedoException and NothingToRedoForObject for the redo operation.
These exceptions will be thrown by HistoryList when attempting these four illegal operations.

5.2.2.3.2 Sequence Diagram “Executing”
Figure 5.2-4, shows the sequence diagram for calling, executing and storing undoable actions.

This sequence starts when the user requests an undoable action to be executed. Following the
GoF Command Pattern [37], prior to execution, the ConcreteCommand which encapsulates
the invoked action (doAction()) is cloned (preserving its state information intact) and stored,
in this case in the HistoryList object. After that, it is ordered to execute(), which simply
entails a call to the desired method of the corresponding DomainClass. After execution, the
View updates its display of the History List and updates the ‘next undoable’ field, if
applicable. When the invoked action is not undoable (second part of alt in Figure 5.2-4), the
desired method is invoked directly off DomainClass and executed.

Figure 5.2-4: Sequence Diagram “Executing”. Undo.

 89

Classes and methods depicted in green represent they belong to the Undo FUF. Those in
yellow are part of the GoF Command Pattern and notifications in dark red represent Observer
Pattern functionality [37]. The gray DomainClass is a template class to be substituted at
design time by the appropriate system class containing the undoable action.

5.2.2.3.3 Sequence Diagram “Undoing”
Figure 5.2-5 shows the sequence diagram for undoing actions.

Figure 5.2-5: Undo. Sequence Diagram “Undoing”

The sequence starts off when the user requests to undo the next available action. It does so by
asking the View what the name of the next undoable action is (i.e. by choosing on the “Edit -
> Undo <action name>” menu item) followed by the actual invocation of undo over said
action (i.e. clicking on the menu item).

The request to undo can be invoked over a specific object (see object parameter of undo()
method below) or, by passing no parameter to the method, it is invoked over the application
as a whole. Either way, the request to undo is passed on to the Controller, which in turn
chooses the History list as the appropriate class to handle the request.

If undo is being invoked over an object, HistoryList finds the next available undoable action
for that particular object with filterForObject(object), otherwise, the next undoable action is
always the one on top of the History List. Either way, the object returned is of the type
ConcreteCommand, and it represents the action to undo.

As specified by the GoF Command pattern, the undo() method in the ConcreteCommand is
then invoked, triggering a call (or series of calls) to the appropriate methods in the
corresponding DomainClass in order to reinstate the previous state information, effectively
undoing the action.

Upon returning said ConcreteCommand, the HistoryList effectively changes as the action on
top (the next undoable action) has changed. This triggers a notification from the HistoryList

 90

to all of its listeners (GoF Observer pattern). In this case, the only relevant listener, and
complying with MVC, is the View. As such, the View gets notified when the HistoryList
changes. This notification prompts the View to update the GUI information about the next
undoable item (the text in the Edit -> Undo menu) and that of any history list displays it may
maintain.

If the initial call to undo upon HistoryList is met with an empty list (or, in the case of object-
specific undo, with a HistoryList containing no actions for that particular object), an
exception of the type UndoException will be returned and forwarded to the View. The
concrete exception returned will be NothingToUndoException in the case of having invoked
undo over the entire application, and NothingToUndoForObjectException in case of a
concrete object.

5.2.2.3.4 Sequence Diagram “Redoing”
Figure 5.2-6 shows the sequence diagram for redoing actions. It is analogous to the sequence
diagram for Undoing described for “undoing” in the sequence of events and objects involved,
except where in the previous sequence the undo method was called, in this sequence the redo
method is called, both over an object or over the application itself.

An empty HistoryList or one with no actions to redo over a particular object (in the case of
object-specific redo) will return a RedoException of the appropriate type, similarly to the case
of undoing.

Figure 5.2-6: Sequence Diagram “Redoing”. Undo.

 91

5.3 “Abort” Usability Guideline for Software Development
The Abort Functional Usability Feature covers the user’s need to cancel on-going commands
within an application and to exit the application altogether. Certain commands might take a
long time to execute. In such cases, the user will need to be at the liberty to abort them.
Furthermore, they must also be allowed to exit the application at all times in a stable way,
regardless of any tasks that may be being executed.

The Usability Guideline for Software Development is made up of Analysis artifacts and
Design artifacts. These are described for the Abort feature in the following two sections.

5.3.1 Usability Guideline for Software Development: Analysis artifacts
There are four artifacts to be used during the analysis phase: the Usability Elicitation
Guideline, the Usability Elicitation Clusters, the Usability Use Case Meta-models, the System
Responsibilities for Usability. These artifacts are described in the following four sections.

5.3.1.1 Usability Elicitation Guideline
Table 5.3-1 shows the Usability Elicitation Guideline for the Abort feature. In this guideline
there are two HCI recommendations described in detail below.

5.3.1.1.1 Cancelling Commands
HCI authors suggest that commands that normally last over two seconds to execute should
provide means for the user to cancel them (A_HCI-1). The term ‘command’ is understood as
an indivisible task being executed at any given time within the system, for which there are no
viable partial results until execution is finished. (A_ELAB-1). As such, all changes that may
have occurred within the system due to the partial execution of said command be undone
automatically. (A_ELAB-2). Finally, the ways in which commands are usually cancelled
within GUI-based application are fairly standard and only in cases where no standard applies
should stakeholders debate the presentation for this feature (A_ELAB-3)

Stakeholders must determine which commands are likely to last over two seconds, thus
needing to have a cancel option. The way this cancel option is to be presented to the user, or
any exceptions (long commands that simply cannot or should not be cancelled) must also be
specified, as well as how to deal with any changes that may have occurred within the system
due to the partial execution of said command (A_Q-1 to A_Q-3). In Table 5.3-1, example
A_EX-1 “Exporting video file” describes an example for this HCI recommendation.

5.3.1.1.2 Exiting the Application
The Final HCI recommendation for the Abort feature contemplates exiting the application
altogether. Said option should always be available to the user, regardless of any commands
they may be executing at any given time. If any data has changed at exit time, the user must
be prompted to save said changes (A_HCI-2).

When exiting an application, it is not only data changes that must be considered, but also the
repercussion of said exit upon any running commands. Upon elicitation time, stakeholders
must discuss whether, a) any running commands will be aborted (and their effects rolled
back), b) the application will wait for any ongoing commands and only exit after they have all
have finished, c) the application will defer the decision to the user, asking them if they’re sure
they want to exit, and by doing so cancel all ongoing commands, or if they would rather wait
for them to finish (and then have the application exit on its own). (A_ELAB-2 to A_ELAB-
4). Discussions A_Q-4 to A_Q-6 deal with how the exit will be handled regarding the
aforementioned options. In Table 5.3-1, example A_EX-2 “Apple Mail Exit” describes an
example for this HCI recommendation, when the application uses option (b) as the standard
way of exiting.

 92

Table 5.3-1. Usability Requirements Elicitation Guideline. Abort.
Identification
Name Abort
Family Undo/Cancel
Aliases Emergency Exit [11]; Go Back to a Safe Place [42]; Go Back [42]; Prominent Cancel [42]
Intent
Providing the means to cancel an on-going task, or to allow for exiting the application altogether
Problem
Certain tasks might take a long time to execute. In such cases, the user will need to be at the liberty to cancel them. S/he must also be allowed to exit an application at all times, regardless of any tasks that may be being executed.
Context
When the user needs to exit an application or a command quickly.
Interrelationships
When implementing the Abort feature, Undo functionality will be needed for the cancellation of commands, in order for the application state to be properly reverted. Also, if implementing an application that prompts the user to save changes
upon exiting, parts of the Warning feature will be needed.

HCI Recommendation Elaboration Discussions with Stakeholders Usage Examples (optional)
A_HCI-1 Cancelling Commands
If a command takes longer than 10 seconds
to execute, there should be an option to
cancel it, to allow interruption of it’s execution
and return to the previous state. [38].

A_ELAB-1 Identification/Selection
A “command” is an indivisible task invoked by the user, for which there are no
viable partial results until execution is finished. It is necessary to identify
commands that can be potentially long (>10s) as per the HCI recs.
In the case that listing all potentially long commands is not viable, only those
requiring special attention should be listed, and a default cancellation behavior
defined for the rest of them. Once identified, it must be determined if there are
any that should, exceptionally, not be cancellable.

A_Q-1 Which commands will require a cancel option?

A_Q-2 For all cancelable commands, how should the cancel option
be presented to the user?

A_Q-3 For all cancellable commands, which state will the system go
to after the user chooses the cancel option?

A_EX-1 Exporting Video File
In Apple’s Quicktime, choosing the
option to ‘export’ a video file into a
different format, the application does
so presenting a progress bar with a
cancel button. Upon cancellation,
any portion of the video that was
exported is automatically sent to the
‘Trash’. A_ELAB-2 Presentation

There are standard simple ways of cancelling commands (i.e. button X, ctrl-c,
etc.). Only in specific cases with particular needs should the presentation of the
cancel option deviate from these standards
A_ELAB-3 Going back to previous state
When cancelling a command it is necessary to automatically undo the effects
that this command may have produced while executing.

A_HCI-2 Exiting the application
When users work with a high number of
applications at the same time they may need
to exit one of them quickly when a more
important task may need the system
resources, or when he started the application
by mistake [11]. It is important to provide, at
application level, that the option to exit the
program is always clearly available (even

A_ELAB-4 Presentation of “Exit” Option
The user must be consulted about any specific needs regarding the presentation
of the Exit option. Otherwise, the standards offered by the OS or language
should be used.

A_Q-4 Where and how will the exit option be presented to the user?

A_Q-5 Will the user be presented with the option to 'save changes'?

A_Q-6 If so, how will the user be presented with the option to 'save
changes'?

A_Q-7 If upon selection of 'exit' option there are running
commands/operations, how will the system handle them
(option a, b or c)?

A_EX-2 Apple Mail Exit
When exiting Apple’s Mail
application, any outgoing emails that
are pending are fully sent and only
after this does the application
(automatically) close.

A_ELAB-5 Handling changes
Generally, the option to “save changes” is relevant in applications that modify
files during execution. An alert message indicating that there exist changes that
need to be saved will be shown as a Warning of the type “confirmation” (see
Warning feature) to the user

 93

Identification
during program startup) and that this option
will never be obscured by dialogue windows
If the user choses the option to Exit after
having changed data, the application should
prompt him to "save changes"

A_ELAB-6 Presentation of “Save Changes” option
The user must be consulted about any specific needs regarding the presentation
of the Save Changes option. Otherwise, the standards offered by the OS or
language should be used.
A_ELAB-7 Ending commands upon exit

There are three options regarding handling commands upon exit:
a) Immediate Exit: Cancelling all running commands, discarding their results
and closing the application without further consulting the user.

b) Wait and Exit: Control of the application is given to the running commands.
When the last of them is done executing, the application exits automatically.

c) Prompt: Giving the user the option of choosing between ”a” and “b” upon
closing the application.

 94

5.3.1.2 Usability Elicitation Clusters
The Usability Elicitation Guideline in Table 5.3-1 suggests seven discussions items (A_Q-1
to A_Q-7) to be held with stakeholders in order to elicit all aspects of the Abort Functional
Usability Feature. According to the covered portion of the functionality, these discussion
items can be grouped into four initial sets, or clusters, as described in the Usability Elicitation
Clusters in shown in Figure 5.3-1.

A_EC-1 Identifying cancellable commands: The discussion items in this cluster, shown in
Figure 5.3-1, determine which commands will be cancellable depending on how
long they usually take to execute.

A_EC-2 Cancelling commands and handling application state: Once a list of cancellable
commands (or type of commands if too extensive) has been determined,
stakeholders must decide how said cancel option will be presented to the user and
the state that the system will go to after cancelling each of these commands.

A_EC-3 Exiting application while handling potential on-going commands/operations:
These discussions will determine if and how the option to exit the application will
be presented to the user. Once that has been established, it must be decided how to
handle any potential ongoing commands or operations that may exist at exit time.

A_EC-4 Handling potential changes to be saved: If the application is of the type that may
need changes to be saved, it must be determined if such a feature must be presented
to the user upon exiting the application when changes are pending.

Figure 5.3-1: Elicitation Clusters. Abort feature.

 95

5.3.1.3 Use Case Meta-model
Figure 5.2-2 shows the Use Case Meta-model for the Abort Functional Usability Feature. In
this meta-model, four concrete use cases are identified (plus three borrowed use cases that
apply) and are described in full below.

A_UC-1 CancelCommand: The user chooses the option to cancel an ongoing command
(the Long/Undoable User Action). Canceling an action imply undoing changes in
which it may have incurred (see extension U_UC-1 Undo).

A_UC-2 Exit: The user chooses the option to exit the application. This action may prompt
the user to save any pending changes (see extension: A_UC-3 SaveChanges). It
also may trigger the cancellation of any ongoing actions (whether they are
commands or operations. See extension: A_UC-1 Cancel)

A_UC-3 SaveChanges: Upon exiting the application, the user is prompted to save any
pending changes.

A_UC-4 Long/UndoableUserAction: Any action invoked by the user which is considered
‘long’, needing some form of progress information to be shown (see included use
case SPF_UC-1 ShowProgress, and ‘undoable’, needing to be saved to the history
log for potential undoing (see included use case U_UC-6 SaveToHistory).

Borrowed use cases:

SPF_UC-1 ShowProgress: Shows the progress of an ongoing action. See Progress Feedback.

U_UC-1 Undo: Reverts the effects of an executed action. See Undo

W_UC-3 Confirm: Prompts the user to proceed (OK) or cancel an action. See Warning

Figure 5.3-2 Use Case Meta-model. Abort

As mentioned above, whether or not all of these use cases apply for a given system will
depend on the results of the elicitation process. If during elicitation of the Abort Functional
Usability Feature it is determined that, for example, there will never be changes to save upon
exiting the application, the SaveChanges use case, and any use cases that extend from it, will
be discarded. Similarly, use cases depend on one another. These dependencies are shown in
Table 5.3-2 for the Abort feature.

 96

• The Cancel use case needs the Long/UndoableUserAction use case, as if there are no
actions to cancel, the ‘cancel’ feature becomes irrelevant. Furthermore, this use case
depends on Undo for undoing any changes the action being cancelled may have caused.

• The Exit use case can potentially need every use case in this meta model. If commands
are considered for cancellation upon exit time, CancelCommand will be needed for
Exit to be viable. If data changes are being monitored upon exiting the application and
the user needs to be prompted for saving, then the SaveChanges use case will be
needed. Furthermore, if/when considering the Cancel use case, the
Long/UndoableUserAction use case must be considered, as it represents the action to
revert upon cancelation. Finally, for any undoing to take place, if applicable, the Undo
use case will be needed.

• Likewise, when exiting does not require checking for ongoing commands or changes,
the Exit use case will have none of the aforementioned potential (asterisked)
dependencies.

• The SaveChanges use case depends on the Exit use case existing, as it is devised as a
prompt for the user to shave changes upon exiting the application. It also depends on the
Confirm use case from the Warning feature existing as a prompt to save changes is a
form of confirmation, as described by said feature.

• Finally, the Long/UndoableUserAction needs no other use case (within the scope of
this meta-model) to be viable. As for the borrowed use cases, it needs SaveToHistory
from the Undo feature and ShowProgress from the System Progress Feedback feature.

The remaining dependencies that exist among the borrowed use cases (those represented in
italics in Table 5.3-2) as well as the corresponding rows are omitted to avoid redundancy.
These relationships are explained in their respective sections: Section 5.5 for the
ShowProgress use case, 5.2 for the Undo and SaveToHistory use cases and section 5.7 for the
Confirm use case.

Table 5.3-2 Usability Use Case Dependencies: Abort Functional Usability Feature
 A_UC-1

Cancel
Command

A_UC-2
Exit

A_UC-3
Save

Changes

A_UC-4
Long/Und.
UserAction

SPF_UC-1
Show

Progress

U_UC-1
Undo

W-UC-3
Confirm

U_UC-6
STH

A_UC1 Cancel Command - X X
A_UC-2 Exit X* - X* X* X*
A_UC-3 Save Changes X - X
A_UC-4 Long/ Undoable User Action - X

From these use cases at least two minimal subsets can satisfactorily be implemented. A
system including the Long/Undoable User Action along with CancelCommand is a potential
configuration, as is one that only includes the Exit and SaveChanges use cases. Yet, while
both these options are viable and may result from the elicitation process of a system, they are
the exception rather than the norm, as most systems that contemplate cancelling commands
(and handling their state) will likely require handling them at exit time as well.

5.3.1.4 System Responsibilities for Usability
Table 5.3-3 presents the System Responsibilities for Usability for the present feature.

Table 5.3-3 System Responsibilities List for Abort
System Responsibilities List for Abort

A_SR-1 Identify cancellable commands
The system is responsible for keeping track of commands that are cancellable
A_SR-2 Cancel commands and handle application state
The system must allow users to cancel (cancellable) commands and to handle app state appropriately
A_SR-3 Exit application handling on-going commands/operations
The system must provide access to Exit feature to close application while handling state
A_SR-4 Handle potential changes to be saved
If changes exist at exit time, the system must allow the user to save them appropriately

 97

These System Responsibilities for Usability are derived from the Usability Elicitation
Clusters identified in section 5.3.1.2 as follows:

A_EC_1 Identifying cancellable commands: As mentioned earlier, this elicitation cluster
contemplates knowing which system commands are cancellable. To do so, the
system must keep a record of said commands, or, if they are too many or an
expanding group of commands, the system must at least be aware of the type of
command that shall always be cancellable. Thus, this elicitation cluster would
yield the System Responsibility A_SR-1 Identify cancellable commands.

A_EC_2 Cancelling commands and handling application state: This elicitation cluster
covers how each command, or type of command, is to be cancelled and how the
resulting system state must be handled. By debating the discussion items contained
in it, stakeholders determine exactly what parts of the system’s state are affected
and how they are to be restored after cancelation. It is thus the responsibility of the
system to properly cancel these commands and undo any potential effects: A_SR-2
Cancel commands and handle application state.

A_EC_3 Exiting application while handling potential on-going commands/operations:
As determined in the discussion items in this elicitation cluster, the system must
provide the user a way to exit the application at any given time and also to address
any ongoing commands or operations when doing so. This yields the System
Responsibility to A_SR-3 Exit the application handling on-going commands
and operations

A_EC_4 Handling potential changes to be saved: In systems where the concept of ‘saving
changes’ is relevant (i.e. where user data files are changed by the use of the
application) this elicitation cluster determines if and how said action will be
prompted upon exiting the system. The system is responsible for detecting when to
prompt the user to save changes and for how to do so, as described in the last
System Responsibility: A-SR-4 Handle potential changes to be saved

Table 5.3-4 maps the relationships between the Usability Elicitation Clusters and the
Usability System Responsibilities described above, for easy reference. Any project
determined to require a specific Elicitation Cluster will also require its related System
Responsibilities. Likewise, if a cluster is discarded during elicitation, its related
responsibilities will not be a part of the resulting system. In the case of Abort this relationship
is one-to-one.

Table 5.3-4 Usability Elicitation Clusters / System Responsibilities for Usability Mapping for Abort
Use Cases Dependent Responsibilities

A_EC-1 Identifying Cancellable Commands A_SR-1 Identify cancellable commands
A_EC-2 Cancelling commands and handling application state A_SR-2 Cancel commands and handle application state
A_EC-3 Exiting application while handling potential on-going
commands/ops

A_SR-3 Exit application handling potential on-going
commands/ops

A_EC-4 Handling potential changes to be saved A_SR-4 Handle potential changes to be saved

5.3.2 Usability Guideline for Software Development: Design artifacts
The Abort feature has a close relationship with the Undo feature in that cancelling a
command or operation may entail undoing any potential partial results in which they may
have incurred. As such, its design guideline will make use of the same concepts as the Undo
feature regarding the ‘Command’ pattern by Gama et al [37] when defining said portion of its
functionality.

In section 5.3.2.1 the System Responsibilities are brought to a lower abstraction level and
describes them as High-level Design Component Responsibilities, and section 5.3.2.2 as

 98

Low-level Design Component Responsibilities (for a MVC architecture). Finally, section
5.3.2.3 presents the Usability Design Meta-models for said Low-level Design Component
Responsibilities as object-oriented class and sequence diagrams.

5.3.2.1 High-level Design Component Responsibilities
In order to support the System Responsibilities identified 5.2.1.4 at design level, the
following sections describe the suggested High-level Design Components and their
responsibilities for the Abort Functional Usability Feature, shown in Table 5.3-5.

As mentioned earlier, the parts of this feature that relate to having undo capabilities make use
of the Command pattern by Gamma et al. Components (and, in the following sections, classes
and objects) like the “Command” component, are taken directly from this widely known
design pattern to fulfill the needs that arise from the corresponding System Responsibilities.
Another pattern used across all the guidelines is the GoF Observer pattern, a defining part of
the MVC architecture itself. The rest of the components conform the original contribution for
this feature.

When represented graphically, as is the case of the Usability Design Meta-models in section
5.2.2.3, all components, objects and/or classes belonging to the GoF Command pattern or the
Observer pattern are depicted in yellow and red, respectively (see page 71 for color legend of
existing patterns).

5.3.2.1.1 User Interface (UI) Component
This component is responsible for capturing all user input and forwarding any action
invocations (possibly through a delegating component) to the part of the domain responsible
for executing it. In this feature, calls to execute (and the abort execution of) an operation or
command are captured by the UI Component. The UI Component is also responsible for
relaying information to the user, like, for example, notifications to ‘save changes’ after
attempting to close an application.

5.3.2.1.2 Domain Component
A Domain Component represents the part of the system that is responsible for executing the
actions requested by the user. As such, which class(es) ultimately implement the functionality
herein described will vary from application to application. In a video program, for example,
when choosing the ‘Export video’ option there will likely be a class (or group of classes) in
charge of sending said video, perhaps after some form of conversion, to the hard drive as a
file. Said class (or classes) would represent the Domain Component.

5.3.2.1.3 Command Component
Based on Gamma’s definition of the Command Pattern, the Command Component is
responsible for encapsulating method invocations and any pertinent state information at call-
time.

As in the case of the Undo feature, when an cancellable (thus undoable) action is invoked
through the UI, a new instance of Command is created. This instance is initialized with the
signature of the method that is being called and a reference to the Domain Component in
charge of executing it, for later invocation. It is also initialized with any state information that
will need to be restored if the invoked action is ever ordered to be cancelled. Aside from
storing this information, the Command Component is responsible for ultimately calling the
invoked method in the Domain Command (once the state information has been saved), and
for properly undoing said action (restoring the previous state information) should an ‘cancel’
order for it come from the UI Component.

 99

5.3.2.1.4 History Component
The History Component belongs to the Undo feature, and is used within Abort to provide
undo capabilities when cancelling commands or operations. As in Undo, this component in
responsible for storing all Command instances created within the system. Once an
cancellable/undoable call is placed in the UI, the Command Component is created
immediately stored in the History Component. If a call to cancel the latest action is placed in
the UI, the History Component is responsible for locating (within itself) the Command
instance which initially executed said action and ordering it to undo, to return the system to
the state prior to execution, thus effectively cancelling it.

5.3.2.1.5 Save Manager Component
The Save Manager Component is responsible for keeping track of any changes that may have
occurred within the system that would potentially need to be saved. It is also responsible for
alerting the application (and ultimately, the user) of the existence of such changes upon
invocation of the ‘exit’ feature and of saving them to the appropriate media if requested.

Table 5.3-5: Usability Guideline: High-level Design Component Responsibilities. Abort
System Responsibility High-level Design Component Responsibilities

A_SR-1 Identify and
execute cancellable
commands

A software component, preferably that responsible for handling user events (UI), must know of all the commands
that are cancellable. By being in charge of this responsibility, it will be able to display the necessary interface
components to provide the user with the means to cancel said command.
The UI is also responsible for listening for command invocations from the user.

Execution of actions is always the responsibility of the pertinent Domain Component in the application

The component in charge of delegating actions (if any) should determine whether the action is undoable or not,
from a pre-established list.
If the action to execute is undoable, it must first be encapsulated as an instance of a Command Component,
together with any pertinent state information and the necessary actions needed to revert its effects.
Such an instance is then stored in a History Component, responsible for keeping a single (ordered) collection of all
executed undoable actions.

After encapsulation, the Domain Component is then free to execute the invoked action

A_SR-2 Cancel
commands and handle
application state

The UI must listen for user calls to cancel ongoing commands

The component in charge of delegating actions (if any) is responsible for knowing which thread is running the
command being cancelled and to order it to stop, as well as ordering the History Component (see Undo) to undo
any effects caused by said command, returning the application to its original state.

The History Component must then retrieve the last* Command, without discarding it, and order it to ‘undo’ itself.
The Command, in turn, executes the necessary actions, using the stored state information, to return the system to
the state preceding its execution

A_SR-3 Exit application
handling potential on-
going commands

When exiting the application, any on-going commands must be dealt with.

The UI must listen for calls to exit the application

If there are no on-going commands or operations, the application will exit immediately
If there are on-going commands and/or operations, but the UI does not need to prompt the user for the type of exit
s/he’d like to make, the UI must order all commands and/or operations to be dealt with in one of three ways
(through an invoking component, if any):
A) All on-going commands and/or operations will be cancelled immediately in the same manner (re: state retrieval)
in which they are cancelled by users

B) All on-going commands and/or operations will be allowed to finish execution, in which case the UI will wait until
the last one notifies it has finished

C) All on-going commands and/or operations will be terminated immediately (disregarding state) and the
application closed.

It is the UI’s responsibility to know whether or not to prompt the user for an exit type. If no prompt is made, it is also
the UI’s responsibility to be aware of which type of exit it needs to make (i.e. the way in which commands and
operations will be dealt with upon exiting).

A_SR-4 Handle
potential changes to be
saved

When the UI receives a call to exit the application, the component in charge of delegating actions (if any) should
first ask a SaveComponent (see below) if there exist any pending changes before exiting

A SaveComponent is responsible for determining whether there are changes to be saved and to order such saves.

If there are changes pending to be saved, the delegating component will inform the UI, which in turn should prompt
the user to save said changes
 These changes will be saved by the SaveComponent if requested

 100

5.3.2.2 Low-level Design Component Responsibilities for MVC
When instantiating for an MVC architecture, the High-level Design Components described
above can be translated into the following system objects.

As is the case with most features presented in this work, the UI Component is instantiated by
the View object and takes over all of its responsibilities except for the delegation of actions to
other objects. This responsibility falls on the Controller object(s) of the MVC architecture.

Likewise, the Command Component is defined in the Command interface and implemented
by ConcreteCommand objects, as described in the GoF Command Pattern [37]. For every
cancellable (undoable) command the implementation will have a distinct ConcreteCommand
class (i.e. Export VideoCommand, OpenGarageDoorCommand, etc.). Whenever a command
is called through the View, the corresponding ConcreteCommand object will be created,
saved to history to preserve state information in case of cancelation, and ordered to execute.

The History Component of the Undo feature is represented by the HistoryList singleton
class, and covers all the responsibilities described for the History Component.

The Domain Component is instantiated by the DomainClass. Depicted in a different color in
Figure 5.2-3, this is not an actual class but is rather a placeholder to be substituted at design
time by the actual class that performs the task that was requested by the user.

The Save Manager Component is represented by the SaveManager class, which covers all of
the components responsibilities regarding keeping track and storing any changes needing to
be saved upon exit time.

The Low-level Design Component Responsibilities mentioned above are described in Table
5.3-6 as well as the way in which they carry out the System Responsibilities defined in
section 5.2.1.4. For each System Responsibility, the sequence of actions required by the
different objects is also presented as a set of UML diagrams.

 101

Table 5.3-6: Usability Guideline: Low-level Design Component Responsibilities (MVC). Abort.
System Responsibility Objects Fig

View Controller ConcreteCommand HistoryList DomainClass
A_SR-1 Identify and execute
cancellable commands

1. The View must listen for calls to commands. It
must be aware of which of these are cancellable
and provide the appropriate GUI components to
enable cancellation.

 Figure
5.3-4

1. The View must listen for invocation of actions,
doAction(). Upon reception, it must notify the
Controller of said action

2. The Controller must determine if the invoked
action is cancellable. In such case it must call
the execute() method of the corresponding
ConcreteCommand object (otherwise invocation
goes directly to the DomainClass), keeping a
record of the thread_id in which
doAction() is being executed.
3. The Controller must then clone() said
ConcreteCommand and add() it to the
HistoryList.

4a. Upon call to its
execute() method, the
ConcreteCommand first stores
the necessary state information
in its local variables. It then
calls the appropriate method in
the corresponding
DomainClass (what was
originally invoked) (0)

4b. The HistoryList
saves the cloned
ConcreteCommand atop
its collection (so it can
later be available to
undo)

5a. The DomainClass executes
the appropriate method to carry
out what was originally invoked
by the user through the View.

 1. The View must listen for invocation of
cancel() for a given thread. Upon reception, it
must order the Controller to terminate said
thread.(0)
7. The View must discard any ProgressIndicators
upon notification, and also update any Smart
Menus or History Displays (See Undo and
Progress Feedback featres)

2. The Controller orders the thread in which
doAction() is being executed and orders it
to stop(). It then orders the HistoryList to
undo the last action for the corresponding
DomainObject o.

4. Upon call to its undo()
method, the
ConcreteCommand calls the
necessary methods in
DomainClass (with any needed
state information, stored upon
execution) to revert its effects.

3. The HistoryList
determines the
ConcreteCommand to
undo and calls its
undo() method.

5. The DomainClass executes
the methods invoked by
ConcreteCommand.
6. The thread in which the
DomainClass resides will then
notify this to any existing
ProgressIndicators (see
Progress Feedback feature).

Figure
5.3-5

A_SR-3 Exit application
handling potential on-going
commands

1. The View must listen for calls to exit()the
application and determine if the user must be
prompted for the type of exit to make.
2a. If so, the View prompts the user, whom
responds with one of three possibilities (‘cancel all’,
‘wait to finish’ or ‘immediate exit’)
2b. If not, the View must simply forward said call to
the Controller, along with what it knows to be the
appropriate exit type .
3. Upon Controller notification, the View will kill the
GUI and exit.

3. The Controller then procedes to handle
commands and operations according to the exit
type.
The Controller will a) order all commands to be
cancelled as described in, and notify the View b)
wait until all ongoing commands/operations
notify it they have finished and then notify the
View, or, c) simply notify the View.

 Figure
5.3-6

A_SR-4 Handle potential
changes to be saved

1. The View must listen for calls to exit() and
forward the call to the Controller
3. If there are changes to be saved, the View
prompts the user. Upon okaying, the View orders
the Controller to saveChangesAndExit()

2. The Controller asks the SaveManager if there
are pendingChanges(). If so, the
Controller notifies the View. Otherwise,
execution of continues.
4. The Controller, in turn, asks the SaveManager
to saveChanges()

 Figure
5.3-6

 102

5.3.2.3 Usability Software Design Meta-models
These Usability Software Design Meta-models are the UML diagrams representing the Low-
level Design Component Responsibilities described in earlier. The following sections
describe the class diagram and the classes involved in this feature and their interrelationships,
followed by the descriptions of the sequence diagrams.

5.3.2.3.1 Class Diagram
Figure 5.3-3 below shows the class diagram for the Abort Functional Usability Feature. As
described in the Low-level Design Component Responsibilities Table, the main objects
involved are the View, Controller, SaveManager, HistoryList, ConcreteCommand and
DomainClass. The first two, fulfilling their role within MVC, respectively capture and
distribute the user calls to perform actions. The SaveManager keeps a flag for pending
changes to be saved, the changes themselves and the method to save them to the appropriate
media. The HistoryList from the Undo feature, controls the list of actions (and their
corresponding system states) that have been executed for potential canceling (undoing).

Figure 5.3-3: Usability design Meta-model. Class diagram. Abort.

As with other feature using the Command Pattern [38], the ConcreteCommand class
implements a Command interface, as suggested by the authors, and is responsible for ordering
the execution of the requested action (in DomainClass) as well as for storing all the necessary
state information required for eventually cancelling it and reverting any partial effects it
might have had. There must be as many ConcreteCommands as there are cancellable (and
undoable) actions, and it is recommended they be labeled mnemonically. For example, the
ConcreteCommand class in charge of invoking the exportVideo() method in a video
application should be labeled something like ExportVideoCommand.

These classes and interfaces which belong to the Command Pattern of the GoF are depicted in
their corresponding color, yellow to differentiate them from the rest of the classes particular
to this meta-model.

HistoryList is depicted in yellow/dark green to show it belongs to the Undo pattern (dark
green) but also implements some responsibilities proposed by Gamma’s Command Pattern
(yellow). Likewise, the Controller is depicted in yellow/light green, where light green is the
Abort feature’s color (the controller performs both original and Command Pattern
functionality). The rest of the light green classes contain the Abort functionality, and the light
blue, functionality from the System Progress Feedback feature.

 103

5.3.2.3.2 Sequence Diagram “Executing Action”
Figure 5.3-4, shows the sequence diagram for executing actions described in Table 5.2-6.
This diagram covers the invocation and execution of any cancellable action. As all
cancellable actions are treated as actions that will potentially need to be undone, the sequence
of events is exactly that of executing an undoable action, and thus this first diagram is shared
with the Undo feature.

Following the GoF Command Pattern, prior to execution, the ConcreteCommand which
encapsulates the invoked action (doAction()) is cloned (preserving its state information intact)
and stored, in this case in the HistoryList object. After that, it is ordered to execute(), which
entails a call to the desired method of the corresponding DomainClass.

When the invoked action is not undoable (second part of alt in Figure 5.2-4), the desired
method is invoked directly off DomainClass and executed.

Figure 5.3-4: Sequence Diagram “Execute Action”. Abort.

Classes and methods depicted in light green represent they belong to the Abort feature.
However, this being a sequence adapted entirely from the Undo feature, due to the need for a
cancellable action to be also undoable, all elements in this diagram belong either to Undo, or
to existing patterns. Those in yellow are part of the Command Pattern and notifications in
dark red represent Observer Pattern functionality [38]. The gray DomainClass is, as in all
other features that contain it, a template class to be substituted at design time by the
appropriate system class containing the actual cancellable action. For the full color legend see
page 71

 104

5.3.2.3.3 Sequence Diagram “Cancel Command”
Figure 5.3-5 describes the sequence for cancelling an on-going command.

This sequence starts when the user requests to cancel an on-going command. The View has
the information that identifies said command and passes it onto the controller. With this
information, the Controller finds the thread that the command is running in and orders it to
stop. It then orders the HistoryList to undo whatever changes were produced by that
command while it ran. The HistoryList orders the corresponding ConcreteCommand to undo,
which leads to the DomainClass reverting the state to what it was before the start of the
execution of the command.

Once the effects have been reverted the Controller orders the (stopped) thread to end (kill()).
This sends a notification to any subscribed Progress indicators, which proceed to terminate as
described in the Progress Feedback feature. Finally, the GUI updates the screen to reflect the
command has been cancelled.

Figure 5.3-5: Sequence Diagram “Cancel Command”. Abort.

5.3.2.3.4 Sequence Diagram “Exit application”
Figure 5.3-6 presents the sequence of exiting an application, with its different possible
outcomes.

The sequence starts when the user requests to exit the current application. This call is
forwarded to the controller, who asks the SaveManager if there are any changes pending to be
saved. If there are, the Controller orders the View to ask the user to confirm whether or not he
wants to save the changes. If changes are to be saved, the order is returned to the Controller
who orders SaveManager to save the changes.

After changes have been dealt with, or when no changes are to be saved the View must
determine the type of exit that will follow. It will only ask the user to make this decision in its
stead if the system has been set up this way (determined at elicitation time).

Once the view knows the type of exit, it will forward this information to the controller, which
can do one of two things, depending on this exit type: cancel all commands immediately (type
1) or wait for all of them to finish and then exit (type 2).

Whatever the exit type, once there’s nothing left to cancel or save, the View terminates all
graphic elements, ending the program itself.

 105

Figure 5.3-6: Sequence Diagram “Exit Application”. Abort

 106

5.4 Usability Guideline: ‘Step-by-step’
The Step-by-step Functional Usability Feature covers allowing tasks with multiple steps to be
represented as a series of navigable windows. Certain system tasks can require a series of
inputs from the user that might not be feasible to perform within a single window or step.
Also, more complex actions might entail decision-making on the part of the user during
execution, making branching necessary.

The Usability Guideline for Software Development is made up of Analysis artifacts and
Design artifacts. These are described for the present feature in the following two sections.

5.4.1 Usability Guideline for Software Development: Analysis artifacts
There are four artifacts to be used during the analysis phase: the Usability Elicitation
Guideline, the Usability Elicitation Clusters, the Usability Use Case Meta-models, the System
Responsibilities for Usability. These artifacts are described in the following four sections.

5.4.1.1 Usability Elicitation Guideline
Table 5.4-1 shows the Usability Elicitation Guideline for the Step-by-step feature. This
guideline contains three HCI recommendations, explained in the following sections.

5.4.1.1.1 Step-by-step basics
For tasks that have (or that can be divided into) multiple steps, HCI authors recommend
informing the user of the over-all goal to be achieved as of where he is in the process at every
moment (SBS_HCI-1). This is what is commonly known as the ‘wizard-style’ functionality
involving a series of windows where information and decisions are requested from the user
(SBS_ELAB-1). The stakeholder discussions must cover which tasks are to be represented as
wizards, and of which steps each is to be composed, as well as all the inputs and decisions
required for these steps (SBS_Q-1 to SBS_Q-5). In Table 5.4-1, example SBS_EX-1
“Payment Method” describes an example for this HCI recommendation.

5.4.1.1.2 Step-by-step structure
As for the structure of wizards, HCI authors suggest that they can be linear or branch out in a
tree-style fashion when user decisions are involved. In any case, users should always be
informed of where they are in the sequence (SBS_HCI-2). The use of ‘breadcrumbs’, or
simplified map-like structures can be very useful in letting users know where they are within
the navigation. (SBS_ELAB-2). The stakeholder discussion for this HCI recommendation
(SBS_Q-6) contemplates if such breadcrumbs are to be used, how they will represent the
navigational path, the current position of the user within it, past and future steps, and how
they will handle overly large trees with multiple branches. Example SBS-EX-2 “Checkout at
Amazon.com” in Table 5.4-1 describes an example for this HCI recommendation.

5.4.1.1.3 Navigation
Within the navigational sequence of a wizard, the user should be allowed to go back to a
previous step, and to do so multiple times even until reaching the first step (SBS_HCI-3). In
doing so, the fact that actions may have been performed in previous steps, and the potential
need to undo them when navigating backwards should be taken into account. The possibility
of cancelling the wizard altogether at any time should also be considered. (SBS_ELAB-3).
Discussions SBS_Q-7 to SBS_Q-11 cover which tasks will provide ‘back’ and ‘cancel’
options, and what executing them will mean in terms of undoing previous actions. SBS_EX-2
shows an example for this HCI recommendation in Table 5.4-1 “Movie Theater
Reservations”

 107

Table 5.4-1. Usability Requirements Elicitation Guideline. Step-by-step.
Identification
Name Step-by-step
Family Wizard
Aliases Wizard [49]; Step by step [42];
Intent
To allow tasks with multiple steps to be represented as a series of navigable windows
Problem
Certain system tasks require a series of inputs from the user that may not be feasible to perform in a single window. Also, more complex actions might entail decision-making on the part of the user during execution, making necessary.
Context
When a non-expert user needs to perform an infrequent complex task consisting of several subtasks where decisions need to be made in each subtask.
Interrelationships
 The Step-by-step feature will need functionality from the Undo feature when dealing with wizards that incur in changes during navigation, as they would need to be undone when backtracking or exiting.

HCI Recommendation Elaboration Discussions with Stakeholders Usage Examples (optional)
SBS_HCI-1 Step-by-step basics
Take the user through the entire task one step at a time [49]
[42]. When the task is started, the user is informed about the
goal that will be achieved and the fact that several decisions
are needed. If information is needed from the user, ask for it
in simple terms and with brevity; by keeping it short, you can
better maintain the user’s sense of flow through the whole
step-by-step process [42].

SBS_ELAB-1 User input
The step-by-step functionality is most
often seen in wizard-style applications

They often involve a series of windows or
forms that require some kind of user
input—i.e. yes or no decisions, multiple
choice answers, filling in data fields--in
each step of the process.

SBS_Q-1 Which tasks require the user to traverse multiple steps?

SBS_Q-2 For each of these, which steps are involved?

SBS_Q-3 Which possible paths will the user take to navigate these steps?
SBS_Q-4 For each step (of each task) what input will be required from the user?

SBS_Q-5 Which of these inputs are required, which are optional, and for which
can the system provide default values?

SBS_EX-1 Payment Method
In applications where users have to choose a
payment method at check-out time, the
navigation will be split in as many ‘branches’ as
payment methods exists, showing a different
screen depending on the chosen method.

Mandatory fields (name, cc number) must be
distinguished from optional fields.

SBS_HCI-2 Step-by-step structure
The task may branch like a flow chart, depending upon what
information the user inputs, but the user doesn’t necessarily
need to know about all the available paths [49]. Users must
be able to see where they are in the sequence and which
steps are to be done, especially if there are more than 7
steps [42]. These groups may be thematic or alternatively,
you may decide to split up based on decision points [42].
Note that the harder part is to balance the size and the
number of the sub-sequences.

SBS_ELAB-2 Breadcrumbs
Breadcrumbs are often used to let the
user know where s/he is in the process,
particularly for longer sequences.

Keep in mind that only linear navigations
can offer full bread crumbs (backwards
and forwards). Trees with multiple
navigation paths can, at best, display
only the visited nodes.

SBS_Q-6 How will tasks show the user info on where he is in the process? SBS_EX-2 Check-out en Amazon.com
In applications like the amazon.com cart, when
the user makes a purchase he can see in the
upper part of the screen the step of the multi-
step process in which he is in at every moment
(selection, cart, options, check-out, etc.)

SBS_HCI-3 Navigation
If possible, allow the user to go back one step or to the
beginning of the sequence. If there are more than 10 steps,
try to break the task up into manageable sub-sequences, so
it doesn’t get too tedious for the user. The user must also be
able to revise a decision by navigating back to a previous
task [49], or back to the first step if needed [42]

SBS_ELAB-3 Back and Cancel
The user must always be able to go back
to a previous step. To provide this
functionality correctly, the system will
likely need to undo any outstanding
operations performed in the later steps.

The possibility of leaving the wizard
altogether should also be available in the
form of a Cancel option.

SBS_Q-7 Which of these tasks will provide a "back" option to traverse steps in
reverse order (or to skip back to an initial step)?

SBS_Q-8 Which steps entail deep system commands to be performed?

SBS_Q-9 For tasks that entail deep ops, will executing the "back" option undo
such ops or simply allow the user to view the previous step (without
undoing)?

SBS_Q-10 Which of these tasks will provide a cancel option to exit the entire
sequence?

SBS_Q-11 Which type of cancel will be provided for each task?

SBS_EX-3 Movie Theater Reservation
In some applications destined to make movie
theater reservations, once the user has chosen
the movie (step 1) and the seat (step 2), if the
user decides to go ‘back’ and chose a different
movie, the reserved seats must be ‘freed’ in the
cases when they may have been temporarily
reserved for the user.

 108

5.4.1.2 Usability Elicitation Clusters
The Usability Elicitation Guideline in Table 5.4-1 suggests eleven discussions items (SBS_Q-
1 to SBS_Q-11) to be held with stakeholders in order to elicit all aspects of the Step-by-step
Functional Usability Feature. These discussion items can be clearly divided into six initial
groups, or clusters, as depicted in the Usability Elicitation Clusters in shown in Figure 5.4-1,
relative to the portion of the Step-by-step functionality that they cover.

SBS_EC-1 Handling Tasks with Multiple Steps: The discussion items in this cluster,
shown in Figure 5.4-1, cover which system tasks will be comprised of multiple
steps and what will these steps be for each.

SBS_EC-2 Handling Navigation Trees: Once it has been determined which tasks will be
comprised of multiple steps (wizards), stakeholders must discuss how they will
be navigated to determine their structures (i.e. linear, tree, etc)

SBS_EC-3 Handling user input and preconditions: The discussion items contained in this
elicitation cluster deal with determining what information, if any, will be asked
of the user in each step of every wizard, including any default values that may be
provided by the system to help the user, information about input fields that may
be optional, mandatory for moving forward, etc.

SBS_EC-4 Providing “breadcrumbs” information to user: The sole discussion item
pertaining to this subject determines how to show the users where in the
navigational path they are at all times by using a ‘breadcrumbs’ structure.

SBS_EC-5 Providing “Back” functionality: The discussion items in this cluster deal with
the need for allowing the user to backtrack within the navigation and what
effects this will have regarding any actions that may have been executed prior to
doing so (i.e. undoing previous steps upon backtracking). Backtracking all the
way to the initial step in the wizard directly (going ‘Home’) is also
contemplated.

SBS_EC-6 Providing Cancel feature: This elicitation cluster deals with the possibility of
canceling a wizard altogether, how to do so, and what effects it would have on
previously executed actions. The particular type of ‘cancel’ to implement can be
any of those provided in the Abort feature and the user is referred to it for further
details.

 109

Figure 5.4-1: Elicitation Clusters. Step-by-step.

 110

5.4.1.3 Use Case Meta-model
The Use Case Meta-model for the Step-by-step feature is shown in Figure 5.2-2 in which
seven use cases are identified. Two are borrowed use cases from the Undo feature. Four are
concrete use cases and one is a template use case, all belonging to the Step-by-step feature.

SBS_UC-1 LoadWizard: the user requests the wizard to be loaded, which will present him
with the first step in the wizard. Loading a wizard may or may not trigger a
system action, represented by SBS_UC-4 Undoable Action.

SBS_UC-2 NextStep: By selecting the option ‘next’ at any time, the user requests the next
step in the wizard. The system will present the user with this next step, and in
doing so it may also trigger a system action, represented by SBS_UC-5
UndoableAction. The next step is computed based on the structure of the
sequence (linear, tree, etc) and any input given by the user in the current step.

SBS_UC-3 PreviousStep: By selecting the option ‘back’, the user requests to go back to the
previous step. The system will present the user with this previous step. In order
to do so, it may need to undo actions that were executed while visiting it for the
first time upon returning to it (see Undo). Regardless of the structure of the
sequence being traversed, the previous step is always the last one that was
visited prior to selecting the ‘back’ option.

SBS_UC-4 CancelWizard: At any point during the navigation of a wizard the user requests
the option to ‘cancel’ it, effectively exiting the sequence. Just as when going to
the previous step, cancelling a wizard may incur in undoing any actions that
were previously executed within it.

SBS_UC-5 UndoableAction: This template use case represents any system action that may
occur when going from one step of a wizard to another. For example, when
clicking ‘next’ within an installation wizard, certain software components may
be installed. These will need to be uninstalled if the user chooses to cancel the
wizard or to traverse it backwards to, for example, make different choices,
hence the need for these actions to be undoable actions and treated as such.

Figure 5.4-2 Use Case Meta-model. Step-by-step

As mentioned above, the applicability of each of these use cases will depend on the results of
the elicitation process. If during elicitation of this feature it is determined that, for example,
no intermediate steps will ever trigger any actions (i.e. all actions will only be carried at the
end of the navigation) the borrowed use cases from the Undo feature (U_UC-1 Undo and

 111

U_UC-6 SaveToHistory) will be discarded. Similarly, use cases depend on one another.
These dependencies shown in Table 5.4-2 for Step-by-step.

• The LoadWizard use case has one conditional dependency (marked with an asterisk)
with the template use case UndoableUserAction. This dependency occurs only when
loading the wizard must trigger a particular system action, represented by the
UndoableUserActionuse case. Otherwise, the LoadWizard use case needs no other use
case to be viable.

• The NextStep use case needs the LoadWizard use case to be viable, as a wizard must
be loaded initially before the user should be allowed to navigate it. It also has the same
conditional dependency as the LoadWizard use case with the UndoableUserAction in
the instances when clicking ‘next’ must trigger a particular system action.

• The PreviousStep use case needs the Undo borrowed use case whenever clicking ‘back’
must undo a system action that was taken in the previous step. Furthermore, this use case
is viable only when NextStep is also implemented, as in order to move ‘back’ the user
must have first moved forward (‘next’).

• The CancelWizard use case needs the Undo borrowed use case in the same way
PreviousStep does: in order to revert any actions previously taken within the wizard.

• Finally, the UndoableUserAction will always need SaveToHistory, as any action that
is to be undoable must be saved upon execution (along with its state.).

The remaining dependencies that exist among the borrowed use cases (represented in italics in
Table 5.2-2) are omitted herein to avoid redundancy (see Undo and Abort guidelines).

Table 5.4-2 Usability Use Case Dependencies: Step-by-step Functional Usability Feature

 SBS_UC-1
Load

Wizard

SBS_ UC-2
Next Step

SBS_ UC-3
Prev Step

SBS_UC-4
Cancel
Wizard

SBS_ UC-5
Undoable
UsrAction

U_UC-1
Undo

U_UC-6
Save to
History

SBS_UC-1 LoadWizard - X*
SBS_UC-2 NextStep X - X*
SBS_UC-3PrevStep X X - X*
SBS_UC-4 CancelWizard X - X*!
SBS_UC-5 UndoableUsrAction - X

The relationships among the concrete use cases in this feature are relatively simple, though
it’s worth noting that by reading vertically, it becomes evident that loading the wizard is
needed for the rest of the use cases to make sense, as expected.

5.4.1.4 System Responsibilities for Usability
Table 5.4-3 shows the proposed System Responsibilities for Usability for the present feature.

Table 5.4-3 System Responsibilities List for Step-by-step
System Responsibilities List for Step-by-step

SBS_SR-1 Load Wizard
The system must know which actions are comprised of multiple steps and how to load them
SBS_SR-2 Go To Next
The system must know what information to show when the user chooses to go to the ‘next’ step
SBS_SR-3 Handle user input and preconditions
The system must update the GUI accordingly when at first and last nodes, and when preconditions haven’t been met
to move to the next node
SBS_SR-4 Update breadcrumbs
The system must keep breadcrumbs updated at all times to inform user place within navigation

SBS_SR-5 Go Back
The system must allow the user to backtrack in the navigation, undoing the previous

SBS_SR-6 Go Home
The system must allow the user to go to the first step in the navigation, undoing previous actions
SBS_SR-7 Cancel Wizard
The system must allow the user to exit (cancel) the wizard, undoing any necessary actions

 112

These System Responsibilities for Usability are derived from the Usability Elicitation
Clusters identified in section 5.4.1.2 as follows:

SBS_EC-1 Handling tasks with multiple steps: This Elicitation Cluster covers knowing
which tasks will have multiple steps, and what these steps are. Therefore, the
system should be responsible for knowing that a task that has been requested by
the user is a wizard and for loading it appropriately. This gives way to the
System Responsibility SBS_SR-1 LoadWizard.

SBS_EC-2 Handling navigation trees: To handle navigation of a wizard the system must
be aware of its structure (tree-like for navigations involving user-decisions or
linear for simpler processes). In doing so, every time the user selects to go to the
‘next’ step in the sequence the system must know the following: a) what the
next step is (based on user input if a decision is involved), b) if any actions need
to be executed as a result of moving forward in the sequence/tree. This gives
way to the System Responsibility SBS_SR-2 GoToNext.

SBS_EC-3 Handling user input and preconditions: Whenever the user is at the first node,
any option to go ‘back’ should be disabled in the GUI. The same happens in the
case of moving forward (‘next’) when the user is at the last node. Similarly,
when the user has not completed mandatory fields in the current step that are a
precondition for moving forward, the possibility of moving forward should be
disabled as well. This functionality is represented by the System Responsibility
SBS_SR-3 Handle user input and preconditions.

SBS_EC-4 Providing “breadcrumbs” information to user: As mentioned earlier, this
Elicitation Cluster entails providing the user information about where he is
within the sequence at all times during navigation. This calls for the System
Responsibility SBS_SR-4 Update Breadcrumbs

SBS_EC-5 Providing “back” functionality: The system is responsible for knowing which
step was previously visited and for undoing any actions were executed within it
when doing so. This functionality is represented in the System Responsibility
SBS_SR-5 Go Back. Furthermore, if the user selects to go back, not to the
previous step but to the initial step in the sequence, the system should know
which step that is and undo all actions taken since the start of the wizard. This is
covered in the System Responsibility SBS_SR-6 Go Home.

SBS_EC-6 Providing “cancel” feature: Cancelling a wizard means leaving it altogether,
destroying any interface elements associated with it, as well as with undoing any
actions that the user may have executed while navigating it. The System
Responsibility SBS_SR-7 Cancel Wizard covers this functionality.

Table 5.4-4 maps the relationships between the Usability Elicitation Clusters and the
Usability System Responsibilitie for easy reference. Any project that requires a specific
Elicitation Cluster will also require its related System Responsibilities. Likewise, if a cluster
is discarded at elicitation time, its related responsibilities will not be a part of the system.

Table 5.4-4 Usability Elicitation Clusters / System Responsibilities for Usability Mapping for Step-by-step
Elicitation Clusters Dependent Responsibilities

SBS_EC-1 Handling tasks with multiple steps SBS_SR-1 Load Wizard
SBS_EC-2 Handling navigation trees SBS_SR-2 Go To Next
SBS_EC-3 Handling user input and preconditions SBS_SR-3 Handle user input and preconditions
SBS_EC-4 Providing “breadcrumbs” info to user SBS_SR-4 Update breadcrumbs
SBS_EC-5 Providing “back” functionality SBS_SR-5 Go Back

SBS_SR-6 Go Home
SBS_EC-6 Providing “cancel” feature SBS_SR-7 Cancel Wizard

 113

5.4.2 Usability Guideline for Software Development: Design artifacts
The design artifacts of the Usability Guideline for Software Development for the Step-by-step
feature are described in the following sections. The System Responsibilities described above
are brought to a lower abstraction level as High-level Design Component Responsibilities in
section5.4.2.1. Section 5.4.2.2 expresses them as Low-level Design Component
Responsibilities (for a MVC architecture). Finally, section 5.4.2.3 presents the Usability
Design Meta-models for said Low-level Design Component Responsibilities as object-
oriented class and sequence diagrams.

5.4.2.1 High-level Design Component Responsibilities
The following sections describe the suggested High-level Design Components and their
responsibilities for the Step-by-step feature. As mentioned earlier, the parts of this usability
feature that relate to having undo capabilities, make use of the Command pattern.
Components like the “Command” component, are taken directly from this widely known
design pattern to fulfill the needs that arise from the corresponding System Responsibilities.
Another pattern used in these guidelines is the GoF Observer pattern, a defining part of MVC.

When represented graphically, as is the case of the Usability Design Meta-models in section
5.2.2.3, all components, objects and/or classes belonging to the GoF Command pattern or the
Observer pattern are depicted in yellow and red, respectively (see page 71 for color legend of
existing patterns). The rest of the components conform our original contribution for this
usability feature.

5.4.2.1.1 User Interface (UI) Component
This component is responsible for capturing all user input and forwarding any action
invocations (possibly through a delegating component) to the part of the domain responsible
for executing it. In this feature, calls to execute a wizard are captured by the UI Component,
as well as those to cancel it and move forward/backward within it.

5.4.2.1.2 Domain Component
A Domain Component represents the part of the system that is responsible for executing the
actions requested by the user. As such, which class(es) ultimately implement the functionality
herein described will vary from application to application.

5.4.2.1.3 Command Component
Based on Gamma’s definition of the Command Pattern, the Command Component is
responsible for encapsulating method invocations and state information at call-time. When an
undoable action is invoked through the UI, a new Command is created and associated to the
method that is being called and to the Domain Component in charge of executing it. Any state
information that will need to be restored is also included in this Command.

5.4.2.1.4 Tree Component
The Tree Component is responsible for knowing the entire structure of the sequence. It is also
responsible for calculating what the next step in the sequence is at any time, based on the
current step and any information the user may have entered in it. Furthermore, it must recall
the previous step that was executed at any time, should the user select the option to go ‘back’
to it. Finally, it must be able to inform any interested parties (i.e. the UI Component) of where
in the sequence the user might be at any given time.

5.4.2.1.5 Node Component
A Node Component is responsible for handling all the information related to a single step in
the wizard. It must know which information is to be displayed for and requested of the user
and how to do so, as well as which system actions need to be invoked upon completion of
said step of the sequence, if applicable.

 114

Table 5.4-5: Usability Guideline: High-level Design Component Responsibilities. Step-by-step
System Responsibility High-level Design Component Responsibilities

SBS_SR-1 Load Wizard The component responsible for handling user input (UI Component) must listen for calls to load a new wizard. It is responsible for knowing how to display the wizard on screen once called and where to
display the wizard components, as well as any data within.

Also under responsibility of the UI is the activation/deactivation of ‘next’ and ‘back’ buttons when appropriate (at first step, last step and when relating to fulfillment of mandatory fields)
After a wizard has been loaded, the UI must now listen for calls from the user to move forward (next) or backwards (back) in the wizard. At either call, the UI will forward responsibility (as well as any data
entered in the current step of the wizard) to a delegating component (if any), which will ask of the Tree Component to provide the next (or previous) node in the sequence.
A Tree Component is responsible for knowing the structure of the wizard.

SBS_SR-2 Go To Next Given a specific node in the tree, the TreeComponent must know how to calculate the next node to show to the user. To do so, it must also know the information provided by the user, which will
determine the path within the tree through which the navigation will be performed. The simplest navigational style is that in which regardless of the user input there is only one (linear) path to follow, but
more complex structures are supported.
Whenever a node is reached, it is the responsibility of that individual node (represented by a Node component) in the Tree, to know if any further actions must be performed. The Node must order any (if
at all) associated ComandComponents to execute the predetermined actions. These ComandComponents will in turn ask their DomainClasses to execute each particular action, and will be saved to
History (See Undo).

SBS_SR-3 Handle user input
and preconditions

A Node Component is responsible for managing all of the information pertaining to a particular step in a wizard. It must know the fields that compose it, whether or not a field is mandatory, default data (if
any) for each field, textual descriptions for fields, etc. A Node, however, is unaware of its neighboring nodes and of how its node information might be displayed to the user, if at all (this is the View’s
responsibility)

SBS_SR-4 Update breadcrumbs When a wizard is first loaded the UI should display all the ‘breadcrumbs’ that are possible. In a tree-like navigation wizard, it is only feasible to display the breadcrumbs for previous steps, as the steps
that may follow any given node may not be known. Only linear wizards may show the entire sequence, highlighting the ‘current’ step.

In tree-like navigation wizards, it is the responsibility of the UI to keep a record of the already-navigated steps, and to display them for the user, including the ‘current’ step, differentiated from the rest.

In a linear wizard, the WizardTree can provide the UI with a list of the names of every node in the chain on load time.
The UI would be responsible for keeping any displayed breadcrumbs up-to-date through navigation.

SBS_SR-5 Go Back At any point in the sequence of a wizard, the user may chose to go back to the previous step (or to the first step in the sequence). When doing so, two possibilities arise: One is, if the current step did not
involve command execution, going back to a previous step will merely involve displaying the UI components for that previous step. Similarly, when going back to a first state, if none of the executed steps
entailed command execution, it will only be needed to display UI components for that first step.

SBS_SR-6 Go Home However, if the current step did involve command execution, going back to the previous node will entail undoing such execution. Similarly when going back to first node

Before ordering the display of UI components for the previous step, the delegating component (if any) must undo the last action associated with the current step in the wizard (see Undo) which was
saved to History during forward navigation. Similarly when going back to a first step, when all actions associated with all executed steps must be undone

SBS_SR-7 Cancel Wizard At any point in the wizard, the user must be allowed to cancel (exit). When doing so, any actions saved to History (if applicable) during execution must be undone by the same component regularly in
charge of saving/undoing operations--the delegating component (if any)--and the UI components for the wizard discarded. (See Abort)

 115

5.4.2.2 Low-level Design Component Responsibilities for MVC
When instantiating for an MVC architecture, the High-level Design Components described
above can be translated into the following system objects.

As is the case with most usability features presented in this work, the UI Component is
instantiated by the View object and takes over all of its responsibilities except for the
delegation of actions to other objects. This responsibility falls on the Controller object(s) of
the MVC architecture.

Likewise, the Command Component is defined in the Command interface and implemented
by ConcreteCommand objects. For every undoable command the implementation will have
a distinct ConcreteCommand class (i.e. Export VideoCommand, OpenGarageDoorCommand,
etc.). Whenever a command is called through the View, the corresponding
ConcreteCommand object will be created, saved to history to preserve state information in
case of cancelation, and ordered to execute.

The Tree and Node Components described above are represented by the WizardTree and
WizardNode classes, covering all of their responsibilities regarding the structure of the
wizard and the contents of each of its steps, respectively.

The Domain Component is instantiated by the DomainClass. Depicted in gray in Figure
5.2-3, and as is the case in every other Functional Usability Feature where it appears, the
DomainClass is not an actual class but is rather a placeholder to be substituted at design time
by the actual class that performs the task that was requested by the user.

The Low-level Design Component Responsibilities mentioned above are described in Table
5.2-6 as well as the way in which they carry out the System Responsibilities defined in
section 5.2.1.4. For each System Responsibility, the sequence of actions required by the
different objects is also presented as a set of UML diagrams.

 116

Table 5.4-6: Usability Guideline: Low-level Design Component Responsibilities (MVC). Step-by-step.
System Responsibility Objects Fig

View Controller WizardTree WizardNode Concrete
Command

Domain
Class

SBS_SR-1 Load Wizard 1. The View listens for user calls to load() a
wizard. Upon receiving such a call, it forwards it to
the Controller
5. The View receives the firstNode of the
Wizard and displays it.

2. The Controller locates the
appropriate WizardTree and orders it
to load()
4. Controller passes on the
firstNode to View (0)

3. The WizardTree will return
the first WizardNode (and
optionally all node names.
See below)

 Figure
5.4-4

SBS_SR-2 Go To Next 1. The View listens for user calls to the next()
step of a wizard. Upon receiving such a call, it
forwards it to the Controller, together with the
information entered by the user in the current step

2. The Controller locates the
appropriate WizardTree and orders it
to load the next() Node, sending
along the information provided by the
user through the View

3. Using the user-entered
information provided by
Controller (if needed), the
WizardTree determines the
next WizardNode in the
navigation and orders it to
setUp() with the user-
entered information.

4. When ordered to
setUp(), the WizardNode
processes the information and,
if it is supposed to execute any
actions it calls upon the
corresponding
ConcreteCommand to
execute()

5. When ordered to
execute(), the
ConcreteCommand
calls on its
respective
DomainClass to
doAction()

6.
Domain
Class
excecute
s the
called
action.

Figure
5.4-5

SBS_SR-3 Handle user input and
preconditions

1. Whenever the View receives a WizardNode to
display(), it disables/enables any ‘back’/’next’
buttons, depending on the current node
information. It also must highlight compulsory fields
(information that is contained within the
WizardNode) and not making a ‘next’ button
available until the user has entered the required
information.

 Figure
5.4-5

SBS_SR-4 Update breadcrumbs 2a. If load(wizard) returns only the first
Node of the wizard, the View will display it as the
first element of the ‘breadcrumbs’ list. Every time a
new Node is loaded, its name will be appended to
said list and highlighted as ‘current’
2b. If load(wizard) returns a list of all
nodeNames[] in addition to the
firstNode, the View will display all names in a
‘breadcrumbs’ list, highlighting the name of the
firstNode. Every time a new Node is added to
the list, its name will be highlighted as ‘current’.

1. When a WizardTree is first
called to load(), if it is a
linearTree, it will return
a list of all the node names, in
addition to the first node in the
sequence.

 Figure
5.4-4
Figure
5.4-5

SBS_SR-5 Go Back 1. When a ‘back’ button is available, the View must
listen for user clicks to said button and forward the
event to the Controller
4. The View displays() the screen for
previousNode appropriately.

2. The Controller then locates the
appropriate WizardTree and orders it
to go back() to the previous
WizardNode.
3. The Controller forwards
previousNode to View

3. The WizardTree returns the
previousNode to the
Controller

 Figure
5.4-6

 117

System Responsibility Objects Fig
View Controller WizardTree WizardNode Concrete

Command
Domain
Class

SBS_SR-6 Go Home 1. A “Home” button should always be available in
the View, and if clicked, the View must forward the
call to the Controller
6. The View displays() the firstNode

2. Whenever a call to
goBackToFirstNode() is
received, the Controller orders to undo
every action in the HistoryList related
to the current wizard (more specifically
to every WizardNode executed so far).
3. Then, it orders the WizardTree to
load the firstNode again
5. Controller passes on the
firstNode to the View

4. WizardTree loads the
firstNode in the wizard
and returns it to Controller

 Figure
5.4-7

SBS_SR-7 Cancel Wizard 1. At any point during wizard execution, the user
must be allowed to cancel(), exiting the
wizard. The View will pass this order to the
Controller.
3. Once cancelled (see Abort feature) the wizard
window must be discarded by the View.

2. Whenever a call to cancel() is
received, the Controller must order to
undo every action in the HistoryList
related to the current wizard (more
specifically to every WizardNode
executed so far).

 Figure
5.4-8

 118

5.4.2.3 Usability Software Design Meta-models
These UML diagrams represent the Low-level Design Component Responsibilities described
in earlier. The following sections describe the class diagram and the classes involved in this
feature and their interrelationships, followed by the descriptions of the sequence diagrams.

5.4.2.3.1 Class Diagram
Figure 5.4-3 below shows the class diagram for the Step-by-step feature. The main objects
involved are the View, Controller, WizardTree, WizardNode, ConcreteCommand and
DomainClass. The first two, fulfilling their role within MVC, respectively capture and
distribute the user calls to perform actions. The WizardTree controls the structure and
navigation of the wizard, while WizardNode contains the data for each step in the sequence.

Figure 5.4-3: Usability design model. Class diagram. Step-by-step.

As described in previous sections where the ConcreteCommand class is referenced, it
implements a Command interface responsible for ordering the execution of requested actions
(in DomainClass) as well as for storing all state information required for eventually undoing
the command it represents (i.e. the method it is calling within DomainClass)

Classes and methods in brown belong to the Step-by-step feature. Those in yellow are part of
the Command Pattern and notifications in red represent Observer Pattern functionality. The
gray DomainClass is the template class to be substituted at design time by the system class
containing the undoable action. For the full color legend see page 71.

5.4.2.3.2 Sequence Diagram “Load Wizard”
Figure 5.4-4 covers the process of initially loading a wizard and setting it up for use.

The user initially calls for the wizard to be loaded within the View, which prompts this class
to forward the call to the Controller, who in turn determines the appropriate WizardTree class
associated with the wizard being requested. The Controller then asks this WizardTree to
load(), prompting it to return its first node object. Along with this node, the names for all the
nodes in the wizard is also returned, in a structure of arrays mimicking the wizard structure
(i.e. simple array for a linear structure, multi-dimensional array for trees) for future use by the
View when displaying breadcrumbs. The Controller forwards the returned information to the
View, which, in turn, updates the interface to show the first step of the wizard and the
location of the user within it (i.e. in the first step).

 119

Figure 5.4-4: Sequence Diagram “Load Wizard”. Step-by-step.

5.4.2.3.3 Sequence Diagram “Next Step”
Figure 5.4-5 shows the sequence diagram for going from one step to the next in a wizard.

The sequence starts when the user selects the option to go ‘next’ from within any step of the
wizard. This sends the View a reference to said wizard and any information that might have
been entered by the user in the present step. This information is forwarded to the Controller
which in turn finds the appropriate WizardTree for this wizard, which is the class in charge of
calculating the next step in the sequence.

The WizardTree calls on the current node (this_step) to execute() any actions it may be
assigned to before moving forward. If one exists, it is invoked from the corresponding
ConcreteCommand as described by the Command Pattern and eventually executed off the
corresponding DomainClass, after being saved to the HistoryList.

The WizardTree then calculates the next step to be shown to the user, based on any
information provided in the current step (step_info[]) if applicable. This next node is then
forwarded on to the Controller and finally the View, which displays it on screen while
updating the bradcrumbs.

If no node is returned (next_node is null) it means the end of the wizard has been reached,
which prompts the view to discard any GUI elements related to it, effectively ending it.

 120

Figure 5.4-5: Sequence Diagram “Next Step”. Step-by-step.

5.4.2.3.4 Sequence Diagram “Go Back”
The sequence diagram for going back from one step to the wizard to the previous one is
shown in Figure 5.4-6.

This sequence starts when the user selects the option to go ‘back’ one step, within any step of
the wizard. This request is sent from the View to the Controller, which finds the appropriate
WizardTree class that represents current wizard and requests it to go back(). In doing so, the
WizardTree finds the Node object within it that represents the previous_step in the sequence
and orders it to revert() any action it may have triggered the last time it was visited. If such an
action exists, the node will order it to undo as described in the Undo feature. After undoing,
or in the cases when there is nothing to undo, the WizardTree will pass on the previous_node
onto the Controller, which will pass it on to the View. The View, finally, displays this node
for the user, effectively making it the current step in the sequence, and updates the
breadcrumbs accordingly.

 121

Figure 5.4-6: Sequence Diagram “Go Back”. Step-by-step.

5.4.2.3.5 Sequence Diagram “Go Home”
The sequence in Figure 5.4-7 shows the functionality of going “home”: to the first step of the
wizard.

Similarly to “Go Back”, this sequence can be invoked from any step of the wizard by the
user. The call is captured by the View, which forwards it to the Controller which in turn finds
the appropriate WizardTree class that represents this wizard. The WizardTree locates every
one of its nodes that have been traversed during the execution of the wizard and orders them
to revert() any actions they may have triggered. As in the case of “Go Back” any triggered
actions are undone, only in this case it’s done multiple times (i.e. for all steps).

Finally, the first_node in the WizardTree is returned to the Controller and passed on to the
View, which then displays it as the current node (effectively having sent the user “home” or
to the first step of the wizard). Finally, the View rolls back the breadcrumbs to the first step.

Figure 5.4-7: Sequence Diagram “Go Home”. Step-by-step.

 122

5.4.2.3.6 Sequence Diagram “Cancel Wizard”
Figure 5.4-8 shows the sequence for cancelling a wizard.

This sequence starts when the user selects the option to cancel the wizard at any step in the
sequence. This request is sent from the View to the Controller, which finds the appropriate
WizardTree class for the current wizard and requests it to cancel(). Much like when going
“home” the WizardTree finds all the Node objects within it that have been traversed and
orders them to revert() any action any of them may have triggered the last time they were
visited. If such actions exist, each node will order them to undo as described in the Undo
feature.

Once control returns to the View (after any and all actions have been undone), it discards all
graphic elements related to the wizard, effectively terminating it.

Figure 5.4-8: Sequence Diagram “Cancel Wizard”. Step-by-step.

 123

5.5 “Progress Feedback” Usability Guideline for Software Development
The Progress Feedback Functional Usability Feature covers the user’s need to provide the
user with accurate visual feedback on the progress of the current task.

Certain system tasks will take a long time to execute and, therefore, the user needs to be
informed of how much time remains in said tasks to s/he can make informed decisions in
terms of whether to wait for the task to finish, cancel it, etc.

The Usability Guideline for Software Development is made up of Analysis and Design
artifacts, described for the Progress Feedback feature in the following two sections.

5.5.1 Usability Guideline for Software Development: Analysis artifacts
There are four artifacts to be used during the analysis phase: the Usability Elicitation
Guideline, the Usability Elicitation Clusters, the Usability Use Case Meta-models, the System
Responsibilities for Usability. These artifacts are described in the following four sections.

5.5.1.1 Usability Elicitation Guideline
Table 5.5-1 shows the Usability Elicitation Guideline (UEG) for the Progress Feedback
Functional Usability Feature. In this guideline, there is a single HCI recommendation
covering the basic characteristics of the progress feature, when to use it and what to show the
user, as explained below.

5.5.1.1.1 Progress Information Types
HCI authors suggest showing an animated indicator of how much progress has been achieved
for an ongoing action if it is to take more than a few seconds to execute. This indicator should
be as specific as possible (U_HCI-1). Even when information is available to display a detailed
progress indicator, the initial calculations can take a few seconds, during which an alternate
(indeterminate) progress indicator should be displayed (U_ELAB-1).

The stakeholders should discuss (see SBS_Q-1 to SBS_Q-11 for details) which system tasks
are likely to need progress indicators (longer tasks), what information is available in each
case for the calculation of the progress, and, lastly, how the system will handle cancellation of
these tasks (see Abort)

In Table 5.5-1, SPF_EX-1 “Feedback Examples” describes a variety of examples for this HCI
recommendation.

 124

Table 5.5-1 Usability Requirements Elicitation Guideline. Progress Feedback.
Identification

Name System Progress Feedback (SPF)
Family Feedback
Aliases Alias: Progress Indicator [42]; Progress [49]; Show Computer is Thinking, Time to Do Something Else [11]; Modeling Feedback Area [Coram, 96]
Intent
Provide the user with accurate visual feedback on the progress of the current task
Problem
Certain system tasks will take a long time to execute. The user needs to be informed of how much time remains in said tasks to s/he can make informed decisions in terms of whether to wait for the task to finish, cancel it, etc.
Context
When a time-consuming process interrupts the UI for longer than two seconds or so: [42]

HCI Recommendation Elaboration Discussions with Stakeholders Usage Examples (optional)
SPF_HCI-1 Progress Information Types
Show an animated indicator of how much progress has been made. Either
verbally or graphically (or both). For tasks that take a long time (typically
more than a few seconds) [49], tell the user:

- What’s currently going on,
- What proportion of the operation is done so far,

- How much time remains, and
- How to stop it (or cancel it)

About the remaining time: If the timing can be calculated, give an indication
of the time remaining, either as a figure, or graphically, use either a Time-
remaining Progress Indicator or a Proportion-completed Progress Indicator;
if timing can not be estimated, but the process has identifiable phases, give
an indication of the phases completed, and of the phases remaining. Use a
Progress Checklist; if neither of these possibilities exist, then at least
indicate the number of units processed (records, vectors); if no quantities
are known – just that the process may take a while- then simply show some
indicator that it’s still going on, use an Indeterminate Progress Indicator.
Verify that the application takes no longer than 1 second to display the
progress indicator; and update the feedback at a rate that gives the user the
impression that the operation is still being performed, e.g. every 2 seconds

SPF_ELAB-1 Indeterminate progress
When a progress bar is first displayed the
progress information might not be immediately
available. If this is the case, and indeterminate
progress indicator should be shown (in place of
the determinate indicator) until accurate progress
information can be calculated and displayed
If progress cannot be refreshed every 2 seconds,
an alternate (indeterminate) progress indicator
should be visible to reassure the user that the
task is still executing

SPF_Q-1 Which tasks are likely to take more than a
few seconds (2 to 5) to complete, needing
progress information to be displayed?

SPF_Q-2 For which of these can actual progress be
calculated?

SPF_Q-3 For those whose progress can be
calculated, which can provide the following
information?

SPF_Q-4 Identifiable phases completed

SPF_Q-5 Time remaining for completion
SPF_Q-6 Units processed

SPF_Q-7 Percentage completed

SPF_Q-8 For any remaining tasks (whose progress
cannot be calculated) what kind of
indeterminate progress indicator will be
shown to the user?

SPF_Q-9 For which tasks will a cancel option be
provided to the user?

SPF_Q-10 For the tasks listed above, how will the
cancel option be provided?

SPF_Q-11 For every task, what textual information (if
any) will be shown to the user, together with
the progress indicator?

SPF_EX-1: Feedback Examples
As part of operating system behavior,
progress bars are shown when copying large
amounts of data within the hard drive or out
to an external device.

A cancel button (or the option to cancel
through command-. for shorter processes) is
also provided.

The Mac OS progress bar will initially display
a dialogue window with an indeterminate bar
and a “calculating…” message. Once the
remaining time is calculated it is displayed
together with a determinate progress bar and
the number of files remaining to be copied
(SPF_3 parts 2, 3 and 4).

Most software installers, particularly those
that entail a long process like OS installers,
provide the “phases completed” (SPF_3 1)
information, together with multiple other
forms of feedback.
A checklist where completed phases are
ticked off is most common when providing
this type of feedback.

 125

5.5.1.2 Usability Elicitation Clusters
The Usability Elicitation Guideline in Table 5.5-1 suggests eleven discussions items to be
held with stakeholders in order to elicit all aspects of the Progress Feedback Functional
Usability Feature. These discussion items can be clearly divided into four initial groups, or
clusters, as described in the Usability Elicitation Cluster Map, shown in Figure 5.5-1,
according to the portion of the Progress Feedback functionality that they cover.

SPF_EC-1 Determining which tasks will require progress: The discussion items in this
cluster, as its name indicates, cover pinpointing those tasks which take more than
a few seconds to execute and thus will require progress information to be shown.

SPF_EC-2 Calculating and Providing Progress Information: This cluster covers what that
information will be and how calculations will be performed for each type of
progress display. For example, a Progress Bar display typically display the
percentage completed/remaining, but can also show the number of units
processed or remaining vs. the total number of units that need to be processed. In
the case of the Progress Steps indicator, it is expected that the name of each step
in the process be known and displayed as ‘completed’ before moving on to the
next step.

SPF_EC-3 Providing Indeterminate Progress Information: The discussion items in this
cluster deal with the tasks for which progress must be shown, but little or no
information is available about the task. In these cases, an indeterminate progress
indicator must be displayed.

SPF_EC-4 Providing Textual Information: This cluster deals with determining, for each
task, which information will be displayed for the user in order to explain what the
ongoing task is, and what the progress indicator means.

SPF_EC-5 Providing Cancel Option: This last cluster deals with cancellation of an ongoing
task for which progress is being shown. The user must refer to the Abort feature
in order to determine how the system state will be handled.

 126

Figure 5.5-1: Elicitation Clusters. Progress Feedback

 127

5.5.1.3 Use Case Meta-model
The Use Case Meta-model for the Progress feature is shown in Figure 5.2-2 (See page 71 for
color legend), in which seven use cases are identified and described below.

SPF_UC-1 ShowProgress: When the user requests a LongUserAction, this triggers the
show of its progress throughout its execution. The ShowProgress use case can
be: ShowProgressBar, ShowProgressSteps, ShowIndeterminateProgress, all of
which are described below

SPF_UC-2 ShowProgressBar: An empty bar is initially displayed, which continuously gets
filled in as the task progresses. Textual information such as the percentage
completed or the number of completed parts of the task may accompany this bar.

SPF_UC-3 ShowProgressSteps: As the task requiring this type of progress feedback
progresses, information about the ‘steps’ it is made up of is displayed. These
actions typically have a set, finite number of steps, as opposed to those showing
only progress bars.

SPF_UC-4 ShowIndeterminateProgress: In this case, from the moment the action starts
until it ends, a graphic element representing indeterminate progress is displayed
(i.e. spinning wheel, clock, etc.). This use case may also be an extension of
ShowProgressBar and ShowProgressSteps, at the very beginning of the task
execution, before the initial progress information has been calculated in either
case.

SPF_UC-5 LongUserAction: This use case represents the system action that is directly
invoked by the user, which takes several seconds to execute, thus needing
progress information to be displayed for it.

SPF_UC-6 Cancel: At any point in its execution, the user may cancel any LongUserAction,
as described in the Abort feature.

Figure 5.5-2 Use Case Meta-model. Progress Feedback

 128

As mentioned earlier, the applicability of each of these use cases will depend on the results of
the elicitation process. If during elicitation of the Progress feature, discussions determined
that, for example, no task requires showing information about the ‘steps’ it has accomplished
then the ShowProgressSteps use case would be discarded. Use cases also depend on one
another. These dependencies are shown in Table 5.2-4, where we can see the following:

• The ShowProgress use case and its children evidently need the LongUserAction to
exist in order to be viable. The children, in particular, need the parent use case.
Furthermore, unless it contradicts what has been elicited for the Abort feature in a given
project, all progress indicators should be cancellable.

• The LongUserAction, as it represents any long action in the system being developed,
has no specific needs within this feature in order to be viable.

• Finally, in this context, the Cancel use case needs to be associated to an active show of
progress in order to be viable (represented in the dependencies table by the parent use
case ShowProgress).

Figure 5.5-3 Usability Use Case Dependencies: Progress Feedback
 SPF_UC-1

Show
Progress

SPF_UC-2
Show

ProgressBar

SPF_UC-3
Show Progress

Steps

SPF_UC-4
Show

IndetermProg

SPF_UC-5
LongUser

Action

SPF_UC-6
Cancel

SPF_UC-1 ShowProgress - X X
SPF_UC-2 ShowProgressBar X - X X
SPF_UC-3 ShowProgressSteps X - X X
SPF_UC-4 ShowInnetermProgress X - X X
SPF_UC-5 LongUserAction -
SPF_UC-6 Cancel X -

For such a small set of use cases, the only relevant conclusion that can be drawn from reading
vertically is that, aside from the LongUserAction use case, the Cancel use case is pivotal to
the Progress Feedback Functional Usability Feature, since, in most cases, any type of progress
will require providing a way out for the user to terminate execution.

5.5.1.4 System Responsibilities
Table 5.5-2 shows the proposed System Responsibilities for Usability for the present feature.

Table 5.5-2 System Responsibilities List for Progress Feedback
System Responsibilities List for Progress Feedback

SPF_SR-1 Determine which tasks will require progress
The system must know which system actions might take long to execute

SPF_SR-2 Calculate and provide progress information
The system must provide progress information for each action by using all available information

SPF_SR-3 Provide cancel option
The system must allow users to cancel on-going actions

SPF_SR-4 Provide textual information
The system must provide information about the task during progress display

SPF_SR-5 Provide indeterminate progress information
The system must provide indeterminate progress information for tasks requiring it and when no other alternative is available

In section 5.5.1.2 we identified five elicitation clusters. Though in many other features a
single cluster may yield more than one system responsibility or vice versa, in this case there is
a one-to-one relationship between clusters and system responsibilities. Due to its simplicity
in, the logic followed to derive each system responsibility is omitted in this chapter (each
System Responsibility represents exactly the functionality covered by its corresponding
cluster).

 129

5.5.2 Usability Guideline for Software Development: Design artifacts
The design artifacts for the Progress feature are described below. In section 5.5.2.1 the
System Responsibilities are brought to a lower abstraction level as High-level Design
Component Responsibilities, and in section 5.5.2.2 as Low-level Design Component
Responsibilities for MVC. Finally, section 5.2.2.3 shows the Usability Design Meta-models.

5.5.2.1 High-level Design Component Responsibilities
In order to support the System Responsibilities at design level, the following sections describe
the suggested High-level Design Components for the Progress feature, shown in Table 5.6-5.

5.5.2.1.1 User Interface (UI) Component
This component is responsible for capturing all user invocations and forwarding them
(possibly through a delegating component) to the appropriate part of the domain, usually that
responsible for executing the invoked action. Specifically for this usability feature, calls to
execute an action that may trigger a progress display are to be listened for by the UI.

5.5.2.1.2 Progress Component
As a part of the UI, the Progress Component is responsible for gathering the raw progress
information from the Domain Component, processing it and displaying it for the user. For
example, when copying files from one folder to another, the Progress Component is
responsible for asking the Domain Component how many files are to be copied, and then for
repeatedly requesting information on how many have already been processed. Internally the
Progress component calculates a simple percentage and shows it to the user, alongside the
number of files that have been copied, or those that remain. This way, the Progress
Component not only relays the progress information on the interface, but also may previously
perform additional calculations in order to produce the data to be shown.

5.5.2.1.3 Monitoring Component
The monitoring component simply determines when a certain amount of time has elapsed,
triggering the show of the progress display. For example, this time window may be set to two
seconds, so any user-invoked task taking longer than two seconds to complete will trigger its
corresponding progress indicator.

5.5.2.1.4 Domain Component
A Domain Component represents the part of the system that is ultimately responsible for
executing the (long) actions requested by the user. It is also responsible for periodically
notifying all components that may be interested (in this case the Progress Component) of its
current state of execution (i.e. processing unit 54 of 100).

Table 5.5-3: Usability Guideline: High-level Design Component Responsibilities. Progress Feedback feature.
System Responsibility High-level Design Component Responsibilities

SPF_SR-1 Determine which
tasks will require progress inf

The UI Component is responsible for knowing (from a pre-established list) whether an invoked action is
among those that could potentially be ‘long’ (>2s)

SPF_SR-2 Calculate and
provide progress information

The UI Component is responsible for listening for calls to these actions and for ordering their execution.
If the action is among the potentially ‘long’, the UI must call unto an alternate Monitoring Component
(preferably residing in a different thread) to determine when the allowed time (2s) has elapsed. When/if it
does, the UI must start to display progress information (through a separate Progress Component, if needed)
The component in charge of delegating actions (if any) is responsible for determining the Domain
Component responsible for executing the invoked action and ordering it to do so.
The Domain Component executing the action is responsible for continually notifying interested parties
(namely the UI and/or Progress Components) of the progress achieved and, eventually, its end.
The UI and/or Progress Components are responsible for keeping the user up to date on the progress,
based on notifications from the Domain Component.

SPF_SR-3 Provide cancel
option

The component responsible for displaying the progress (be it the UI or an alternate Progress Component)
must provide a cancel option for the actions it knows to require one

SPF_SR-4 Provide textual
information

The component responsible for displaying progress must also know of and display any needed textual
information along with the progress details.

SPF_SR-5 Provide
indeterminate prog info

When the UI component (or alternate Progress Component) first displays the progress, it must do so
indeterminately until it receives the first real progress update from the Domain Component.

 130

5.5.2.2 Low-level Design Component Responsibilities for MVC
When instantiating for a MVC architecture, the UI Component is instantiated by View the
object(s) and takes over all of its responsibilities except for the delegation of actions to other
objects. This responsibility falls on the Controller object(s) of the MVC architecture.

The Progress Component is represented by the ProgressIndicator, and covers all the
responsibilities described for the Progress Component in the previous section.

The ProgressIndicator class is meant to be extensible, and three proposed extensions are: the
ProgressBar, meant for displaying information in percentage and n-of-m form; the
IndeterminateProgressIndicator intended mainly for displaying progress feedback when no
information is available about the on-going task; and, finally, the ProgressSteps, meant to
display the steps that conform a task and to mark each as ‘completed’ when appropriate, for
tasks where such information is relevant and available.

Finally, the Monitoring Component is represented by the Monitor object, which covers all of
its intended functionality.

Table 5.5-4details the Low-level Design Component Responsibilities described above and
how they carry out each of the System Responsibilities defined for this feature. For each
System Responsibility, the sequence of actions required by the different objects is presented
as well as a set of UML diagrams that depict each of these interactions.

Table 5.5-4: Usability Guideline: Low-level Design Component Responsibilities (MVC). Progress Feedback.
System Responsibility Objects Fig

View ProgressIndicator Monitor Controller DomainClass
SPF_SR-1 Determine
which tasks will
require progress inf

1. The View must listen for
invocation of actions and must
determine (from a preexisting
list) if the action being called
could be potentially long.

SPF_SR-2 Calculate
and provide progress
information

1. Notify the Controller when a
long action hss been invoked.
2. Ask the Monitor class to wait
a specified amount of time (2s)
5. If the view is still waiting for
the invoked action to return after
Monitor responds, it starts up a
ProgressIndicator (thread).
9. Whenever the
ProgressIndicator notifies the
View of new progress, the View
will update the GUI
12. When the ProgressIndicator
notifies the View that the
progress has ended, it updates
the GUI accordingly (no longer
displaying the indicator)

6. The ProgressIndicator
suscribes to the
corresponding
DomainClass for progress
information.
8. Upon reception of
progress information, the
ProgressIndicator updates
the progress, performing
any needed calculations to
do so. It notifies the View.
11. When ProgressIndicator
receives a notification that
the action being executed
has ended it sets the
progress to competed and
notifies the View.

3a. The Monitor
class starts up
a clock and
notifies the view
after the time
(2s) has
elapsed.

3b. The
Controller
invokes
the action,
calling the
appropriat
e class.

4. The
DomainClass
starts executing
the invoked
action
7. The
DomainClass
notifies its
subscribers
(namely the
ProgressIndicat
or) of its
progress
10. When the
action is
completed,
DomainClass
sends out a
notification

SPF_SR-3 Provide
cancel option

1. When the View creates the
ProgressIndicator it does so
indicating via a boolean
parameter whether the indicator
will be cancellable or not

2. Depending on the
parameter passed, the
ProgressIndicator will
enable a ‘cancel’ button or
not.

SPF_SR-4 Provide
textual information

1. When the View creates the
ProgressIndicator it must pass it
the textual information to display

2. The ProgressIndicator
holds this text and displays
it alongside the progress
information

SPF_SR-5 Provide
indeterminate
progress information

1. Whenever a
ProgressIndicator (that is not
undetermined) is created, the
view will initially paint it as
indeterminate until the first
progress update is received.

 131

5.5.2.3 Usability Software Design Meta-models
This section describes the UML diagrams representing the Low-level Design Component
Responsibilities described above. Below, the class diagram is described, as well as the classes
involved in this feature and their interrelationships, followed by the descriptions of the
sequence diagram.

5.5.2.3.1 Class Diagram
Table 5.5-4 below shows the class diagram for the Progress Feedback feature. The main
objects involved are the View, Controller, ProgressIndicator, Monitor, ProgressBar,
IndeterminateProgressIndicator, ProgressSteps and DomainClass. The first two, fulfilling
their role within MVC, respectively capture and distribute the user calls to perform actions.

Figure 5.5-4: Usability Design Meta-model. Class diagram. Progress Feedback.

The ProgressIndicator, or more specifically, any of its subclasses, display the progress
information for the task being executed by DomainClass. To do so, it subscribes to it and
listens for the available information, processes it accordingly and displays it periodically.

The Monitor class simply starts counting milliseconds when requested to do so by the View
and raises a flag when a pre-set time (usually 2 seconds) has been reached. With this
information, the View can decide whether or not to call for the display of progress
information for that particular action.

5.5.2.3.2 Sequence Diagram “Show Progress”
Figure 5.2-4 shows the one sequence diagram for the Progress Feedback feture. It covers all
Low-level Design Component Responsibilities previously described except for those related
to the Abort feature (cancelling the task) as those are covered in section 5.3. This diagram
covers execution of a long action and the display of its progress.

The sequence starts when the (template) action ‘doAction()’ is invoked by the user. The View
captures this call and immediately orders the Monitor to start counting time, while
simultaneously ordering the action to be executed through the Controller.

When the Controller gets the order to ‘doAction()’, it finds the appropriate DomainClass and
orders its execution. If this execution finishes before the Monitor class reaches its pre-set
time, then the sequence ends and no progress information is shown. If, on the other hand, the
Monitor does reach its pre-set time before execution of the action ends, it notifies the View
which procedes to create a ProgressIndicator instance, appropriate for the action that was
invoked.

 132

This newly created ProgressIndicator subscribes to the DomainClass that is executing the
action, expecting notifications of progress (i.e. units processed). While the DomainClass
continues to send notifications other than that which indicates that the process has finished,
the ProgressIndicator continues to update the progress information (including performing any
needed calculations) and to forward this information to the View.

The View continuouly updates the display until it receives the last notification (i.e. 100%)
which causes it to update the display differently, by destroying all components related to the
progress indicator.

This last notification is sent by the ProgressIndicator only after it receives a notification itself
from the DomainClass, informing it that the process has ended.

Figure 5.5-5: Sequence Diagram “Show Progress”. Progress Feedback.

Classes and methods depicted in light blue represent that they belong to the Progress
Feedback feature. Notifications in dark red represent Observer Pattern functionality. The gray
DomainClass is a template class to be substituted at desing time by the appropriate system
class containing the long action. For the full color legend see page 71.!

 133

5.6 “System Status Feedback” Usability Guideline for Software Development
The System Status Feedback Functional Usability Feature covers the need to provide the user
with information on the different statuses the system might be in at any given time. An
application can be in one or more statuses at once, so the user needs to be visually aware of
all of them continuously.

The Usability Guideline for Software Development is made up of Analysis artifacts and
Design artifacts. These are described for the the Abort feature in the following two sections.

5.6.1 Usability Guideline for Software Development: Analysis artifacts
There are four artifacts to be used during the analysis phase: the Usability Elicitation
Guideline, the Usability Elicitation Clusters, the Usability Use Case Meta-models, the System
Responsibilities for Usability. These artifacts are described in the following four sections.

5.6.1.1 Usability Elicitation Guideline
Table 5.6-1 shows the Usability Elicitation Guideline for the System Status Feedback feature.
In this guideline, there are three HCI recommendations, covering the notification features
regarding system statuses, the different types of statuses and how they should be handled and
displayed on screen. Below, all of these topics, as approached by this Usability Elicitation
Guideline, are explained.

5.6.1.1.1 Status change notification
HCI authors suggest that users must be notified when a change in system status occurs
(SSF_HCI-1). The system status can change because a user has requested the change, because
an internal part of the software has done so, due to internal or external system failures, etc.
All these sources of change must be considered upon elicitation (SSF_ELAB-1). The
stakeholders need to determine which statuses will be monitored and notified to the user upon
change, as well s the possible sources of change (SSF_Q-1 to SSF _Q-2).

In Table 5.6-1, example SSF_EX-1 “Browser ‘online’ status” describes an example for this
HCI recommendation.

5.6.1.1.2 Status types
HCI literature suggests different levels of obtrusivity depending on the criticality of a status
change (SSF_HCI-2). Critical information must be displayed obtrusively, requiring user
acknowledgement, less critical information needs to be highlighted, drawing the user’s
attention but not necessarily interrupting his work, and less important information can simply
be displayed in the status area (SSF _ELAB-2). Stakeholders must determine how critical
each system status is, in order to display it appropriately (SSF _Q-3).

Example SSF_EX-2 “Status messages in Firefox” in Table 5.6-1 describes an example for
this HCI recommendation.

5.6.1.1.3 Status placement
HCI authors propose the center of the screen as the most effective place to position critical
feedback, while top-left (in western culture) is also a prominent place to do so unobtrusively
(SSF_HCI-3). During elicitation, it must be determined if the system will need to
accommodate more than one writing direction, as prominence of status areas will vary in each
case (SSF_ELAB-3). Finally, stakeholders must establish, for each type of system status,
where its notifications will be displayed on screen (SSF_Q-4).

 134

Table 5.6-1. Usability Requirements Elicitation Guideline. System Status Feedback.
Identification
Name System Status Feedback (SSF)
Family Feedback
Aliases Status Display; Modeling Feedback Area
Intent
Providing the user with information on the different statuses the system might be in at any given time
Problem
An application can be in one or more statuses at once, so the user needs to be visually aware of all of them continuously.
Context
When changes that are important to the user occur or when failures that are important to the user occur: During task execution, because there are not enough system resources, because external resources are not working properly.
Interrelationships
Abort: Certain types of status feedbacks may need a ‘cancel’ option

HCI Recommendation Elaboration Discussions with Stakeholders Usage Examples (optional)
SSF_HCI-1: Status changes
HCI experts argue that the user wants to be notified when
a change of status occurs.

SSF_ELAB-1 Source of status changing events
Changes in the system status can be triggered by any of the
following:
- User-initiated events

- Internal actions realizadas por el propio sistema

- System failures
Problems with external and internal resources

SSF_Q-1 Of which system statuses (and status
changes) will the user be notified?

SSF_Q-2 Which status changes are initiated by
the user and which are initiated by the
system or other resources ?

SSF_EX-1: Browser ‘online’ status
Without proper status feecback a user may lose
track of the actions he is allowed to perform at a
given time. For example, the Online Status in a
browser determines if the user is allowed to
navigate only through cached pages (offline) or
also through live web pages (online).

SSF_HCI-2: Status types
Well-designed displays of the information to be shown
should be chosen. They need to be unobtrusive if the
information is not critically important, but obtrusive if
something important happens.
Displays should be put together in a way that emphasizes
the important things, de-emphasizes the trivial, doesn’t
hide or obscure anything, and prevents one piece of
information from being confused with another. They should
never be re-arranged, unless users do so themselves.
Attention should be called to important information with
bright colours, blinking or motion, sound or all three – but a
technique appropriate to the actual importance of the
situation to the user should be used.

SSF_ELAB-2 Status types: Levels of importance
For each piece of status information to be displayed, discuss with the
user what type of information it is according to the following criteria:

- Critical information needs to be displayed obtrusively
 -Important yet non-critical information needs to be highlighted

- Less important information should be displayed in the status area

During elicitation, the discussion of the exact response type can be
left until interface design time, but the importance of the different
situations and the general type of salience (obtrusive, highlighted or
standard) that will be provided does need to be discussed at this
stage.
Overloading the user with too many obtrusive status notifications can
be counterproductive, as can be undermining critical status changes
by relegating them to the status area.

SSF_Q-3 For each system status, which type of
notification should be shown to the
user?

SSF_EX-2: Status messages in Firefox
Critical: When attempting to open a website
without a live internet connection, Firefox will
display an obtrusive message informing the user
of this fact.
Non-critical: When the browser is set to a site that
has been marked as a ‘favorite’ by the user, a
small star will appear next to its URL.
Less important: When the browser has finished
loading a page, the word “Done” will appear in the
lower-left corner of the status bar.

 135

Identification
SSF_HCI-3: Status placement
HCI literature mentions that users want one place where
they know they can easily find the status information. Aside
from the spot on the screen where users work, they are
most likely to see feedback in the center or at the top of the
screen, and least likely to notice it at the bottom.
The standard practice of putting information about changes
in state on a status line at the bottom of a window is
particularly unfortunate, especially if the style guide calls
for lightweight type on a grey background. The positioning
of an item within the status display should be used to good
effect. People born into a European or American culture
tend to read left-to-right, top-to-bottom, and that something
in the upper left corner will be looked at most often.

SSF_ELAB-3 Status placement and writing directions
Ask about the users’ reading direction and whether or not the system
will need to accommodate more than one direction. Display areas
that are prominent in one culture will be less so in others of different
writing direction.

SSF_Q-4 How and where will each type of
notification be shown to the user?

SSF_EX-3: Facebook in Hebrew
When the Facebook application is set to the
Hebrew language (and other languages with right-
to-left script), every status area is mirrored
horizontally. (i.e. the small red balloon that
indicates ‘new messages’ will be displayed in the
bottom-left corner of the page instead of to the
bottom-right)

 136

5.6.1.2 Usability Elicitation Cluster Map
The Usability Elicitation Guideline in Table 5.6-1 suggests four discussions items (SSF_Q-1
to SSF_Q-4) to be held with stakeholders in order to elicit all aspects of the System Status
Feedback feature. These discussion items can be clearly divided into three initial groups, or
clusters, as described in the Usability Elicitation Cluster Map, shown in Figure 5.6-1
according to the portion of the System Status Feedback functionality that they cover.

SSF_EC-1 Knowing system statuses and their changes: The discussion item in this cluster
are aimed at determining the list of statuses that the system will need to keep
track of and, for each of those statuses, the manners in which they can change.
For example one status in a connectivity application could be “connection status”,
which could change to and from ‘online’ and ‘offline’

SSF_EC-2 Handling status changes: This cluster delves into the discussions regarding how
the system is expected to react if/when the status changes mentioned above occur.

SSF_EC-3 Presenting system status notifications to user: The discussion items included in
this cluster deal with the placement and obtrusivity level of the notifications
regarding each status change.

Figure 5.6-1: Elicitation Clusters. System Status Feedback

5.6.1.3 Use Case Meta-model
The Use Case Meta-model for the System Status Feedback Functional Usability Feature is
shown in Figure 5.2-2, in which four use cases are identified and described below.

SSF_UC-1 ChangeStatus: This use case begins when the system is requested to change the
value (i.e. ‘online’ to ‘offline’) of a particular system status (i.e. ‘connection
status’). Upon reception of this request, the system changes the status value and
typically displays it (i.e. connection icon going from green to red) and performs
an associated action (i.e. blocking internet access). Use cases DisplayStatus and
SystemAction’ represent these last two actions respectively and are described
below. Furthermore, status changes can be triggered by the user (User actor) or
by the system itself (System actor).

 137

SSF_UC-2 DisplayStatus: Whenever a status is modified, the system must visually display
the change for the user through the GUI accordingly.

SSF_UC-3 SystemAction’: As mentioned in the ChangeStatus use case description, this
other system action is what should be performed by the system once a status has
been changed, beyond the display of the change. For example, turning off the
Wireless connection in a laptop not only changes the status icon from () to
(), it also performs a series of calls to the operating system to actually block
hardware access to Wi-Fi networks.

Figure 5.6-2 Use Case Meta-model. System Status Feedback

Use cases depend on one another as shown in Table 5.6-2, where we can see the following:

• The ChangeStatus use case needs the SystemAction’ use case (conditionally, hence the
asterisk). This relationship only applies in the cases when changing a status will trigger a
system action beyond updating the interface, as explained earlier.

• The DisplayStatus use case needs the ChangeStatus use case in order to be viable,
because a change must occur in order for it to be displayed.

Table 5.6-2 Usability Use Case Dependencies: System Status Feedback Functional Usability Feature
 SSF_UC-1

ChangeStatus
SSF_UC-2

DisplayStatus
SSF_UC-4

SystemAction’
SSF_UC-1 ChangeStatus - X*
SSF_UC-2 DisplayStatus X -
SSF_UC-3 SystemAction X
SSF_UC-4 SystemAction’ -

5.6.1.4 System Responsibilities for Usability
Table 5.6-3 shows the proposed System Responsibilities for Usability for the present feature.

Table 5.6-3 System Responsibilities List for System Status Feedback
System Responsibilities List for System Status Feedback

SSF_SR-1 Be aware of system statuses (and their changes)
The system must monitor all statuses for changes
SSF_SR-2 Handle user-initiated status changes
The system must provide users with a way to change the statuses that require it
SSF_SR-3 Handle system-initiated status changes
The system must provide means for predetermined external sources, or other parts of the system, to change
statuses as required.
SSF_SR-4 Present system status notifications to users
The system must notify users appropriately of each status change

These System Responsibilities for Usability are derived from the Usability Elicitation
Clusters as follows:

 138

SSF_EC-1 Knowing system statuses and their changes: This cluster determines which
statuses the system will need to be aware of, as well as the ways in which they
can change. This elicitation cluster yields a single System Responsibilities,
namely SSF_SR-1 Be aware of system statues and their changes.

SSF_EC-2 Handling status changes: This cluster contemplates determining whether each
status change is initiated by the user or by a third party (be it the system itself,
other resources, etc) and what to do about them. This makes way for two system
responsibilities SSF_SR-2 Handle User-initiated status changes and SSF_SR-3
Handle system-initiated status changes

SSF_EC-3 Presenting system status notifications to user: Once a status change has
occurred, regardless of source, the user must be notified appropriately. This
cluster is formed by discussion items that deal with the type of notification to
give for each status change as well as the on-screen characteristics of each.

Table 5.6-4 maps the relationships between the Usability Elicitation Clusters and the
Usability System Responsibilities described above, for easy reference. Any project
determined to require a specific Elicitation Cluster will also require its related System
Responsibilities. Likewise, if a cluster is discarded during elicitation, its related
responsibilities will not be a part of the resulting system. In the case of Abort this relationship
is one-to-one.

Table 5.6-4 Usability Elicitation Clusters / System Responsibilities for Usability Mapping for System Status Feedback
Elicitation Clusters Dependent Responsibilities

SSF_EC-1 Knowing system statuses and their changes SSF_SR-1 Be aware of system statues (and their changes)
SSF_EC-2 DisplayStatus SSF_SR-2 Handle user-initiated status changes

SSF_SR-3 Handle system-initiated status changes
SSF_EC-3 SystemAction SSF_SR-4 Present system status notifications to users

As was the case with use case interrelationships, the ChangeStatus use case (SSF_UC-1) has
the highest possible number of System Responsibility dependencies, due to the fact that it is
the core of the feature.

5.6.2 Usability Guideline for Software Development: Design artifacts
In order to support the System Responsibilities at design level, the following sections describe
the suggested High-level Design Components for the Progress feature.

5.6.2.1 High-level Design Component Responsibilities
In order to support the System Responsibilities at design level, the following sections describe
the suggested High-level Design Components for the System Status Feedback feature,
summarized in Table 5.6-5.

5.6.2.1.1 UI Component
This component is responsible for capturing all user invocations and forwarding them
(possibly through a delegating component) to the appropriate part of the domain, usually that
responsible for executing the invoked action. Specifically for this feature, calls from the user
to change a system status are captured by the UI Component. The UI Component is also
responsible for displaying all status information appropriately, as well as any changes of
which it may be notified.

5.6.2.1.2 Status Manager Component
This component is responsible for monitoring the system for status-altering actions. When
one is detected, it is forwarded to the appropriate Status Component.

 139

5.6.2.1.3 Status Component
This component is the one responsible for holding all the information related to a single
status. It holds all possible values (‘online’, ‘idle’, ‘busy’, ‘offline’) for a single status
(‘connection status’) as well as the active value (‘online’).

5.6.2.1.4 Domain Component
A Domain Component represents the part of the system that is ultimately responsible for
executing the actions requested by the user.

Table 5.6-5: Usability Guideline: High-level Design Component Responsibilities. System Status Feedback
System Responsibility High-level Design Component Responsibilities

SSF_SR-1 Be aware of
system statuses (and
their changes)

Certain Domain Components can execute actions that will change one or more application statuses.
A StatusManager Component is responsible for monitoring said Domain Components and listen for their status-
altering actions.
A Status Component is responsible for holding all the information relating to a particular status and for modifying
it according to StatusManager orders. All Status Components can have one active status value at any given time
(i.e. “online status” can be ‘online’, ‘idle’, ‘busy’, ‘offline’, etc.).
 The component responsible for handling user events (UI) must monitor all Status Components and notify the
user of any changes.

 The component responsible for handling user events (UI) listen for user actions and order their execution
The component in charge of delegating actions (if any) is responsible for ordering the appropriate Domain
Component to execute said action.
Upon execution of actions that are status-changing, each Domain Component is responsible for notifying any
interested parties (specifically the Status Manager Component, in this case)
The StatusManager component then forwards the updated information onto the appropriate Status Component.
Said Status Component is then responsible for determining the effect, if any, that the received information will
have on its current active status value. It will, when applicable, change said value and notify any interested
parties (specifically the UI Component in this case)
The UI Component will update the status display for every notification of status change received.

SSF_SR-2 Handle user-
initiated status changes

Upon execution of actions that are status-changing--invoked by any other class in the system or an external
source--each Domain Component is responsible for notifying any interested parties (specifically the Status
Manager Component, in this case), as is the case when such an action is invoked by the user through the UI.
The StatusManager component then forwards the updated information onto the appropriate Status Component.
Said Status Component is then responsible for determining the effect, if any, that the received information will
have on its current active status value. It will, when applicable, change said value and notify any interested
parties (specifically the UI Component in this case)
The UI Component will update the status display for every notification of status change received.

SSF_SR-3 Handle
system-initiated status
changes

The UI Component is responsible for knowing how and where each status (and its possible values) are
displayed within the interface, and thus update it accordingly upon reception of notifications of status value
change.

5.6.2.2 Low-level Design Component Responsibilities for MVC
When instantiating for a MVC architecture, the UI Component is instantiated by View the
object(s) and takes over all of its responsibilities except for the delegation of actions to other
objects. This responsibility falls on the Controller object(s) of the MVC architecture.

The Status Component is represented by the Status object. However, each individual system
status is represented by one concrete object that which will inherit common attributes and
functionality from Status. The Status Managing component is represented by a
StatusManager object, taking over all of its responsibilities.

Table 5.6-6 details the Low-level Design Component Responsibilities described above and
how they carry out each of the System Responsibilities defined earlier. For each System
Responsibility, the sequence of actions required by the different objects is presented as well
as a set of UML diagrams that depict each of these interactions.

 140

Table 5.6-6: Usability Guideline: Low-level Design Component Responsibilities (MVC). System Status Feedback.
System Responsibility Objects Fig

View Controller StatusManager Status DomainClass
SSF_SR-1 Be aware of system
statuses (and their changes)

 1. Upon system initialization, the
StateManager subscribes to each
DomainClass which it knows can
execute status-changing actions.

 2. The DomainClass represents the
domain object(s) responsible for
executing actions that lead to system
state changes. It must notify all
subscribers (StatusManager) of any
changes.

Figure
5.6-4

1. The View must subscribe to each Status
object upon system initialization.

 2. The Status object holds all the
information related to one system status
and the means to change and query this
information. It must notify all subscribers
(View) of any changes.

SSF_SR-2 Handle user-initiated status
changes

1. The View listens user’s requests for
execution actions action, and forwards it to
the Controller.

2. The Controller orders
the appropriate
DomainClass to execute
said actions

4. The StatusManager determines
the corresponding Status object to
update and does so with the
information sent forth by the
DomainClasses

5. The Status calculates the effect, if any,
that the received information has on its
current active status value, change it, if
applicable, and notify its subscribers
(View)

3. The DomainClass executes the
(status-altering) action and for
notifies the StatusManager

SSF_SR-3 Handle system-initiated
status changes

 2. The StatusManager determines
the corresponding Status object to
update and does so with the
information sent forth by the
DomainClasses

3. The Status calculates the effect, if any,
that the received information has on its
current active status value, change it, if
applicable, and notify its subscribers
(View)

1. The DomainClass executes the
(status-altering) action--triggered by a
foraneous resource or other parts of
the system--and for notifies the
StatusManager

SSF_SR-4 Present system status
notifications to users

The View knows which type of status
notification to give for each status change. It
also knows how and where to display each
type of status notification and does so upon
notification of Status objects.

 141

5.6.2.3 Usability Software Design Meta-models
This section describes the UML diagrams representing the Low-level Design Component
Responsibilities described above. Below, the class diagram is described, as well as the classes
involved in this feature and their interrelationships, followed by the descriptions of the
sequence diagram.

5.6.2.3.1 Class Diagram
Figure 5.6-3 below shows the class diagram for the System Status Feedback Functional
Usability Feature. The main objects involved are the View, Controller, Status, ConcreteStatus
and StatusManager. The first two, fulfilling their role within MVC, respectively capture and
distribute the user calls to perform actions.

Figure 5.6-3: Usability Design Meta-model. Class diagram. System Status Feedback.

For each status that is defined for the system, one concrete class of the abstract Status class
must be created. For example, in a browsing system, the design would have one abstract
Status class and also a child ConnectionStatus class. It is this child (concrete) class which will
hold all the information regarding that particular status (the connection status) and perform
any changes to its active value (online, offline, etc) upon request.

Finally, the StatusManager controls all the Statuses and subscribes to the DomainClasses that
may request changes in them at any time.

5.6.2.3.2 Sequence Diagram “Change Status”
Figure 5.6-4 shows the one sequence diagram for changing a single system status. It covers
all Low-level Design Component Responsibilities for this feature.

The sequence starts in one of two alternative ways: In a first scenario, it may start with a user
initiated request to change a particular status. This call is forwarded to the Controller who is
responsible for determining any other actions that might need to take place before changing
the status value. To do so, it locates the propper DomainClass and orders it to execute the
requested action. In a second scenario, the call for DomainClass to execute said action comes
from an outside source, beyond the scope of this sequence diagram.

In either case, once the action has been executed, the DomainClass informs its observers (of
which StatusManager is one) of the change. With this information, the StatusManager locates
the appropriate Status class and orders it to change accordingly. Once it does so, the Status
class notfies the View of the change and the View updates its displays and any other part of
the GUI as it may deem necessary.

 142

Figure 5.6-4: Sequence Diagram “Change Status”. System Status Feedback.

Classes and methods depicted in blue represent they belong to the System Status Feedback
feature. Notifications in dark red represent Observer Pattern functionality. The gray
DomainClass is a template class to be substituted at desing time by the appropriate system
class. For the full color legend see page 71.

 143

5.7 “Warning” Usability Guideline for Software Development
The Warning Functional Usability Feature covers the user’s need to provide different alert
types upon execution of sensitive actions. The main goal of the Warning feature is to provide
appropriate alerts upon execution of ‘potentially damaging’ actions.

The Usability Guideline for Software Development is made up of Analysis and Design
artifacts, described for the Warning feature in the following two sections.

5.7.1 Usability Guideline for Software Development: Analysis artifacts
There are four artifacts to be used during the analysis phase: the Usability Elicitation
Guideline, the Usability Elicitation Clusters, the Usability Use Case Meta-models, the System
Responsibilities for Usability. These artifacts are described in the following four sections.

5.7.1.1 Usability Elicitation Guideline
Table 5.7-1 shows the Usability Elicitation Guideline for the Undo Functional Usability
Feature. In this guideline, there is a single HCI recommendation described below. It addresses
the types of warnings that can be shown to the user, and in what cases each of these would be
most appropriate.

5.7.1.1.1 Types of Warnings
HCI authors suggest studying each possible action that may require a warning for
characteristics like their potential degree of damage, reversibility, etc. Once this is
established, authors suggest choosing between three types of warnings for each action:
notifications (letting the user know that an action has taken place), confirmation (asking a
user to ‘ok’ an action before execution), and authorization requesting user permission (usually
through credentials) for execution of an action (W_HCI-1). All three types of warnings
should be use only when needed to avoid overwhelming the user with interruptions.
(W_ELAB-1) Stakeholder discussions should determine which actions are expected to trigger
warnings and, for each, which kind of warning is to be used. Discussions should also revolve
around how each type of warning is to be displayed for the user (W_Q-1 to W_Q-4).

In Table 5.7-1 W_EX-1 through W_EX-3 describe an example for this HCI recommendation.

 144

Table 5.7-1. Usability Requirements Elicitation Guideline. Warning.
Identification

Name Warning
Family Feedback
Aliases Status Display; Modeling Feedback Area
Intent
Providing different alert types upon execution of ‘potentially damaging’ actions
Problem
Certain application tasks have potential serious consequences (that, for example, may not be undoable) so the application might need to verify with the user one last time before actually executing the task, to prevent them from calling said
tasks by mistake, or to allow them to reconsider if needed.
Context
Applications where user tasks may have ‘potentially damaging’ effects, including permanent changes or loss of data
Interrelationships
Abort: Certain types of warnings require a ‘cancel’ button. See ‘cancel operation’ section in Abort Feature

HCI Recommendation Elaboration Discussions with Stakeholders Usage Examples (optional)
W_HCI-1 Warning types
For each action that a user may take, consider the following
aspects:
- the reversibility of the action

 -the proportion of reversible actions that the system supports
- the frequency with which the action is taken

 -the degree of damage that may be caused
 -the immediacy of feedback

to determine which of the following types of warning needs to be
given to the user:

- Notification
- Confirmation

- Authorization

W_ELAB-1 Warning considerations
The Warnings addressed herein pertain to Notifications,
Confirmations or Authorizations presented to the user during or
before execution of an action

Stakeholder should know that the more damaging the action (for
irreversible actions) the higher the level of warning. (and vice-
versa). Be careful not to over-do.

Actions of little damage can be left “open” as to not overload the
user with notifications.

Use notifications only when actually useful (the user will do
something with the information provided)
Warnings are considered preemptive, so notification that an error
has occurred falls outside of the scope of this pattern (See Status
Feedback).

W_Q-1 Which user actions require the
user to be warned?

W_Q-2 Of these, which can't start
execution until some sort of user
acknowledgement takes place?

W_Q-3 Of those that need approval, which
are highly damaging/sensitive,
therefore needing credential
approval?

W_Q-4 For every action mentioned, which
information will be shown to the
user?

W_EX-1 Notification
“Remember that…” during or before execution of
an action. It does not interrupt nor does it expect
user feedback

W_EX-2 Confirmation
“Are you sure you want to…?” right before
execution of damaging action. User needs to OK
for execution to proceed

W_EX-3 Authorization
“You need to provide login and password before
you can delete this file” right before execution of
highly damaging action. User needs to provide
credentials or otherwise be authorized before
execution can proceed

 145

5.7.1.2 Usability Elicitation Cluster Map
The Usability Elicitation Guideline In Table 5.7-1 suggests four discussions items to be held
with stakeholders in order to elicit all aspects of the Warning Functional Usability Feature.
These discussion items can be clearly divided into three initial groups, or clusters, as
described in the Usability Elicitation Cluster Map in shown in Figure 5.7-1, according to the
portion of the Warning functionality that they cover.

W_EC-1 Awareness of sensitive actions: This cluster contains one stakeholder discussion,
aimed at determining which system actions will require warnings to be displayed.

W_EC-2 Determining appropriate warning per action: Once the actions that will require
warnings have been established, they must be studied individually to determine
which type each will require. Stakeholders must first determine which of the actions
will require the user to acknowledge it before executing it and which will not. Those
that do not, will require a type of ‘notification’ warning, while those that do might
require ‘authorization’ (an ‘ok’) or ‘authentication’ (user credential check before
execution). At the end of this group of discussions, stakeholders must have a clear
vision of how the sensitive actions are divided into these three groups.

W_EC-3 Displaying different types of warnings: For each type of warning mentioned
above, stakeholders must determine how they will be displayed on screen and what
information will be shown to the user.

Figure 5.7-1: Elicitation Clusters. Warning.

 146

5.7.1.3 Use Case Meta-model
The Use Case Meta-model for the Warning feature is shown in Figure 5.7-2 (See page 71 for
color legend), in which seven use cases are identified and described below.

W_UC_1 UserAction: This template use case represents any user action in the system that
may trigger a warning.

W_UC_2 DisplayWarning: Is the parent use case for displaying a warning. These use cases
extend the UserAction, and may or may not be triggered within it as determined
during elicitation.
For example, if an ‘export video’ feature in a video application must give a
warning when exporting videos larger than 100MB in size, an ‘export video’ use
case would trigger the appropriate warning only if this condition is met, and not
otherwise.

W_UC_3 DisplayAuthorization: An authorization is the type of warning that requires the
user not only to ‘ok’ an action, but also to introduce some form of identity
verification data (as would be a login and password combination) to proceed.

W_UC_4 DisplayConfirmation: A confirmation is the type of warning where the user must
only ‘ok’ an action before execution (i.e. ‘Are you sure you want to empty the
trash? Yes, No’).

W_UC_5 DisplayNotification: A notification is simply a message relayed to the user about
an action that has already taken place. The user has no means to stop the action,
and is only being informed of it having been executed.

W_UC_6 IdentifyUser: This template use case represents the domain-specific use case in
which the user introduces his credentials to be identified by the system. As this is
inherent to each particular system, the actual use case must replace this template
use case when designing the actual use case model. This use case is included
within the Authorization warning.

W_UC_7 Confirm: Confirm is a use case included within the corresponding warning, that
represents a user confirmation, which can be a simple as clicking an ‘ok’ button,
but leaves the meta model open to more elaborate alternatives.

Figure 5.7-2 Use Case Meta-model. Warning

The applicability of each of these use cases will depend on the results of the elicitation
process. If during elicitation of the Warning feature it is determined that, for example, user
authorization (through the use of a login and password combination, for example) will never
be needed, the DisplayAuthorization use case, as well as IdentifyUser, would be discarded.
Use cases also depend on one another. These dependencies are shown in Table 5.7-2, where
we can see the following:

 147

• The UserAction use case, being a template use case representing just about any system
action, needs no other use case to be viable.

• The DisplayWarning use case needs the UserAction, as a warning will only appear in
the system when triggered by it.

• The DisplayAuthorization use case needs its parent use case, DisplayWarning, as well
as the UserAction. It also needs the IdentifyUser use case to be viable, as it is in this
use case that the actual user identification occurs (via login and password, for example)

• The DisplayNotification use case needs no more than its parent use case,
DisplayWarning and the UserAction to be viable.

• The IdentifyUser use case, being a template use case representing the system’s own
way to identify users (for example, a login use case) needs no other use case within the
scope of this feature.

• Finally, the Confirm use case needs the DisplayConfirmation use case to be viable, as a
user will only be asked to Confirm execution of an action from within
DisplayConfirmation.

Table 5.7-2 Usability Use Case Dependencies: Warning Functional Usability Feature
 W_UC-1

User
Action

W_UC-2
Display
Warning

W_UC-3
Display

Authorization

W_UC-4
Display

Confirmation

W_UC-5
Display

Notification

W_UC-6
Identify

User

W_UC-7
Confirm

W_UC-1 User Action -
W_UC-2 Display Warning X -
W_UC-3 Display Authorization X X - X
W_UC-4 Display Confirmation X X - X
W_UC-5 Display Notification X X -
W_UC-6 Identify User -
W_UC-7 Confirm X -

By looking at the columns of Table 5.2-2, up to any two of the three types of Warnings could
be discarded and the feature would still be viable (i.e. a system that only requires
notifications, discarding the use cases related to authorization and confirmation).

5.7.1.4 System Responsibilities
Table 5.7-3 shows the proposed System Responsibilities for the Warning feature.

Table 5.7-3 System Responsibilities List for Warning
System Responsibilities List for Undo

W_SR-1 Be aware of damaging actions
The system must know which actions will require warnings
W_SR-2 Notify
The system must be aware of which of those actions require notifications

W_SR-3 Request confirmation
The system must be aware of which of those actions require the user to confirm before execution

W_SR-4 Request authorization
The system must be aware of which of those actions require the user to be properly authorized before execution
W_SR-5 Display warning
The system must know which warning information to show for each action.

These System Responsibilities for Usability are derived from the Usability Elicitation
Clusters as follows:

W_EC-1 Awareness of sensitive actions: As mentioned earlier, this elicitation cluster
contemplates determining which actions will require some kind of warning to be
displayed. It yields a single System Responsibility, W_SR-1 Be aware of
damaging actions.

W_EC-2 Determining appropriate warning types per action: This elicitation cluster
contains the discussion items related to separating the actions determined to need
warnings into three groups: those that need notification, confirmation and

 148

authentication. Naturally, this leads to three System Responsibilities, one for each
type of warning, as they are all handled differently by the system. These are W_SR-
2 Notify, W_SR-3 Request Confirmation and W_SR-4 Request Authorization.

W_EC-3 Displaying Warning: This cluster contains a single discussion item regarding how
warnings will be displayed and what information they will contain, yielding the
System Responsibility W_SR-5 DisplayWarning.

Table 5.7-4 maps the relationships between the Usability Elicitation Clusters and the
Usability System Responsibilities described above, for easy reference. Any project
determined to require a specific Elicitation Cluster will also require its related System
Responsibilities. Likewise, if a cluster is discarded during elicitation, its related
responsibilities will not be a part of the resulting system.

Table 5.7-4 Elicitation Clusters / System Responsibilities Mapping for Warning
Use Cases Dependent Responsibilities

W_EC-1 Awareness of sensitive actions W_SR-1 Be aware of damaging actions
W_EC-2 Determining appropriate warning
types per action

W_SR-2 Notify
W_SR-3 Request confirmation
W_SR-4 Request authorization

W_EC-3 Displaying warning W_SR-5 DisplayWarning

5.7.2 Usability Guideline for Software Development: Design artifacts
The design artifacts of the Usability Guideline for Software Development for the Warning
feature are described in the following sections. The System Responsibilities are brought to a
lower abstraction level as High-level Design Component Responsibilities in section 5.7.2.1.
Section 5.7.2.2 expresses them as Low-level Design Component Responsibilities (for a MVC
architecture). Section 5.7.2.3 presents the Usability Design Meta-models for said Low-level
Design Component Responsibilities as object-oriented class and sequence diagrams.

5.7.2.1 High-level Design Component Responsibilities
In order to support the System Responsibilities at design level, the following sections describe
the suggested High-level Design Components for the Warning feature.

5.7.2.1.1 User Interface (UI) Component
This component is responsible for capturing calls for action execution that might trigger user
warnings. It is also the responsibility of the UI to know how to display warnings, for example:
notification warnings could be dialogue boxes with text and an OK button, authentication
warnings could be dialogue boxes with text and two buttons: OK and Cancel, and
authorization warnings could follow the same logic with the addition of asking for user
authorization (login and password, for example). The UI Component must also relay
information to the user, including feedback after an action has been executed. Within this
usability feature, such information entails displaying the warnings themselves, and requesting
user acknowledgement or further information (i.e. login and password) as needed.

5.7.2.1.2 Warning Component
The Warning component represents a placeholder for the information that is to be shown the
user requesting a sensitive action. As briefly introduced for the previous component, the this
placeholder be of three different types: notification warnings, for actions for which the user
must only be notified, authorization warnings, for those needing to be okayed by the user, and
authentication warnings, for actions needing credential recognition before execution.

These three types of warnings have different structures and hold different types of
information, according to the level of sensitivity of the action that triggers them. These
structures are recognized by the View, as mentioned earlier, and displayed uniquely.

 149

5.7.2.1.3 Domain Component
As in most other usability features, the Domain Component represents the part of the system
that is ultimately responsible for executing the actions requested by the user.

5.7.2.1.4 Wrapping Component
This component is a Wrapper as defined by [37] for the Domain Component. It is responsible
for knowing which type of warning is required for each sensitive action of its wrapped
Component and what information must go into it. DomainClassWrap is also responsible for
creaging the Warning object of the appropriate type with the appropriate information when a
call to execute a sensitive action is received. For example, for a mailing system containing a
Mailer class, if Mailer contains sensitive methods, Mailer should be renamed to MailerPostfix
(i.e. MailerCore, MailerDomain) and a new class called Mailer should be created. This new
class is a wrapper to MailerPostfix and is in charge of determining whether or not a warning
will be needed (and if so, for triggering it) for the invoked action).

Table 5.7-5: Usability Guideline: High-level Design Component Responsibilities. Warning
System Responsibility Generic Component Responsibilities

W_SR-1 Be aware of
damaging actions

For each Domain Component that includes at least one ‘damaging’ method (one that needs to incur in a
warning of some kind), a Wrapping Component must exist. This Wrapping Component mimics the structure of
the Domain Component (it must have the same number of methods and the same method names as Domain
Component), and it will ‘sit’ between any invoking class and said DomainComponent. All methods in a
Wrapping Component consist of a) a flag check, to determine if it is safe to invoke the method of the same
name in the DomainComponent, and, b) a call to said method in Domain Component.
For example, if a component called ‘SalesItem’ is determined to have a ‘damaging’ method, the component will
be renamed to, for example, ‘SalesItemDomain’, to allow for the creation of its Wrapping Component, which
must be called ‘SalesItem’ for transparency’s sake (an invoking class need not know if it’s dealing with a
Wrapper or a Domain Component).
When invoked, methods in the Wrapping Component can respond (to their invokers) that it is not yet safe to
invoke the requested method, and an appropriate Warning is be issued. It is the Wrapping Component who is
responsible for knowing which method call triggers which kind of warning (Notification, Confirmation,
Authorization) and for determining whether or not the invocation of the method is safe.

W_SR-2 Notify Once the Warning is issued, if it is of the kind Notification, it must reach the UI Component, after which the
invocation automatically returns to the Wrapping Component for execution. Since it is now safe to invoke the
action in the DomainClass, the Wrapping Component does so.

W_SR-3 Request
confirmation

If the issued Warning is a Confirmation, it must also reach the UI Component but in this case it must wait for
the user to ‘OK’. Once s/he does so, the invocation returns to the Wrapping Component for execution. Since it
is now safe to invoke the action in the DomainClass, the Wrapping Component does so.

W_SR-4 Request
authorization

Finally, if the issued Warning is an Authentication, it must reach the UI Component, which will then go through
all the necessary steps (outside of the scope of this pattern) to perform the necessary credential cross-
checking. Once the user has been authenticated in this manner, the call will return to Wrapping Component for
execution. Since it is now safe to call the action in the DomainClass, the Wrapping Component does so.

W_SR-5 Display warning The UI Component is responsible for displaying the Warning information and for receiving and processing the
necessary user input to satisfy the given Warning (if applicable)

5.7.2.2 Low-level Design Component Responsibilities for MVC
When instantiating for a MVC architecture, the UI Component is instantiated by View the
object(s) and takes over all of its responsibilities except for the delegation of actions to other
objects. This responsibility falls on the Controller object(s) of the MVC architecture.

The Warning Component is represented by the Warning object, and its three children
Notification, AuthorizationRequest and AuthenticationRequest, depending on the type of
warning that is required.

The Wrapping Component and Doman Component are represented by the
DomainClassWrap and the DomainClass respectively.

Table 5.7-6 details the Low-level Design Component Responsibilities described above and
how they carry out each of the System Responsibilities. For each System Responsibility, the
sequence of actions required by the different objects is presented as well as a set of UML
diagrams that depict each of these interactions.

 150

Table 5.7-6: Usability Guideline: Low-level design component responsibilities (MVC). Warning.
System Responsibility Objects Fig

View Controller DomainClassWrap DomainClass Warning
W_SR-1 Be aware of
damaging actions

1. View listens for user calls to actions,
doAction(), and passes them on to the
Controller

2. The Controller forwards the call to
doAction() to the appropriate
class.
Controller is not aware of the
existance of DomainClassWraps, it
simply forwards the call to the clase it
know to be responsible for handling
the method (DomainClassWraps take
on the original name of the
DomainClass)

3. If a DomainClassWrap exists for the DomainClass the
Controller is trying to reach, it will be the one receive the
method call, which will invoke its own implementation of
doAction(),
4. In it, it will then check if the called method is ‘OK’ to
execute with checkOK(‘doAction’).
5. If it is, it will call onto DomainClass to execute the method
6b. Otherwise it will create a Warning of the appropriate type
(Notification, Authentication or Confirmation) with the
information pertaining to the invoked method

6a. DomainClass
executes the invoked
method,
doAction().

 Figure
5.7-4

W_SR-2 Notify 2. When the View receives a Notification, it
displays a message to the user with the info
contained within the Notification object.
No user feedback is expected, as the control is
returned to the DomainClassWrap via the
Controller

3. The Controller requests
DomainClassWrap to set the flag for
‘doAction’ to ‘OK’.
4. It then calls the doAction()
method on DomainClassWrap again,
prompting a re-check of the flag for the
current method.

5. Since the flag is now set to ‘OK’, the DomainClassWrap
immediately forwards the method call to DomainClass

6. DomainClass
executes the invoked
method,
doAction().

1. The new Warning
issued (in this case
a Notification) is
forwarded onto the
View

W_SR-3 Request
confirmation

2. When the View receives a Confirmation, it
displays a dialogue to the user with the info
contained within the Notification object and the
option to ‘OK’ or ‘Cancel’.
If the user chooses to ‘OK’, the control is
returned to the DomainClassWrap via the
Controller

3. The Controller requests
DomainClassWrap to set the flag for
‘doAction’ to ‘OK’.
4. It then calls the doAction()
method on DomainClassWrap again,
prompting a re-check of the flag for the
current method.

5. Since the flag is now set to ‘OK’, the DomainClassWrap
immediately forwards the method call to DomainClass

6. DomainClass
executes the invoked
method,
doAction().

1. The new Warning
issued in (in this
case a Confirmation)
is forwarded onto
the View

W_SR-4 Request
authorization

2. When the View receives an Authentication, it
engages in the appropriate actions to identify
the current user (perhaps involving other
relevant domain classes)
Once the user has been properly identified by
the system, the control is returned to the
DomainClassWrap via the Controller

3. The Controller requests
DomainClassWrap to set the flag for
‘doAction’ to ‘OK’.
4. It then calls the doAction()
method on DomainClassWrap again,
prompting a re-check of the flag for the
current method.

5. Since the flag is now set to ‘OK’, the DomainClassWrap
immediately forwards the method call to DomainClass

6. DomainClass
executes the invoked
method,
doAction().

1. The new Warning
(in this case an
Authentication) is
forwarded onto the
View

W_SR-5 Display warning It is the View’s responsibility to display
Warnings. To do so appropriately, it uses all
the information available in the Warning object.

 151

5.7.2.3 Usability Software Design Meta-models
These UML diagrams represent the Low-level Design Component Responsibilities described
in earlier. The following sections describe the class diagram and the classes involved in this
feature and their interrelationships, followed by the descriptions of the sequence diagrams.

5.7.2.3.1 Class Diagram
Figure 5.7-3 below shows the class diagram for the Warning Functional Usability Feature. As
described in the Low-level Design Component Responsibilities Table (see Table 5.2-6), the
main objects involved are the View, Controller, Warning, Notification, ConfirmationRequest,
AuthorizationRequest, DomainClass and DomainClassWrap. The first two, fulfilling their
role within MVC, respectively capture and distribute the user calls to perform actions. The
Warning class (and its children) controls the contents of a warning, the Domain class holds
the methods that are to be executed and the DomainClassWrap sits between the DomainClass
and the rest of the system, filtering calls to sensitive methods and issuing the appropriate
warnings for them when needed.

Figure 5.7-3: Usability Design Meta-model. Class diagram. Warning.

5.7.2.3.2 Sequence Diagram “Show Warning”
Figure 5.7-4 shows the sole sequence diagram for this feature, covering all Low-level Design
Component Responsibilities described in Table 5.2-6. As explained earlier, a group of one or
more System Responsibilities can be represented by a single sequence diagram and vice-
versa.

This sequence starts when the user executes an action that may require a warning. This action
invocation is captured by the View and forwarded to the Controller as with any other system
action. The controller then forwards the call to the domain class it knows (by name) as being
responsible for execution of said action.

Any domain class containing ‘sensitive’ methods (those requiring warnings) will be renamed,
and a new wrapper class created with its previous name. As explained earlier in the mailing
example, if a class like Mailer contains sensitive methods it should be renamed to
MailerPostfix and a wrapper called Mailer responsible for determining whether or not a
warning will be needed for its methods should be created. So, in the sequence diagram shown
in Figure 5.7-4, MailerPostfix would be represented by DomainClass, and Mailer by
DomainClassWrap for this example.

 152

Figure 5.7-4: Sequence Diagram “Show Warning”. Warning.

In continuing with the call sequence, once the call reaches the DomainClassWrap, it will
check if the method invoked (doAction()) is ‘ok’ to execute. If so (flagOK = true, at the
bottom of the diagram) DomainClassWrap will simply forward this call to the DomainClass
and order it to execute the action as with any other method call. Otherwise (flagOK = false) it
means the DomainClassWrap must trigger a warning.

DomainClassWrap knows which type of warning is required for each sensitive method of its
wrapped class (DomainClass) and what information must go into it. In following with this
responsibility, DomainClassWrap creates a Warning object of the appropriate type
(Notification, AuthenticationRequest or ConfirmationRequest), fills it with the appropriate
information and returns in to the Controller. The controller orders the view to display this
Warning object and the view does so.

In any case, after the notification/authorization/authentication has been processed the view
forwards the appropriate information resulting from it to the Controller. The controller, in
turn, orders the DomainClassWrap to set the OK flag for doAction() to TRUE, and orders it to
invoke doAction() again. At this point DomainClassWrap lets the invocation reach
DomainClass, and doAction() is ultimately executed.

Classes and methods depicted in dark blue represent they belong to the Warning feature. The
notifications in dark red represent Observer Pattern functionality. The gray DomainClass is a
template class to be substituted at desing time by the appropriate system class containing the
undoable action. For the full color legend see page 71.!

 153

5.8 “Multi-level Help” Usability Guideline for Software Development
The Multi-level Help Functional Usability Feature covers the user’s need to access the textual
help features in different levels of detail throughout a software application. Users may
encounter objects within the application and need to know more about them. A need for an
expanded help feature explaining the way the application functions is also commonly needed.

The Usability Guideline for Software Development is made up of Analysis and Design
artifacts, described for the Warning feature in the following two sections.

5.8.1 Usability Guideline for Software Development: Analysis artifacts
There are four artifacts to be used during the analysis phase: the Usability Elicitation
Guideline, the Usability Elicitation Clusters, the Usability Use Case Meta-models, the System
Responsibilities for Usability. These artifacts are described in the following four sections.

5.8.1.1 Usability Elicitation Guideline
Table 5.8-1 shows the Usability Elicitation Guideline for the Multi-level Help feature. In this
guideline, there are three HCI recommendations described below, covering the provision of
help as captions and tooltips, as side panels and as a globally accessible feature.

5.8.1.1.1 Captions and Tooltips
HCI authors suggest the simplest level of help that can be provided is the use of captions,
prompts and input hints. Also, tooltips are recommended for features that aren’t self
explanatory, though their use should not substitute appropriate interface design (MLH_HCI-
1). In the case of tooltips one consideration must be made in the regards to what we have
termed ‘dynamic tooltips’. Information shown in a tooltip is usually static, explaining a
feature over which the user has placed the mouse. However, tooltips can also be very useful
in showing dynamic information not directly encoded in the GUI (MLH_ELAB-1). The
difference may not be obvious initially, but dynamic cases must be pinpointed at elicitation
time as they are bound to be more costly to implement and should be estimated accordingly.

Stakeholder discussions should cover which of these three types of help will be made
available in the system. Also, which system elements will require or trigger each type of help
and with what data (MLH_Q-1 to MLH_Q-4). In Table 5.8-1 examples MLH-EX1 and MLH-
EX2 describe static vs. dynamic tooltips for this HCI recommendation.

5.8.1.1.2 Help Panels
For items needing to display longer help descriptions, HCI authors suggest setting aside a
portion of the page to do so, or to use closeable panels. (MLH_HCI-2). This type of help is
typically dynamic, where information is usually fetched from a repository (U_ELAB-2).
Discussion items for this recommendation involve determining which elements require this
type of help, and, for each, what information should be shown to the user (MLH_Q-5 and
MLH_Q-6). MLH_EX-3 in Table 5.8-1 describes what is proposed in this recommendation.

5.8.1.1.3 Global Help
For the most elaborate type of help, HCI authors recommend using an external placeholder
for the help information, such as a separate page (for web-based applications) or the operating
system’s own help software (MLH_HCI-3). Global help can be accessed in two ways: at its
root, when the user is not looking for a specific system feature; this type of help can also be
accessed through specific ‘sections’ when the user selects a particular feature of the system
and seeks help on it. In this case, the global help will be presented to the user at the specific
section, if one exists (MLH_ELAB-3). Discussions should focus on how this help will be
presented and if individual sections will be accessible separately (MLH_Q-7 to MLH_Q-9).

 154

Table 5.8-1. Usability Requirements Elicitation Guideline. Multi-level Help.
Identification

Name Multi-level help
Family Help
Aliases Multilevel Help [49]
Intent
Providing the user with access to textual help features in different levels of detail
Problem
Users may encounter objects within the application and need to know more about them. A need for an expanded help feature explaining the way the application (or parts of it) function is also commonly needed.
Context
When the application to be developed is complex and a few users are likely to need a fully-fledged help system, but most users won’t take the time to use it; so, developers want to support both impatient and/or occasional users.

HCI Recommendation Elaboration Discussions with Stakeholders Usage Examples (optional)
MLH_HCI-1 Captions and tooltips
Create help on several levels including some (but not all) of the following
list. Think of it as a continuum: each of these requires more effort from
the user than the previous one:
Captions and instructions directly on the pate, including patterns like
Input Hints and Input Prompt. Be careful not to go overboard with these.
If done with brevity, frequent users won’t mind them, but don’t use entire
paragraphs of text – few users will read them.
Tooltips. Use these to show brief, one-line descriptions of interface
features that aren’t self-evident. For icon-only features, these are critical;
even nonsensical icons will be taken in stride if the user can tell what it
does by rolling over it! Their disadvantages are that they obscure
whatever’s under them, and that some users find them irritating. A short
time delay for the mouse hover – e.g. one or two seconds, removes the
irritation factor for most people.

MLH_ELAB-1 Dynamic tooltips
Tooltips are often though of as “static”,
meaning that the text they display must
always be the same for every instance.
However, browser and GUI capabilities as
of late also support the use of variables in
tooltips. Keep in mind when discussing
stakeholders’ needs regarding tooltips, in
case they seem to be limiting themselves
to the static option.
Input hints/prompt have no impact on the
software architecture

MLH_Q-1 Which of the following types of help will be
offered by the system?

Tooltips
Side Help

Global Help

MLH_Q-2 If the answer to MLH_Q-1 a) is ‘yes’, what
system elements will require a tooltip to be
shown?

MLH_Q-3 For each tooltip, what information should
be displayed?

MLH_Q-4 Of all of these tooltips, which will be
dynamic and which will be static?

MLH_EX-1 Web tooltips (static)
Placing the cursor over a link within many web applications will
display a “tooltip” with, for example, the URL of the page it links to.
This type of tooltip is static, and it is encoded directly in the GUI.
MLH_EX-2 Dynamic tooltips in Facebook
In Facebook, placing the cursor over the Security Level symbol
(padlock) of a status update will show a tooltip with the name of
the filter that was used when posting said update. This type of
tooltip is dynamic, as the system must fetch this value from a
repository in order to determine the filter used, as they may be
one of many and vary from post to post.

MLH_HCI-2 Help panels
Slightly longer descriptions that are shown dynamically as users select
or roll over certain interface elements. Set aside an area of the page
itself for this, rather than using a tiny tooltip popup.
Longer help texts contained inside Closable Panels.

MLH_ELAB-2 Help panels text
This type of help text tends to be static but
must usually be fetched from memory.
Consider that these can serve as triggers
to sections of the Global Help if needed.

MLH_Q-5 If the answer to MLH_Q-1 b) is ‘yes’, what
system elements will require side help?

MLH_Q-6 For each of these elements, which
information should be shown in the side
help panel?

MLH_EX-3 Rememberthemilk.com side help
In rememberthemilk.com, clicking on a task on the left-hand side
of the GUI will display a help box on the right side of the GUI,
destined for this purpose.

MLH_HCI-3 Global Help
Help shown in a separate window, often done in HTML via browsers, but
sometimes in WinHelp or MacHelp. These are often online manuals,
entire books, and are reached via menu items on a Help menu, or from
“Hlp” buttons on dialogs and HTML pages.
“Live” technical support, usually by email, web or telephone.

MLH_ELAB-3 Global Help: Entries
The fact that this type of global help can
have multiple entry points must be
considered: The ‘home’ entry point, when
the user is not searching for anything in
particular but would like to browse; or any
of its sections, if applicable, when the user
is searching for something specific.

MLH_Q-7 If the answer to MLH_Q-1 c) how will the
Global Help be presented to the user?

MLH_Q-8 Will access to individual sections be
permitted through specific triggers within
the application?

MLH_Q-9 If so, which sections will be accessed
through which triggers?

MLH_EX-4 Global Help en MS Word
In the MS Word task bar, clicking on the “(?) – Help” button will
launch the ‘home’ page of the Windows Help Application for MS
Word, when working in said OS.
MLH_EX-5 Triggers in MS Word Global Help
When the user searches in the MS Word Help menu (i.e. looking
for a particular term), the menu shows the related topics in real
time. Clicking on any of the topics will take the user to that specific
section of the Windows Help Application for MS Word.

 155

5.8.1.2 Usability Elicitation Clusters
The Usability Elicitation Guideline suggests nine discussions items to be held with
stakeholders in order to elicit all aspects of the Multi-level Help Functional Usability Feature.
These discussion items can be clearly divided into three initial groups, or clusters, as
described in the Usability Elicitation Clusters shown in Figure 5.8-1, according to the portion
of the Multi-level Help functionality that they cover.

MLH_EC-1 Providing tooltips for individual objects: The discussion items in this cluster
cover determining whether or not tooltips will be required in the system and, if
so, for what objects they will be needed and which information should be shown
for each.

MLH_EC-2 Providing side help for individual objects: This cluster contains the
discussion items related to side help: determining whether or not it will be
needed, which objects will trigger it, how the help will be presented graphically
and which information should be contained in each.

MLH_EC-3 Providing global help at application level: The discussion items in this cluster
cover whether or not there will be global help available from within the
application, how it will be displayed for the user and whether or not individual
sections of it will be accessible through specific triggers. If individual sections
are accessible, the triggers (objects within the application that will require this
global help access) need to be specified.

 156

Figure 5.8-1: Elicitation Clusters. Multi-level Help

 157

5.8.1.3 Use Case Meta-model
The Use Case Meta-model for the Multi-level Help feature is shown in Figure 5.8-2 (See page
71 for legend), in which five use cases are identified and described below.

PREF_UC-1 SelectObject: This template use case represents the selection of an interface
object that may result in showing a tooltip (i.e. hovering over a link).

PREF_UC-2 LoadTooltip: This use case will always be part of another use case,
SelectObject in this case, which will determine whether to show a tooltip.

PREF_UC-3 LoadSideHelp: As with LoadTooltip, this use case is invoked from within
SelectObject when the selected object requires side help to be loaded.

PREF_UC-4 LoadGlobalHelp: This use case starts when the user calls for the Global Help
to be shown, without indicating any specific sections to load (the Global Help
‘home’ will be displayed).

PREF_UC-5 LoadGlobalHelpSection: This use case can be started by a user wanting to load
a specific section of Global Help. It is also called by the LoadGlobalHelp use
case continuously as users move from section to section within it.

Figure 5.8-2 Use Case Meta-model. Multi-level Help

As mentioned above, the applicability of each of these use cases will depend on the results of
the elicitation process. If during elicitation of the Multi-level Help Functional Usability
Feature it is determined that tooltips are not needed, for example, the LoadTooltip use case
will be ignored. Use cases also depend on one another. These dependencies are shown in
Table 5.8-2 where we can see the following:

• The SelectObject template use case could potentially (hence the asterisks) need the
LoadTooltip use case, the LoadSideHelp use case or the LoadGlobalHelpSection
use case. Only one type of help will be required at a time and per selected object.

• The LoadTooltip use case needs the SelectObject use case to be viable, as tooltips
only appear through object selection. The same occurs with LoadSideHelp.

• LoadGlobalHelp needs no object to be selected for the global help to be accessible,
hence the lack of a dependency with SelectObject. However, for GlobalHelp to
function, its sections need to be accessible from within it, so it needs the
LoadGlobalHelpSection use case to be viable.

• LoadGlobalHelpSection only needs the template use case SelectObject in systems
where selecting an object may trigger the loading of the GlobalHelp in a particular
section. Otherwise, this use case can be started directly by the user and needs no other
use case to be viable, though it’s typically present within LoadGlobalHelp.

 158

Table 5.8-2 Usability Use Case Dependencies: Multi-level Help Functional Usability Feature
 MLH _UC-1

SelectObject
MLH _UC-2

Load Tooltip
MLH _UC-3

Load SideHelp
MLH_UC-4

Load GobalHelp
MLH_UC-5

LoadGlobal HelpSection
MLH _UC-1 Select Object - X* X* X*
MLH _UC-2 Load Tooltip X -
MLH _UC-3 Load SideHelp X -
MLH_UC-4 Load GlobalHelp - X
MLH_UC-5 LoadGlobalHelpSection X*

By looking at the SelectObject row we can see this use case use case is core to the Multi-level
Help feature, as expected, since most of the help that is provided is strictly object-dependent.
If SelectObject were discarded, however, LoadGlobalHelp would still be viable and, along
with LoadGlobalHelpSection, could stand alone.

5.8.1.4 System Responsibilities
Table 5.8-3 shows the proposed System Responsibilities for the Multi-level help feature.

Table 5.8-3 System Responsibilities for Multi-level Help
System Responsibilities List for Multi-level Help

MLH_SR-1 Provide tooltips for individual objects
The system must know the objects for which it needs to provide tooltips, what information they will display and where it will come from
MLH_SR-2 Provide side help for individual objects
The system must know which objects it needs to provide side help for, what information they will display, where this information will come
from, and the way in which the side help will be displayed on screen.
MLH_SR-3 Provide Global Help
The system must provide access to Global Help from within the application
MLH_SR-4 Provide access to Global Help sections
The system must allow access to individual sections of the Global Help when triggered within the application

These System Responsibilities are derived from the Usability Elicitation Clusters as follows:

MLH_EC-1 Providing tooltips for individual objects: This cluster determines waht system
objects will require tooltips, the information they will show and whether they
will be dynamic or static. As such, this elicitation cluster yields a single System
Responsibility, namely MLH_SR-1 Provide tooltips for individual objects.

MLH_EC-2 Providing side help for individual objects: Similarly to the first cluster, this
one determines the system objects that will require providing side help, what
and how the information will be shown within them, yielding an equivalent
System Responsibility: MLH_SR-2 Provide side help for individual objects.

MLH_EC-3 Providing global help at application level: Lastly, this cluster discusses
whether access to global help will be needed from within the application, and
whether its sections will be accessed individually. If they are, discussions must
focus on which objects will link to each section (triggers). This cluster, thus,
yields two System Responsibilities: MLH_SR-3 Provide Global Help and
MLH_SR-4 Provide access to Global Help sections.

Table 5.8-4 maps the relationships between these Usability Elicitation Clusters and the
Usability System Responsibilities, for easy reference. Any project requiring a specific
Elicitation Cluster will also need its related System Responsibilities. Likewise, if a cluster is
discarded during elicitation, its related responsibilities won’t be a part of the resulting system.

Table 5.8-4 Use Case/ System Responsibilities Mapping for Multi-level Help
Use Cases Dependent Responsibilities

MLH_EC-1 Providing tooltips for individual objects MLH_SR-1 Provide Tooltips for individual objects
MLH_EC-2 Providing side help for individual objects MLH_SR-2 Provide Side Help for individual objects
MLH_EC-3 Providing global help at application level MLH_SR-3 Provide Global Help

MLH_SR-4 Provide access to Global Help sections

 159

5.8.2 Usability Guideline for Software Development: Design artifacts
The design artifacts of the Usability Guideline for Software Development for this feature are
described in the following sections. The System Responsibilities are brought to a lower
abstraction level as High-level Design Component Responsibilities in section 5.8.2.1. Section
5.8.2.2 expresses them as Low-level Design Component Responsibilities (for a MVC
architecture). Finally, 5.8.2.3 presents the Usability Design Meta-models for said Low-level
Design Component Responsibilities as object-oriented class and sequence diagrams.

5.8.2.1 High-level Design Component Responsibilities
In order to support the System Responsibilities at design level, the following sections describe
the suggested High-level Design Components for the Warning feature, shown in Table 5.8-5.

5.8.2.1.1 User Interface (UI) Component
This component is responsible for listening for all help requests, including mouse hovers over
objects that will require tooltips as well as direct invocations of help features. The UI
Component is also responsible for relaying information to the user, including appropriate
feedback after an action has been executed. Within this feature, such information entails
displaying the help information that was requested, appropriately.

5.8.2.1.2 Help Item Component
Help Items hold the actual help information (what will be displayed dynamically in a tooltip,
for example) and are associated to specific objects, usually a Domain Component.

5.8.2.1.3 Help Managing Component
This component is responsible for all existing Help Items in the system. The Help Manager
Component finds the appropriate Help Item Components upon request and delivers the help
information, through the appropriate channels, to the UI Component as needed.

5.8.2.1.4 Domain Component
A Domain Component represents the part of the system to be substituted upon development
by the appropriate component. For this feature, this component might be an object (i.e. a
bookmark in a web browsing application) that requires a tooltip to be shown whenever the
user hovers over its GUI representation (i.e. hovering over a bookmark may display its URL).

Table 5.8-5: Usability Guideline: High-level Design Component Responsibilities. Multi-level Help
S. Responsibility Generic Component Responsibilities

MLH_SR-1 Provide
Tooltips for individual
objects

The component responsible for handling interaction with the user (the UI Component) must be aware of calls to
activate help over a specific object. Upon reception of such a call, and from a preexisting list, the UI must determine
which type of help the object must display
In case the type of help to display is a tooltip there are two possible options: a) if the object needs only to display
static text, said text will be stored in the UI itself and displayed immediately upon request, and, b) if the text to display
is dynamic, the UI must request it from the Help Manager Component (through a delegating component if any)
The Help Manager Component is responsible for all existing Help Items. Help Items hold the actual help information--
in this case, what will be displayed dynamically in the tooltip--and are associated to a specific object. As such, the
Help Manager Component finds the appropriate Help Item Component and returns it to the UI (through a delegating
component, if any)
The UI then is responsible for displaying the help contents (a tooltip in this case) appropriately for the object over
which help was initially invoked.

MLH_SR-2 Provide
Side Help for
individual objects

In case the type of help to display is of the side-help kind, the UI must request the Help Manager Component (through
a delegating component if any) for the text to display.
The Help Manager Component must provide the UI with the appropriate Help Item Component (through a delegating
component, if any)
The UI then is responsible for displaying the help contents (side-help in this case) appropriately for the object over
which help was initially invoked.

MLH_SR-3 Provide
Global Help

In case the type of help to display is global-help, the UI must request the Help Manager Component (through a
delegating component if any) to call unto the OS to open the help feature for this application. The Help Manager
Component must provide the OS with the application signature for identification.
The OS then carries on the responsibility to display the global help (i.e. WinHelp, external web page, etc)

MLH_SR-4 Provide
access to global help
sections

If the call to load global-help is accompanied by a specific section identification, the global-help will be loaded, with the
exception that the OS must, after loading the global-help, redirect the user to the requested section.

 160

5.8.2.2 Low-level Design Component Responsibilities for MVC
When instantiating for a MVC architecture, the UI Component is instantiated by View the
object(s) and takes over all of its responsibilities except for the delegation of actions to other
objects. This responsibility falls on the Controller object(s) of the MVC architecture.

The Help Item Component is represented by the extensible HelpItem class, and covers all of
its responsibilities. The Help Managing component, which is represented by the
HelpManager class, is a container of HelpItems, and represents the means to access them, as
well as the (external) Global Help.

Table 5.8-6 details the Low-level Design Component Responsibilities described above and
how they carry out each of the System Responsibilities for Usability. For each System
Responsibility, the sequence of actions required by the different objects is presented as well
as a set of UML diagrams that depict each of these interactions.

Table 5.8-6: Usability Guideline: Low-level design component responsibilities (MVC). Multi-level Help.
System

Responsibility
Objects Fig

View Controller HelpManager HelpItem
MLH_SR-1 Provide
Tooltips for
individual objects

1. The View listens for calls to
activateHelp() for a specific
object.
2. It then determines, from stored static
information, what type of help is needed
for the object.
3. If the type of help needed is a static
tooltip, the View displays it immediately.
This type of text is stored within the View
itself for every object that requires it
4. If the type of help needed is a dynamic
tooltip, the View asks the Controller to
getHelpContents() for the object
5. The View displays the help contents
according to the type of help it determined
the object to need (tooltip).

4. Controller
forwards the
request to the
HelpManager
7. The
Controller
forwards the
helpContents to
the View

5. HelpManager determines
which HelpItem corresponds
to the solicited object and
asks it for its contents
6. The HelpManager forwards
the helpContents to the
Controller

6. The HelpItem
returns its help
contents, which
in the case of a
tooltip is most
commonly a
short String
attribute.

Figure
5.8-4

MLH_SR-2 Provide
Side Help for
individual objects

1. The View listens for calls to
activateHelp() for a specific
object.
2. It then determines, from stored static
information, what type of help is needed
for the object.
4. If the type of help needed is of the side-
help kind, the View asks the Controller to
getHelpContents() for the object
5. The View displays the help contents
according to the type of help it determined
the object to need (side-help).

4. Controller
forwards the
request to the
HelpManager
7. The
Controller
forwards the
helpContent
s to the View

5. HelpManager determines
which HelpItem corresponds
to the solicited object and
asks it for its contents
6. The HelpManager forwards
the helpContents to the
Controller

6. The HelpItem
returns its help
contents, which
in the case of a
tooltip is likely a
series of blocks
of structured
text

Figure
5.8-4

MLH_SR-3 Provide
Global Help

1. The View listens for user calls to
loadGlobalHelp() and forwards
the request to the Controller

2. Controller
forwards the
request to the
HelpManager

5. The HelpManager
addresses the OS Help
System with the request,
appending the
applicationSignature for
identification

 Figure
5.8-5

MLH_SR-4 Provide
access to global
help sections

 1. In the case in which
loadGlobalHelp() is
called with a section,
HelpManager must forward
this information to the OS
Help System as well, to get it
to redirect the user to the
desired section.

 Figure
5.8-5

 161

5.8.2.3 Usability Software Design Meta-models
These UML diagrams represent the Low-level Design Component Responsibilities described
in earlier. The following sections describe the class diagram and the classes involved in this
feature and their interrelationships, followed by the descriptions of the sequence diagrams.

5.8.2.3.1 Class Diagram
Figure 5.8-3 below shows the class diagram for the Multi-level Help Functional Usability
Feature. The main objects involved are the View, Controller, DomainObject, HelpManager,
HelpItem, DynamicTooltip, ExtendedHelp. The first two, fulfilling their role within MVC,
respectively capture and distribute the user calls to perform actions.

The HelpManager controls all access to any HelpItems available in the system. It is in charge
of receiving requests for help from the View through the Controller.

The HelpItem is a parent class, from which concrete classes for every type of help inherit and
extend. DynamicTooltip and ExtendedHelp are two such classes. They represent the dynamic
tooltip and side help respectively, with the second possibly containing more information (and
information fields) than the first. Beyond these two classes, however, developers may add
more stemming from the parent HelpItem, and have them work in the same way. The
DomainObject can be any object for which help (of any type) may be requested.

Figure 5.8-3: Usability Design Meta-model. Class diagram. Multi-level Help.

5.8.2.3.2 Sequence Diagram “Get Help”
Figure 5.8-4 shows the sequence diagram MLH_SR-1 and MLH_SR-2. A a group of one or
more System Responsibilities can be represented by a single sequence diagram and vice-
versa. This sequence starts when a user ‘activates’ a request for help over an object (by, for
example, hovering over it, or clicking, depending on the item). The View determines the type
of help that is being requested and forwards the request to the Controller, save for the case
when the help to display is a static tooltip. In such a case, the View directly displays the
tooltip, as it possesses all the necessary information to do so (no information needs to be
fetched from additional repositories or by performing any calculations, for example, the URL
tooltip for a hyperlink).

In all other cases, the call is forwarded to the Controller, who calls on the HelpManager to
determine the appropriate HelpItem that is needed for the object in question. Upon finding it,
it gathers the textual contents of the Help and passes them back to the View. The view,
knowing the type of help that was requested initially, displays these contents accordingly.

 162

Figure 5.8-4: Sequence Diagram “Get Help”. Multi-level Help.

The classes and methods depicted in orange represent that they belong to the Multi-level Help
feature. The notifications in dark red represent Observer Pattern functionality. The gray
DomainClass is a template class to be substituted at desing time by the appropriate system
class containing the action. For the full color legend see page 71.

5.8.2.3.3 Sequence Diagram “Get Global Help”
Figure 5.8-5 shows the sequence diagram for getting Global Help This diagram covers all the
object responsibilities listed for MLH_SR-3 and MLH_SR-4.

Figure 5.8-5: Sequence Diagram “Get Global Help”. Multi-level Help.

The sequence starts off when the user requests a particular section of the global help. The
View forwards this call to the controller, who in turn does so to the HelpManager. The
HelpManager is responsible for knowing how to locate the global help source outside of the
boundaries of the application (typically, the operating system help). In doing so, it calls up the
appropriate section in the global help, sending along any additional information, like the
application signature, that may berequired by the operating system. From then on the OS
takes over, displaying the help that was requested.

 163

5.9 “Commands Aggregation” Usability Guideline for Software Development
The Commands Aggregation Functional Usability Feature allows the user to aggregate
commands into macro-like structures for ease of batch execution.

The Usability Guideline for Software Development is made up of Analysis and Design
artifacts, described for the Commands Aggregation feature in the following two sections.

5.9.1 Usability Guideline for Software Development: Analysis artifacts
There are four artifacts to be used during the analysis phase: the Usability Elicitation
Guideline, the Usability Elicitation Clusters, the Usability Use Case Meta-models, the System
Responsibilities for Usability. These artifacts are described in the following four sections.

5.9.1.1 Usability Elicitation Guideline
Table 5.9-1 shows the Usability Elicitation Guideline for the Commands Aggregation feature.
In this guideline, there are six HCI recommendations, described below.

5.9.1.1.1 Macro recording
HCI authors suggest providing a way for the user to record a sequence of actions he may
perform repetitively and to save it for future use (CA_HCI-1). In the cases of more complex
macros, the possibility of editing them after creation might arise and must be discussed with
stakeholders (CA _ELAB-1). Stakeholder discussions for this recommendation must
determine how recording will take place, which types of actions are suitable for recording,
means for stopping a recording session and editing of macros (CA _Q-1 to CA _Q-7). In
Table 5.9-1, example CA_EX-1 “Photoshop macro recording” describes an example for this
HCI recommendation.

5.9.1.1.2 Macro composition
HCI authors suggest that the user should be allowed to build macros of other macros if
desired (nested macros) (CA _HCI-2). Nested macros tend to be relevant in systems where
long sequences of actions are possible, or where very complex actions can occur. (CA
_ELAB-2) Stakeholder discussions must focus on whether or not building these Nested
macros or meta-macros will be allowed and, if so, how this will be performed by the user (CA
_Q-8 and CA _Q-9). Example CA_EX-2 “Composing Photoshop Macros” in Table 5.9-1
describes an example for this HCI recommendation.

5.9.1.1.3 Macro Play-back
Users should be provided with simple means to play back a previously recorded macro, as per
stated in this HCI recommendation (CA_HCI-3). If a playback feature is to be included in the
system, a stop feature should also be considered (CA_ELAB-3) during elicitation.
Stakeholder discussions should focus on determining how the playback functionality will be
presented to the user and he will be allowed to stop the macro execution (CA_Q-10 to U_Q-
12). Example CA_EX-3 “play/stop buttons” in Table 5.9-1 describes an example for this HCI
recommendation.

5.9.1.1.4 Feedback
HCI authors suggest providing the user with appropriate feedback when execution has
finished. (CA_HCI-4). While this is true of most user interactions, completion of a macro
should be informed of clearly so the user can move on to perform other actions within the
application. (CA_ELAB-4). The last proposed stakeholder discussion covers the type of
feedback to be given to the user upon macro completion (CA_Q-13). Example CA_EX-4
“Feedback upon completion” in Table 5.9-1 describes an example for this HCI
recommendation.

 164

Table 5.9-1 Usability Requirements Elicitation Guideline. Commands Aggregation.
Identification

Name Commands Aggregation
Family Commands Aggregation
Aliases Composed Command / Macros [42]
Intent
Allowing the user to aggregate commands into macro-like structures for ease of batch execution
Problem
A user may perform several small tasks during application usage, and some of these may be repetitive. When the user identifies a group of such repetitive actions, establishing a need to perform them more quickly and effortlessly, they will
need to aggregate them and invoke them through a single click or call.
Context
When the possible actions can be expressed through commands, which can be composed from smaller parts, in a language-like syntax with precise and learnable rules, and the users are willing and able to learn that syntax [42].
Interrelationships
Undo: If not considered, none of the macro actions (nor the macro as a whole) will be undoable. Cancel: If not considered, CA_HCI-3Macro play-back cannot be considered in its entirety (a ‘stop playback’ feature cannot be included).
Warning: If not considered, no warnings can be given before macro execution, even for those which may contain damaging actions

HCI Recommendation Elaboration Discussions with Stakeholders Usage Examples (optional)
CA_HCI-1 Macro recording
Provide a way for the user to “record” a sequence
of actions. The parts and syntax rules should be
easy to learn, and should generate concise
commands whose meaning is obvious. The user
should be able to give the macro the name of her
choice. Let also her to review the action sequence
somehow.

CA_ELAB-1 Macro recording: editing and creating
Recording a complex macro might result in the need to edit it, be it
to fix a mistake in the recording or to add steps. Discuss with
stakeholders if macros will be editable.

CA_Q-1 Will user be allowed to record (aggregate)
sequences of actions and to save them for later
playback?

CA_Q-2 Which actions--or types of actions--will be
allowed to be recorded?

CA_Q-3 How will the user record said actions?
CA_Q-4 How will the user stop a recording?

CA_Q-5 Will the user be allowed to edit a macro?

CA_Q-6 What will be editable in a macro?
CA_Q-7 How will the user edit a macro?

CA_EX-1 Photoshop Macro Recording
Adobe Photoshop provides a feature for recording user
actions for later play back.

When the “record” button is clicked every subsequent
action performed by the user is recorded, along with any
parameters that may have been used (i.e. in “change_color
to blue” both the command change_color and the
parameter blue are recorded).When the user wishes to stop
the recording s/he will click the stop button.The result is a
list of all the actions that were taken, where each can be
edited by double clicking

CA_HCI-2 Macro Composition
Make it possible for one macro to refer to another
so they can build on each other [42]

CA_ELAB-2 Macro Composition: Relevance
The need for composing macros will usually arise when dealing
with complex commands or long sequences, where creating each
sequence from scratch might be inconvenient. For systems where
long sequences aren’t feasible, composing macros is less relevant

CA_Q-8 Will users be allowed to create meta-macros
(macros of macros)?

CA_Q-9 If so, how will these meta-macros be built?

CA_EX-2 Composing Photoshop Macros
Actions recorded to a macro in Adobe Photoshop can be
grouped and copy/pasted to another macro, hence
composition is allowed through duplication.

CA_HCI-3 Macro play-back
Provide a way to the user to “play back” the
sequence at any time. The play back should be as
easy as giving a single command, pressing a single
button, or dragging and dropping an object.

CA_ELAB-3 Macro play-back: stopping
A “play back” feature will almost always entail some sort of stop
feature. Within a macro, stopping will entail ‘cancelling’ the current
command within the macro being executed and undoing its
effects, if any (see Cancel feature)

CA_Q-10 How will the user play back a macro?

CA_Q-11 Will the user be allowed to stop execution of a
macro?

CA_Q-12 If so, how will the execution be stopped?

CA_EX-3 Play/stop buttons
Play and Stop buttons are provided within the macro
(actions) feature of Adobe Photoshop

CA_HCI-4 Feedback
Feedback on the validity of the command or its
result should be as immediate as is practical.

CA_ELAB-4 Feedback: Confirmation
Like with most other interactions, a confirmatory signal (or
message in more complex cases) should be provided.

CA_Q-13 What kind of feedback will be provided during
recording and/or execution of a macro

CA_EX-4 Feedback upon completion
While a macro is executing within Adobe Photoshop the
user gets feedback by seeing in real-time the results of
each separate action in the macro as it is executed.

 165

5.9.1.2 Usability Elicitation Clusters
The Usability Elicitation Guideline suggests thirteen discussions items to be held with
stakeholders in order to elicit all aspects of the Commands Aggregation Functional Usability
Feature. These discussion items can be clearly divided into five initial groups, or clusters, as
described in the Usability Elicitation Cluster Map, shown in Figure 5.9-1, according to the
portion of the Commands Aggregation functionality that they cover.

CA_EC_1. Knowing which actions are recordable: The discussion items in this cluster
determine whether macro recording capabilities will be provided within the
system and, if so, which actions are suitable for recording.

CA_EC_2. Recording macro: This cluster covers recording of macros, how it would be
done by the user and ‘stop recording’ capabilities

CA_EC_3. Playing Back Macro: These discussions deal with how the user will play back a
previously recorded macro, whether he’ll be allowed to stop playback, and if so,
how this will take place.

CA_EC_4. Editing Macro: This cluster contains the discussions related to macro edition:
whether macros will be editable, and, if so, what will be editable in them and how
edition will take place.

CA_EC_5. Composing Macros: The discussion items in this cluster deal with macro
composition. If it’s allowed within the system, it must be determined how macros
will build on one another and how the user will perform such composition.

CA_EC_6. Notifying user of completion: Stakeholders must determine what type of
feedback the user will receive during and/or after macro execution.

 166

Figure 5.9-1: Elicitation Clusters. Commands Aggregation

 167

5.9.1.3 Use Case Meta-model
The Use Case Meta-model for the Commands Aggregation Functional Usability Feature is
shown in Figure 5.9-2 (See page 71 for color legend), in which six use cases are identified
and described below.

CA_UC-1 RecordMacro: The user selects the option to start recording a macro. Immediately
after doing so, the system records every (record suitable) action performed by the
user until macro recording is stopped.

CA_UC-2 StopMacroRecording: The user selects the option to stop recording a macro. The
system stops recording actions, saves the recorded actions and asks the user to
name the newly created macro.

CA_UC-3 ComposeMacro: The user selects the option to compose two or more macros,
saving the results to a new macro upon completion.

CA_UC-4 EditMacro: The user selects the option to edit a macro. In doing so, he may
compose it with other existing macros. After edition is completed, the user saves
the results into the original macro.

CA_UC-5 PlayBackMacro: The user selects an existing macro and orders it to play back.
The Macro executes every action that is saved within it (each represented by a
different UserAction use case. See below). Once execution is completed, the
system informs the user that the macro has finished playing.

CA_UC-6 UserAction: This meta use case represents the actions that make up any system
macro.

A_UC-1 CancelCommand: When a macro is playing, the user can select the option to cancel
it. Details of how this cancel option is to be implemented should be elicited and detailed as
explained in the Abort feature.

Figure 5.9-2 Use Case Meta-model. Commands Aggregation

 168

The applicability of each of these use cases will depend on the results of the elicitation
process. If during elicitation of the Undo feature it is determined, for example, that no Redo
feature is needed, then that use case will be discarded. Use cases also depend on one another.
These dependencies are shown in Table 5.9-2, where we can see the following:

• The RecordMacro use case needs the UserAction to be viable, as recordable actions
need to exist within the system for recording to be possible

• Stopping, composing editing and playing back a macro (CA_UC-2 to CA_UC-5) need
RecordMacro to be viable, as a macro must exist prior to execution of these use cases.

• The UserAction template use case needs no other use case to be viable, as it represents
any action within the system that is deemed recordable

• The CancelCommand use case needs the UserAction, as it is the system actions
represented by it that will be cancellable

Table 5.9-2 Usability Use Case Dependencies: Commands Aggregation Functional Usability Feature
 CA_UC-1

Record
Macro

CA_UC-2
StopMacro
Recording

CA_UC-3
Compose

Macro

CA_UC-4
Edit Macro

CA_UC-5
PlayBack

Macro

CA_UC-6
User

Action

A_UC-1
Cancel

Command
CA_UC-1 Record Macro - X
CA_UC-2 StopMacroRec. X -
CA_UC-3 ComposeMacro X -
CA_UC-4 EditMacro X -
CA_UC-5 PlayBackMacro X -
CA_UC-6 User Action -
A_UC-1 Cancel Command X -

By looking at the table columns, it is evident that RecordMacro is core to the Commands
Aggregation feature. If it were discarded, no other part of this feature could be implemented.

5.9.1.4 System Responsibilities for Usability
Table 5.9-3 shows the proposed System Responsibilities for Usability for the present feature.

Table 5.9-3 System Responsibilities List for Commands Aggregation
System Responsibilities List for Undo

CA_SR-1 Be aware of which actions are recordable
The system must know which actions are recordable
CA_SR-2 Record actions to macro
The system must provide the means to record and save macros
CA_SR-3 Playback macro
The system must allow for macro playback, providing appropriate feedback after completion
CA_SR-4 Edit macro
The system must allow users to edit existing macros
CA_SR-5 Compose macros
The system must allow users to compose existing macros, creating new meta-macros

Earlier in this section we identified six elicitation clusters. In the case of most of the other
features in this work, a single cluster may yield more than one system responsibility, or,
conversely, combining two or more clusters can yield a single system responsibility. In the
case of Commands Aggregation there is a one-to-one relationship between clusters and
system responsibilities, except for Notify User of Completion, which together with Playing
Back Macro provides CA_SR-3 Playback Macro, as playback and subsequent notification
will always happen in sequence. Table 5.9-4 maps these relationships between Usability
Elicitation Clusters and the Usability System Responsibilities described above, for reference.

Table 5.9-4 Use Case/ System Responsibilities Mapping for Commands Aggregation
Use Cases Dependent Responsibilities

CA_EC-1 Knowing which actions are recordable CA_SR-1 Be aware of which actions are recordable
CA_EC-2 Recording Macro CA_SR-2 Record actions to macro
CA_EC-3 Playing Back Macro CA_SR-3 Playback macro
CA_EC-4 Editing Macro CA_SR-4 Edit macro
CA_EC-5 Composing Macros CA_SR-5 Compose macros
CA_UC-6 Notifying user of completion CA_SR-3 Playback macro

 169

5.9.2 Usability Guideline for Software Development: Design artifacts
The design artifacts for the Commands Aggregation feature are described below. In section
5.9.2.1 the System Responsibilities are brought to a lower abstraction level as High-level
Design Component Responsibilities, and in section 5.9.2.2 as Low-level Design Component
Responsibilities for MVC. Finally, section 5.9.2.3 shows the Usability Design Meta-models.

5.9.2.1 High-level Design Component Responsibilities
Widely known research results have already addressed part of the expected functionality of
this feature. Such is the case of the Command Pattern by the GoF, which we have chosen as
the core of this feature. Components (and, in the following sections, classes and objects) like
the “Command” component are taken directly from this widely known design pattern to fulfill
the needs that arise from the corresponding System Responsibilities.

A smaller portion of the High-level Design Component Responsibilities described in the
following subsections, like some contained in the Macro Component, are not addressed by the
original GoF Command pattern, and so are included as part of the original contribution of this
work in order to fulfill the entirety of the expectations of this feature. Another pattern used
across all the guidelines is the GoF Observer pattern, a defining part of the MVC architecture
itself. All of these components are described below and summarized in Table 5.9-5.

5.9.2.1.1 User Interface (UI) Component
The UI is responsible for capturing all user invocations and forwarding them (possibly
through a delegating component) to the appropriate part of the domain, usually that
responsible for executing the action. The UI Component is also responsible for relaying
information to the user, including appropriate feedback after an action has been executed.

5.9.2.1.2 Domain Component
A Domain Component represents the part of the system that is ultimately responsible for
executing the actions requested by the user.

5.9.2.1.3 Command Component
Based on Gamma’s definition of the Command Pattern, the Command Component is
responsible for encapsulating method invocations and any pertinent state information at call-
time. When an action is invoked through the UI Component, it would normally be forwarded
directly to the Domain Component responsible for executing said action. However, when the
action that is called needs to be stored when recording, additional steps need to be taken
before the Domain Component is allowed to execute it.

After the call is placed in the UI, a new instance of Command is created and initialized with
the signature of the method being called and a reference to the Domain Component in charge
of executing it, for later invocation. It is also initialized with any state information that will
need to be restored when called again from a macro. Furthermore, the Command is
responsible for calling the method in the Domain Component (after saving the state).

5.9.2.1.4 Recording Component
This component is responsible for recording a macro (ideally in a separate execution thread).
It stores all recordable actions that are performed by the user, until it’s ordered to stop.

5.9.2.1.5 Macro Component

The Macro Component represents a sequence of previously recorded actions. It’s a collection
of instances of the Command component and, when ordered, this component is responsible
for invoking all the commands that compose it, in the appropriate order.

 170

Table 5.9-5: Usability Guideline: High-level Design Component Responsibilities. Commands Aggregation
System

Responsibility
Generic Component Responsibilities

CA_SR-1 Be aware
of which actions are
recordable

During macro recording (see 0), the component responsible for invoking commands (Invoker) must determine if an
action that is performed by the user is a ‘recordable’ action (one that can be added to a macro)

CA_SR-2 Record
actions to macro

The component in charge of processing user input (UI Component) is responsible for listening for user calls to start
recording a new macro
The component in charge of delegating actions (if any) must forward this request to a Recording Component
The Recording Component is responsible for recording to a new macro (preferably in a separate thread) all
recordable actions performed by the user, until its ordered to stop.
A macro is a ConcreteCommand. A regular Concrete Command Component encapsulates a call to an action in a
DomainClass component, the parameters it’s called with, state information, and other relevant data. This
encapsulation allows for Commands to be recreated further down the road. Macros are designated as a special kind
of ConcreteCommand (one without a unique association to a DomainClass) so that they can be composed.
Once an empty macro has been created, and while recording is active, the UI (through any delegating component)
must continue to listen to actions invoked by the user.
When a new action is invoked, the delegating component (if any) orders the action to execute. It does so by
instantiating a Command Component for the called action, adding it to the macro, and then ordering said Command
to execute. The delegating component will continue to treat new actions in this manner (adding them to the macro)
until it is ordered to stop.
The UI Component continually listens for a ‘stop’ order from the user. When it receives one it forwards it to the
delegating component (if any), which orders the Recorder Component to stop recording, thus completing the newly
created macro.

CA_SR-3 Playback
macro

The UI Component is responsible for listening for user calls to play back a specific macro
The delegating component (if any) is responsible for locating called macros and ordering them to execute
Each macro is represented within the application by a Macro Component. When called, this component is
responsible for invoking all the commands that compose it, in the appropriate order

CA_SR-4 Edit macro The UI Component is responsible for listening for user calls to edit a specific macro
The delegating component (if any) is responsible for locating the corresponding Macro Component and sending it to
the UI for editing
The UI is also responsible for displaying the editable fields to the user, capturing any modifications and for sending
them back (through a delegating component, if any) to the Macro Component for saving
The Macro Component is responsible for saving those edits and modifying any of the commands that compose it
(when/if affected)

CA_SR-5 Compose
Macros

To compose two macros, a ‘target’ macro has the capability to append another macro at a specified position within
its internal list of commands
The UI Component is responsible for listening for user calls to compose two existing macros (a ‘target macro’ and a
‘macro to append’).
The delegating component (if any) is responsible for locating both macro components and for instructing the ‘target
macro’ to insert, at the specified position within its command list, the ‘macro to append’.

5.9.2.2 Low-level Design Component Responsibilities for MVC
When instantiating for a MVC architecture, the UI Component is instantiated by View the
object(s) and takes over all of its responsibilities except for the delegation of actions to other
objects. This responsibility falls on the Controller object(s) of the MVC architecture.

Likewise, the Command Component is defined in the Command interface and implemented
by ConcreteCommand objects. For every recordable command there will be a distinct
ConcreteCommand class (i.e. ExportVideoCommand, OpenDoorCommand, etc.). Whenever
a command is called through the View, the corresponding ConcreteCommand object will be
created, saved to history (so that it can be called in the future from within a macro, with the
original parameters and state), and only then ordered to execute.

The Macro component is represented by the MacroCommand, which is also defined in the
Command interface, but, additionally, may contain a list of other Commands (and, by
definition, other MacroCommands, allowing for nesting of macros).The Recorder component
is represented by Recorder, which orders macro recording and stopping as requested by the
View. Finally the Domain Component is represented by the DomainClass, and contains the
actual actions to execute when recording and playing macros.

Table 5.9-6 details the Low-level Design Component Responsibilities described above and
how they carry out each of the System Responsibilities. For each System Responsibility, the
sequence of actions required by the different objects is presented as well as a set of UML
diagrams that depict each of these interactions.

 171

Table 5.9-6: Usability Guideline: Low-level Design Component Responsibilities (MVC). Commands Aggregation.
System Responsibility Objects Fig

View Controller Recorder ConcreteCommand DomainClass
CA_SR-1 Be aware of which actions
are recordable

 1. When ‘recording’ is active, the
Controller is responsible for knowing
whether a called method,
doAction(), is recordable or not.

 Figure
5.9-4

CA_SR-2 Record actions to macro 1. The View listens for the user call to
startRecording(…). To do so,
the user enters the name s/he wishes to
give to the new macro and any other
pertinent information.
2. The View forwards this call to the
Controller
6. When the user invokes a new action,
doAction(), the View forwards it to
the Controller
10. When the user orders to
stopRecording(), the View
forwards the call to the Controller

2. The Controller asks the Recorder to
start recording by invoking its
record() method.
7. The Controller then determines, from
a preexisting list, for example, if
doAction() is listed as
‘recordable’. If it’s not, it simply
executes() it. Otherwise it
instantiates a ConcreteCommand to
represent it, clones() it and
adds() it to the macro.
11. When ordered to
stopRecording(), the
Controller forwards the call to the
Recorder.

3. When ordered to start recording,
he Recorder sets a flag to TRUE to
indicate that recording is ‘active’
4. It then creates a new (empty)
ConcreteCommand object,
representing the new (yet empty)
macro.
5. The Recorder then waits for the
next recordable action to be invoked
12. When ordered to
stopRecording(), the
Recorder sets the ‘recording’ flag to
FALSE and effectively stops adding
commands to the macro.

8. When the ConcreteCommand is
ordered to execute(), it calls upon its
DomainClass and orders the initial,
doAction(), method to be executed.

9. When
DomainClass
receives the order, it
executes
doAction()

Figure
5.9-4

CA_SR-3 Playback macro 1. The View listens for the user call to
executeMacro(macroId) and
forwards it to the Controller.

2. The Controller forwards the call to
executeMacro(macroId),
and then orders the ConcreteCommand
object that represents that macro to
execute()

 3. When ordered to execute() the
ConcreteCommand (macro) invokes the
execute() method of all of its internal
ConcreteCommands , which in turn order
their DomainClasses to execute the
appropriate action

4. Each
DomainClass will
execute the called
action.

Figure
5.9-5

CA_SR-4 Edit macro 1. The View listens for the user call to
viewMacro(macroId) and
forwards it to the Controller.
2. When it receives a ConcreteCommand
object (macro) it presents the user with
editing fields corresponding to every part
of the macro (and its internal Commands
if applicable) that is editable.
3. The user then edits any/all the
information and the View passes on these
edits to the Controller through
saveMacroEdits(…)

2. The Controller finds the appropriate
ConcreteCommand object (macro) and
returns it to the View
3. After receiving the edits, the
Controller orders the
ConcreteCommand (macro) to
modify() itself with these new
edits[]

 3. When ordered to modify(), the
ConcreteCommand (macro) takes the
edits[] and applies them,
modifying() any internal
ConcreteCommands if needed.

 Figure
5.9-6

CA_SR-5 Compose Macros 1. The View listens for the user call to
composeMacro(macro1,
macro2) and forwards it to the
Controller.

2. The Controller finds the appropriate
ConcreteCommand object (macro2)
and orders it to insert() macro1
and the position pos

 3. The ConreteCommand macro2 is
now composed of the original macro2
and macro1 appended at pos

 Figure
5.9-7

 172

5.9.2.3 Usability Software Design Meta-models
This section describes the UML diagrams representing the Low-level Design Component
Responsibilities. Below, the class diagram for this feature is presented, along with a
description of the classes and interrelationships involved, as well as the sequence diagrams.

5.9.2.3.1 Class Diagram
Figure 5.9-3 below shows the class diagram for the Commands Aggregation Functional
Usability Feature. The main objects involved are the View, Controller, Command,
ConcreteCommand, Recorder, DomianClass and MacroCommand. The first two, fulfilling
their role within MVC, respectively capture and distribute the user calls to perform actions.

Figure 5.9-3: Usability Design Meta-model. Class diagram. Commands Aggregation.

The ConcreteCommand class implements a Command interface, as described by GoF’s
Command Pattern, and is responsible for ordering the execution of the requested action (in
DomainClass) as well as for storing all necessary state information required for eventually
replaying the command it represents (i.e. the method it is calling within DomainClass). In any
given system there will be as many ConcreteCommands as there are undoable actions, and it
is recommended they be labeled by an appropriate mnemonic. For example, the
ConcreteCommand class in charge of invoking the sendMail() method in an email application
should be labeled something like SendMailCommand or SendMailConcreteCommand, etc.

The Recorder class represents the client within the GoF’s Command Pattern ordering the
starting and stopping of macro recording and the MacroCommand holds a list of its
commands (or macro commands) for future execution.

These classes and interfaces which belong to the Command Pattern are depicted in yellow to
differentiate them from the rest of this feature’s classes. See appendix [C] for color legend.

5.9.2.3.2 Sequence Diagram “Record Macro”
Figure 5.9-4 shows the sequence diagram for CA_SR-1 Knowing which actions are
recordable and CA_SR-2 Record actions to macro.

This sequence starts when the user orders to record a new macro. It may provide a name for it
along with any other optional parameters. The View captures this call and forwards it to the
Controller, which orders the Recorded to start recording. The Recorder sets its ‘recording’
flag to TRUE, creates a new intance of MacroCommand and listens for every new recordable
action that may be invoked to store it in this new macro.

 173

After recording starts, every new action that is invoked by the user goes through the steps
suggested by the GoF in their Command pattern: prior to execution, the ConcreteCommand
which encapsulates the invoked action (doAction()) is cloned (preserving its state information
intact) and stored, in this case in the HistoryList object. After that, it is ordered to execute(),
which entails a call to the desired method of the corresponding DomainClass. When the user
orders the system to stop recording this call is captured by the View, and forwarded through
the Controller to the Recorder, which sets its recording flag to FALSE and no longer listens
for invoked actions from the user.

Figure 5.9-4: Sequence Diagram “Record Macro”. Commands Aggregation.

Classes and methods depicted in salmon color represent they belong to the Commands
Aggregation feature. Those in yellow are part of the Command, those in a mix of salmon and
yello perform actions pertinent to both the Command pattern and our original contribution,
and notifications in dark red represent Observer Pattern functionality. The gray DomainClass
is a template class to be substituted at desing time by the appropriate system class containing
the undoable action. For the full color legend see page 71.

5.9.2.3.3 Sequence Diagram “Execute Macro”
Figure 5.9-5 shows the sequence diagram that covers the CA_SR-3 Playback Macro system
responsibility as well as all of its corresponding low-level responsibilities.

Figure 5.9-5: Sequence Diagram “Execute Macro”. Commands Aggregation.

 174

The sequence starts off when the user requests to execute a particular macro, providing the
View with its identification information. The View forwards this call to the Controller which
locates the MacroCommand being requested and orders it to execute.

When a MacroCommand is ordered to execute, it calls every ConcreteCommand within it and
orders it to execute in turn.

5.9.2.3.4 Sequence Diagram “Edit Macro”
Figure 5.9-6 shows the sequence diagram that covers CA_SR-4 Edit Macro. The sequence
starts when the user opens an existing macro. The Controller locates the macro, forwards it to
the View and the View displays it for the user for editing.

Since editing of macros will vary from system to system depending on the domain, the
specific methods pertaining to the macro edition will need to be filled in at design time. Once
the macro has been edited, the View forwards the order to save it, along with the changes, to
the Controller. The controller passes on these changes to the MacroCommand object, which
incorporates them within it an all of its ConcreteCommands that may be affected.

Figure 5.9-6: Sequence Diagram “Edit Macro”. Commands Aggregation.

5.9.2.3.5 Sequence Diagram “Compose Macro”
Figure 5.9-7 shows the sequence diagram that covers the CA_SR-5 Compose Macros system
responsibility as well as all of its corresponding Low-level Design Component
Responsibilities.

This simple sequence shows how the call to compose two macros is forwarded from the View
to the Controller, which in turn finds the second macro in the sequence and orders it to insert
all commands found in the first macro at its head. This results in this second macro now
containing all the actions of the first macro, followed by its own.

Figure 5.9-7 Sequence Diagram “Compose Macro”. Commands Aggregation!

 175

5.10 “Preferences” Usability Guideline for Software Development
The Preferences Functional Usability Feature covers the user’s need to for a centralized place
where they can alter the application’s settings. The main issue that this feature tries to address
is the fact that an application may have multiple ways in which it can function, depending on
each user’s needs and tastes. Thus, there is a need to allow individual users to chose among
them, and to let them save such configurations as their own for future use.

The Usability Guideline for Software Development is made up of Analysis and Design
artifacts, described for the Commands Aggregation feature in the following two sections.

5.10.1 Usability Guideline for Software Development: Analysis artifacts
There are four artifacts to be used during the analysis phase: the Usability Elicitation
Guideline, the Usability Elicitation Clusters, the Usability Use Case Meta-models, the System
Responsibilities for Usability. These artifacts are described in the following four sections.

5.10.1.1 Usability Elicitation Guideline
Table 5.10-1 shows the Usability Elicitation Guideline for the Preferences Functional
Usability Feature. In this guideline, there are three HCI recommendations, explained below.

5.10.1.1.1 Common Usage of Preferences
HCI authors suggest that application users be provided with a space where they can change
(and save) application values, from simple color schemes to settings for language support
(PREF_HCI-1). It is important to note that regardless of the settings being altered, this HCI
recommendation contemplates only their !"#"$%&'()* '+,-(&.-%&'()* !%'+-,")* "%$/* 0%* 1'"!*('%*
1"#2"* &(%'* 34-%* 5!"* %4"* -66#&$-%&'(* 3&##* ,&2"* %'* "-$4* !"%%&(,* '+* 34-%* %4"7* 3&##* 8"-(*
3&%4&(* %4"* -66#&$-%&'(* 1'8-&(* 9:;<=><?@ABCD/* E%-F"4'#1"+* 1&!$5!!&'(!* :;<=>GBC* %'*
:;<=>GBH* "#&$&%* %4"* (""1!* +",-+1&(,*34&$4* 6+"I"+"($"!*3&##* J"*8-1"* -2-&#-J#"* I'+* %4"*
!7!%"8*-(1*4'3*%4"7K##*J"*4-(1#"1*I'+*1&II"+"(%*5!"+!)* &I*-66#&$-J#"/*Table 5.10-1 shows
an example for this HCI recommendation in example PREF-EX-1 “Gmail Preferences”.

5.10.1.1.2 Default Settings
In most cases, a preference will have a default value, or one that is automatically chosen
before the user makes their own selection (or chooses not to).

When applications have a large number of preferences that can be set by the user, HCI
authors recommend providing ‘canned settings’ or groups of preferences with preset default
values, that the user can choose from, instead of picking individual values. (PREF_HCI-2).
These canned settings can range from a single ‘default setting’ to multiple canned settings,
depending on the amount of individual preferences available to the user, the frequency of
change, etc. all of which should be evaluated during elicitation (PREF_ELAB-2). Default
values for individual preferences and canned settings, as well as the number of canned
settings to provide should be thoroughly discussed (PREF_Q-4 to PREF_Q-6). PREF-EX-2
“Gmail Default” in Table 5.10-1 describes an example for this HCI recommendation.

5.10.1.1.3 Grouping Preferences
PREF_HCI-3 describes how similar preferences can be grouped together when dealing with a
large sets. This grouping can be done linearly or forming a tree structure. Either of these add
complexity to the setting of preferences and should be carefully decided upon during
elicitation of this feature (PREF_ELAB-3). Stakeholders shall discuss whether either of these
structures is required, or if preferences will be handled individually (PREF_Q-7 and
PREF_Q-8). Table 5.10-1 describes an example for this HCI recommendation when using a
tree structure, in example PREF-EX-2 “Eclipse Preferences”.

 176

Table 5.10-1. Usability Requirements Elicitation Guideline. Preferences.
Identification

Name Preferences
Family User Profile
Aliases Preferences [49]; User preferences [42]
Intent
The Preferences feature provides users with a centralized place where they can alter the application’s settings.
Problem
An application may have multiple ways in which it can function, depending on each user’s needs and tastes. There is a need to allow individual users to chose among them, and to let them save such configurations as their own for future use.
Context
When the application is very complex and many of its functions can be tuned to the user’s preference, and/or the system will be used by people with different abilities, cultures and tastes, and not enough is known about the user’s
preferences in order to assume defaults that will suit all users.
Interrelationships
When including the Preferences feature in an application, in order to allow users to discard changes made to their preferences, Undo must be considered. Also if loading a set of preferences takes more than a few seconds the Progress
feature will be needed

HCI Recommendation Elaboration Discussions with Stakeholders Usage Examples (optional)
PREF_HCI-1 Common usage of preferences
Provide a place or working surface where users can pick
their own settings for things like language, fonts, icons,
color schemes, and use of sound. Allow users to save
those preferences, so that they do not have to spend
time setting them again, but do this per user if multiple
people will use it [42]. Let those preferences become the
default for each user on further use, [49].

PREF_ELAB-1 Common usage of prefs.
These recommendations extend to the organization and
setting of preferences only. What the system will do or how
it will change for each falls outside of the scope of this
feature. For example, changing the Language preferences
of an application would be considered as part of the
Preferences feature, but the actual display of the
application text in the different languages would not (only
the selection, organization and storage of language
possibilities and the user interaction required to change
them).

PREF_Q-1 Will users be allowed to set up preferences?
PREF_Q-2 If so, which preferences will users be allowed

to set up?
PREF_Q-3 Will preferences be global to the application or

particular to each user?

PREF_EX-1 Gmail preferences
Gmail provides the user with a section devoted to
changing preferences like number of emails
shown per page, alt. Address, away auto-
response, and many more. It also allows for
setting the visual aspects of the application, like
the background and foreground colors and
multiple images found throughout the UI.

!

PREF_HCI-2 Default settings
Devise a set of alternative “canned settings” that users
can choose between, if they don’t like the default and
don’t want to spend hours picking out good
combinations [42].

!

PREF_ELAB-2 Default Settings
Discuss with the user which of these canned settings will
make sense. Sometimes only one of them will be enough,
but others an array of canned settings might be preferable

PREF_Q-4 What will be the default values for the
preferences listed in PREF_Q-2?

PREF_Q-5 Aside from the default values, will the system
provide groups of “canned settings” for the
user to choose from?

PREF_Q-6 If so, what will these groups of settings be?

PREF_EX-2 Gmail defaults
Gmail preferences can always be reverted to one
default setting (i.e. factory setting). As for the look
and feel of the application, there are dozens of
canned settings or ‘themes’ to chose from.

PREF_HCI-3 Grouping preferences
If the number of groups is small, property pages can be
used for each group but when the number of groups is
high, use a tree [49].

PREF_ELAB-3 Grouping preferences
Preferences should be grouped in a way that makes sense
to the user. Preferences in the same group, whether
property pages or a tree, must be of the same "type" or
affect the same parts of the system.

PREF_Q-7 Will preferences be arranged in groups or in a
tree structure instead of handled individually?

PREF_Q-8 If groups or trees are to be used, what will be
their structure?

PREF_EX-3 Gmail vs. Eclipse
Gmail stores its preferences in property pages,
while Eclipse’s high number of preferences is
arranged in a tree structure.

 177

5.10.1.2 Usability Elicitation Clusters
The Usability Elicitation Guideline suggests eight discussions items (PREF_Q-1 to PREF_Q-
8) to be held with stakeholders in order to elicit their needs in respect to the Preferences
Functional Usability Feature. These discussion items can be divided into five clusters (as
described in the Usability Elicitation Cluster shown in Figure 5.10-1), according to the
portion of the Preferences functionality that they cover.

PREF_EC-1 Providing Preferences: The discussion items in this cluster determine if
setting preferences will be needed at all within the application and, if so, which
preferences the users will be allowed to set up and save.

PREF_EC-2 User-specific vs. Global Preferences: If preferences are to be provided, the
discussion items in this cluster determine whether they will be user-specific,
meaning that each user will be able to modify and save their own preferences
independently, or global for the entire application, regardless of who is using
it.

PREF_EC-3 Default Values: The discussion item in this cluster determines the desired
default value for each preference addressed in the discussions of elicitation
cluster PREF_EC-1 Providing Preferences. The default value is intended to be
the preference’s value when/if users have not assigned it a value themselves or
do not intend to do so.

PREF_EC-4 Canned Settings: This elicitation cluster determines whether canned settings,
or groups of pre-determined values for all preferences for the user to choose
from, will be provided.

PREF_EC-5 Grouping Preferences: Finally, this last elicitation cluster contains the
discussion items regarding the way in which preferences will be presented to
the user. They can be all presented together (‘no’ branch in Figure 5.10-1) or
using some kind of structure (‘yes’ branch in Figure 5.10-1). The structures to
use can be groups or trees, and stakeholders must decide which, if either, in
these discussion items.

 178

Figure 5.10-1: System Responsibility Clusters. Preferences.

 179

5.10.1.3 Use Case Meta-model
The Use Case Meta-model for the Preferences feature is shown in Figure 5.10-2 (See page 71
for color legend), in which five use cases are identified and described below.

PREF_UC-1 SavePreferencesForUser: Upon making changes to one or more preferences,
the user requests for them to be saved. This will trigger the included use case
PREF_UC-4 StorePreferenceValuesToPersistence

PREF_UC-2 LoadCannedSettings: The user requests a group of canned settings to be
loaded, allowing him to set a number of preferences all at once. This use case
triggers PREF_UC-5 LoadPreferenceValuesFromPersistence when loading the
canned setting to use.

PREF_UC-3 LoadPreferencesForUser: The user requests his preferences to be loaded,
directly or indirectly. For example, starting the application is an indirect way to
request preferences to be loaded in certain systems. This use case also triggers
PREF_UC-5 LoadPreferenceValuesFromPersistence, as each of the preferences
to load need to be ‘filled in’ with their value, stored in persistence.

PREF_UC-4 StorePreferenceValuesToPersistence: This use case is triggered by
PREF_UC-1 SavePreferencesForUser every time a user choose to save his
current preferences. It writes the preference values onto the predetermined
physical medium.

PREF_UC-5 LoadPreferenceValuesFromPersistence: This use case is triggered by
PREF_UC-2 LoadCannedSettings when loading a canned setting. Each of the
default values for the preferences contained in that setting need to be loaded
from persistence.

Figure 5.10-2 Use Case Model. Preferences

When using only global preferences (meaning all users see the same preferences as there are
no per-user distinctions) the use cases remain the same, only instead of loading, storing and
saving preferences for a particular user it is done so for the entire application (which can also
be seen as a ‘master’ user if needed)

The applicability of each of these use cases will depend on the results of the elicitation
process. If during elicitation of the Preferences Functional Usability Feature it were
determined that ‘canned settings’ are not needed, for example, the LoadCannedSettings use
case would be discarded. Use cases also depend on one another. These dependencies are
shown in Table 5.10-2 where we can see the following:

• For the Save Preferences For User use case to be viable, it only needs its included
use case Store Preference Values to Persistence, which writes the saved preferences
into a physical medium.

 180

• The Load Canned Settings use case needs the Load Preference Values from
Persistence use case, which actually retrieves these settings from the physical
medium in which they’re stored.

• The Load Preferences For User use case also needs the Load Preference Values
from Persistence use case for the same reason. It also requires that the Save
Preferences For User use case exists, as if no preferences are ever saved there will
be no preferences to load.

• The Store Preferences Values to Persistence needs the Save Preferences For User
use case for a similar reason, as nothing can be stored to persistence if it is not first
ordered to be saved through the user interface.

• And finally, Load Preference Values from Persistence requires that the Store
Preference Values to Persistence exist, because in order to be loaded, preference
values must first be stored. It also needs, minimally, that the Load Preferences For
User use case exist, as preferences won’t be loaded unless they are ordered to
through the user interface.

Table 5.10-2 Usability Use Case Dependencies: Preferences Functional Usability Feature
 PREF_UC-1

Save Prefs
For User

PREF_UC-2
Load Canned

Settings

PREF_UC-3
Load Prefs. For

User

RREF_UC-4
Store Pref. Vals to

Pers.

PREF_UC-5
Load Pref.

Vals from Pers
PREF_UC-1 SavePreferencesForUser - X
PREF_UC-2 Load CannedSettings - X
PREF_UC-3 Load Preferences For User X - X
PREF_UC-4 Store Preference Vals to Persist. X -
PREF_UC-5 Load Pref Vals from Persist. X X -

By looking at the table columns, we can see that in spite of the fact that Save Preferences For
User and Load Preference Values from Persistence have the higher number of dependencies
from other use cases (two each). Thus, initially, no single use case is evidently core to the
Preferences Functional Usability Feature at this stage. This fact makes the Preferences feature
somewhat versatile, as multiple sub-groups of use cases could be correctly implemented.

5.10.1.4 System Responsibilities for Usability
Table 5.10-3 shows the proposed System Responsibilities for Usability for the present feature.

Table 5.10-3 System Responsibilities List for Preferences
System Responsibilities List for Undo

PREF_SR-1 Set Preferences
Saves preferences for a single user or for the application as a whole
PREF_SR-2 Provide default values
Allows preferences to have pre-determined values in case none is chosen by the user
PREF_SR-3 Allow ‘canned settings’
Provides groups of preferences with pre-determined values to be loaded together
PREF_SR-4 Organize preferences
Determines how preferences will be presented to the user, whether in groups or trees

These System Responsibilities are derived from the Usability Elicitation Clusters as follows:

PREF_EC-1 Providing Preferences: This Elicitation Cluster contemplates whether
preferences will be allowed to be set and saved by users and, if so, which ones
they will be. Thus, this elicitation cluster yields System Responsibility
PREF_SR-1 Set Preferences, together with PREF_EC-2, as explained as
follows.

PREF_EC-2 User-specific vs. Global Preferences: This Elicitation Cluster covers the need
for allowing specific users to save their own preferences independently from
other users, or to, otherwise, have a single set of preferences, shared by all

 181

users. As such, this cluster also contributes to System Responsibility
PREF_SR-1 Set Preferences.

PREF_EC-3 Default Values: This Elicitation Cluster covers determining the default values
for each preference, directly yielding the System Responsibility PREF_SR-2
Provide Default Values.

PREF_EC-4 Canned Settings: From this Elicitation Cluster addresses the need for
predefined sets of multiple preferences, and it translates into the sole System
Responsibility PREF_SR-3 Allow ‘canned settings’ is derived.

PREF_EC-5 Grouping Preferences: Finally, this elicitation cluster contemplates arranging
preferences in groups or trees, and gives way to the PREF_SR-4 Organize
Preferences System Responsibility.

Table 5.10-4 maps these relationships between Usability Elicitation Clusters and the Usability
System Responsibilities, for easy reference. Any project determined to require a specific
Elicitation Cluster will also require its related System Responsibilities. Likewise, if a cluster
is discarded during elicitation, its related responsibilities will not be a part of the resulting
system.

Table 5.10-4 Usability Elicitation Clusters / System Responsibilities Mapping for Preferences
Use Cases Dependent Responsibilities

PREF_EC_1 Providing Preferences PREF_SR-1 Set Preferences
PREF_EC_2 User-specific vs. Global Preferences PREF_SR-1 Set Preferences
PREF_EC_3 Default Values PREF_SR-2 Provide Default Values
PREF_EC_4 Canned Settings PREF_SR-3 Allow Canned Settings
PREF_EC_5 Grouping Preferences PREF_SR-4 Organize Preferences

5.10.2 Usability Guideline for Software Development: Design artifacts
The design artifacts of the Usability Guideline for Software Development for the Warning
feature are described in the following sections. The System Responsibilities described above
are brought to a lower abstraction level as High-level Design Component Responsibilities in
section5.10.2.1. Section 5.10.2.2 expresses them as Low-level Design Component
Responsibilities (for a MVC architecture). Finally, section 5.10.2.3 presents the Usability
Design Meta-models for said Low-level Design Component Responsibilities as object-
oriented class and sequence diagrams.

5.10.2.1 High-level Design Component Responsibilities
To support the System Responsibilities at design level, the following sections describe the
suggested High-level Design Components for the Preferences feature, summarized in Table
5.10-5.

5.10.2.1.1 Preference Component
This component is responsible for holding the basic data related to a ‘live’ preference. For
example, in a system where a certain color attribute is set to ‘red’, there will be one instance
of the Preference class holding the name of that color attribute, the possible values that it
could take, and fact that it is currently taking the ‘red’ value.

5.10.2.1.2 Settings Component
The Setting component represents a group of Preferences with an assigned value. It is a set of
pairs, comprised of a preference name and a given value, intended to be saved and loaded as a
group (when, for example, using canned settings)

 182

5.10.2.1.3 PreferenceManager Component
This component is in charge of managing individual Preferences within the system. All
operations to be performed on Preference objects must go through their PreferencesManager,
as it is the class with the responsibility of knowing and handling their information.

5.10.2.1.4 StorageFront Component
The StorageFront Component is in charge of storing and retrieving preference values into
persistence. It is the only component allowed such access to the physical media where these
values are stored, and any classes needed to make use of them must present a request to do so
to the StorageFront.

5.10.2.1.5 SettingsManager Component
This component is in charge of saving and loading Settings upon request within the system.

5.10.2.1.6 User Component
The User Component is in charge of holding and accessing a sole Settings component. This
particular Settings component holds all the preference values stored for this particular User.
The User class is the sole responsible for accessing these values, whether for loading or for
saving.

5.10.2.1.7 Group Component
The Group component may hold one or many Preference objects in the system when simple
grouping was elicited. To represent a tree structure, the Group object will hold either
Preferences or Groups, as leaves and branches of said tree, respectively.

Table 5.10-5: Usability Guideline: High-level Design Component Responsibilities. Preferences
System Responsibility Generic Component Responsibilities

PREF_SR-1 Set
Preferences

A Preference component holds the information related to a single ‘live’ system preference, minimally: its
name (i.e. Background color), its possible values (i.e. green, red, blue) and the current active value it may
have. A preference is ‘live’ once it’s been loaded (as opposed to a preference setting that may be stored in
the hard drive for later use)

A PreferencesManager component is responsible for knowing, handling and retrieving all live Preference
components within the system.
A Setting Component represents a group of predetermined value pairs (preference name – preference value)
that can be loaded from the hard drive (through the Storage Front Component) and rolled out into the live
preferences.

The StorageFront component represents the link between the application logic and the repository where the
preference values are saved. A Setting will load its values through the StorageFront, as only this class has
direct access to the information stored in the hard drive (or other media).

A User component represents a system user if different users are required to hold different preferences (as
opposed to having global preferences for the entire application). The User is responsible also for holding it’s
own default Setting, if one exists.

PREF_SR-2 Provide default
values

The Preference component is also responsible for knowing what (if any) is its default value and for setting
itself to that value if/when requested by the UI

PREF_SR-3 Allow ‘canned
settings’

A SettingsManager is responsible for loading stored Settings when asked by the UI

PREF_SR-4 Organize
preferences

If preferences are to be grouped, a Group Component is responsible for holding related preferences and for
providing the UI with them.

 183

5.10.2.2 Low-level Design Component Responsibilities for MVC
When instantiating for a MVC architecture, the UI Component is instantiated by View the
object(s) and takes over all of its responsibilities except for the delegation of actions to other
objects. This responsibility falls on the Controller object(s) of the MVC architecture.

The Preference Component is represented by Preference class and covers all of its
responsibilities. It holds the currently assigned (or active) value that the user has last set it to,
or that has been loaded from persistence. Preference objects are always contained within a
Setting object, described below.

The Setting Component is represented by the Setting class, and it is responsible for managing
Preference objects. So called ‘canned settings’ are represented, for example, by a single
Setting object containing a certain number of preferences with an assigned value. Such a
setting would be loaded or ‘rolled out’ when a user calls for a ‘canned setting’ to be loaded.
Another use for the Setting object is to contain a single User’s (or the application’s) desired
preference values. In multi-user systems, each User will contain a single Setting object,
holding and managing all of its preferences at all times.

The PreferencesManager Component is represented by the PreferencesManager class, and
covers all its responsibilities. It is responsible for ordering modified Preferences to be saved,
and to retrieve them when requested by the View.

The StorageFront Component is represented by the StorageFront parent class, and by any of
its subclasses. These classes are responsible for storing any saved data to a given physical
medium. Each subclass of StorageFront implements this functionality for each needed
particular physical medium. For example, if only a database is to be used, the StorageFront
component would have a DatabaseStorageFront subclass implementing this functionality. If
later on it becomes necessary to provide additional storing capabilities unto text files, for
example, a TextFileStorageFront subclass would be created and used as needed for this
purpose.

The SettingsManager Component is represented by the SettingsManager class, and covers
all of the components responsibilities. It is responsible for ordering newly created settings to
be saved, and to retrieve them when requested by the View.

The User Component’s responsibilities are carried out by the User class, in charge of holding
and managing its Setting object, containing all of the user’s preferences.

Finally, the Group Component is represented by the Group class for organizing and
arranging Preferences in the desired structure for display in the View.

Table 5.10-6 details the Low-level Design Component Responsibilities described above and
how they carry out each of the System Responsibilities for Usability. For each of these, the
sequence of actions required by the different objects is presented as well as a set of UML
diagrams that depict each of these interactions.

 184

Table 5.10-6: Usability Guideline: Low-level Design Component Responsibilities (MVC). Preferences.
System Responsibility Objects Fig

View Controller User Setting StorageFront Preference Preferences
Manager

PREF_SR-1 Set Preferences

1. The View listens for
user calls to save a
group of changed
preferences. If they
belong to individual
user, userId is sent. It
forwards the request to
the Controller

2. The Controller forwards
the request and list of
preference values to the
appropriate User (or a
Preferences Manager if
‘global’ preferences)

3. The User
requests its
Setting object to
update all of the
sent preference
values

4. For each value sent in prefVals[], the Setting
object within the User updates its internal
Preference objects.
6. The Setting saves itself once all of its internal
Preferences have been updated

5. The
StorageFront
stores the saved
Setting object to
the appropriate
persistence
medium.

5. Each Preference
object updates its value
to be the new value
sent.

 Figure
5.10-5

1. The View listens for
user calls to load his
prefs (or the system’s, in
case of ‘global’)

2. The Controller requests
the appropriate User (or a
Preferences Manager if
‘global’) the Setting object
and requests it to rollOut()

 3. The Setting object rolls itself out by loading all
of its pref-value pairs from the StorageFront and
loading them onto the ‘live’ Preferences, via the
PreferencesManager.
5. For each pref name in the received pref-value
pairs, the Setting asks the PreferencesManager
to update the corresponding Preference object
(live) with the designated value.

4. The
StorageFront loads
all of the pref-value
pairs belonging to
the Setting in
question and
returns them to it

7. The Preference
object updates itself as
requested by the
Preferences Manager

6. The Preferences
Manager orders each
Preference to update
itself with the new
value

Figure
5.10-4

PREF_SR-2 Provide default
values

1. The View listens for
user calls to reset the
default values for a
group of preferences. It
forwards the call to the
Controller

2. The Controller requests
the appropriate user (or
PreferencesManager in case
of ‘global’) to reset the group
of prefs. to its defaults

3. The User
forwards the call
to its Setting
object

4. The Setting orders each Preference to reset
itself to its defaultValue
6. The Setting saves itself via the StorageFront

7. The Storage
Front writes the
updated Setting to
the appropriate
storage medium.

5. The Preference
object, responsible for
knowing and setting its
default value, sets its
currentValue to that
default

 Figure
5.10-7

PREF_SR-3 Allow ‘canned
settings’

1. The View listens for
user calls to load a
canned setting. It
forwards this request,
along with the settingId
to the Controller

2. The Controller requests
the Settings Manager the
Setting object and requests it
to rollOut()

 3. The Setting object rolls itself out by loading all
of its pref-value pairs from the StorageFront and
loading them onto the ‘live’ Preferences, via the
PreferencesManager.
5. For each pref name in the received pref-value
pairs, the Setting asks the PreferencesManager
to update the corresponding Preference object
(live) with the designated value.

4. The
StorageFront loads
all of the pref-value
pairs belonging to
the Setting in
question and
returns them to it

7. The Preference
object updates itself as
requested by the
Preferences Manager

6. The Preferences
Manager orders each
Preference to update
itself with the new
value

Figure
5.10-6

PREF_SR-4 Organize
preferences

1. When preferences
are loaded, the View is
responsible for
displaying them as
groups/trees if
applicable

 Figure
5.10-4

 185

5.10.2.3 Usability Software Design Meta-models
These UML diagrams represent the Low-level Design Component Responsibilities described
in earlier. The following sections describe the class diagram and the classes involved in this
feature and their interrelationships, followed by the descriptions of the sequence diagrams.

5.10.2.3.1 Class Diagram
Figure 5.10-3 below shows the class diagram for the Preferences feature. The main objects
involved are the View, Controller, Preference, Group, PreferencesManager, User, Setting,
SettingsManager, StorageFront, StaticFileStorageFront and DatabaseStorageFront.

Figure 5.10-3: Usability Design Meta-model. Class diagram. Preferences.

5.10.2.3.2 Sequence Diagram “Load Preferences”
Figure 5.10-4 shows the sequence diagram for loading preferences, covering the Low-level
Design Component Responsibilities of PREF_SR-1. This sequence starts when the user
(directly or indirectly) requests to load his preferences. This request is forwarded to the
controller who knows that a User’s preferences are stored in its Setting object. As such, the
Controller locates the apropriate User, and invokes its Setting object to rollOut(), meaning it
will load all the necessary preference values for the Controller to then do what it must with
them. For example, if ‘Language = Spanish’ is one of the preference-value pairs that are
loaded, the Controller will continue execution by performing the actions needed to display
Spanish text. This is obviously outside of the scope of the present feature as it depends solely
on the domain-specific requirements for the project.

In order for the Setting to be rolled out, it must order the StorageFront to load its stored
preference-value pairs. Once these are loaded, it orders the PreferencesManager to load these
values onto the active Preferences one by one. Once the active preferences are loaded with the
stored values, the control returns to the Controller object, who moves on to taking any further
actions, if needed.

 186

Figure 5.10-4: Sequence Diagram “Load Preferences”. Preferences.

5.10.2.3.3 Sequence Diagram “Save Preferences”
Figure 5.10-5 shows the sequence diagram for saving preferences. This diagram covers all the
object responsibilities listed for PREF_SR-1.

Figure 5.10-5: Sequence Diagram “Save Preferences”. Preferences.

This sequence starts when the user requests for his preferences to be saved (for example, after
having changed them). The View forwards this request to the Controller, with the userId (if
applicable) and an array of preference-value pairs. As it is the User object’s responsibility to
store its own preference values (inside its Setting object), the Controller forwards this
information to the User of userIde, invoking its savePreferences method.

For every preference-value pair passed to the User, the corresponding Preference object is
retreived from within the User’s Setting object. That Preference’s value attribute is then
replaced by whatever value was contained in the aforementioned preference-value pair. Once
all Preferences in the User’s Setting have been updated with the new values, the newly altered
Setting is ordered to be saved to persistance by the appropriate StorageFront.

5.10.2.3.4 Sequence Diagram “Load Canned Setting”
This sequence covers the System Responsibility PREF_SR-1 and is shown in Figure 5.10-6.
It is nearly identical to the one described in section 5.10.2.3.2 Sequence Diagram “Load
Preferences”, except the preferences being loaded in this case are not those saved for a
particular user, but rather a ‘canned setting’. This difference can be seen graphically in the
call to getSetting(settingId) not being made to a User object, but rather to the
SettingsManager, in charge of loading these type of system-wide settings. This called is

 187

triggered by the user requesting to load a particular canned setting and results in that setting
object (canned_s) being returned to the Controller

Once the Controller has the Setting object it orders it to roll out, meaning that said setting will
order the StorageFront to load all of its preference-value pairs from persistence. For each of
these pairs being loaded, the Setting will ‘fill in’ the values in the ‘live’ Preferences,
effectively loading them as requested. Once the active preferences are loaded with the values
for these canned settings, the control returns to the Controller object, which moves on to
taking any further actions, if needed.

Figure 5.10-6: Sequence Diagram "Load Canned Settings". Preferences

5.10.2.3.5 Sequence Diagram “Reset Default Values”
This sequence, shown in Figure 5.10-7, starts when the user requests the View to reset the
default values to a set of preferences. This can be a single preference being reset to its default
value, a few selected preferences needing to be reset, or resetting all preferences to default.

The request to reset the selected group of preferences is forwarded to the controller who, in
turn, requests the appropriate user to reset those preferences for itself. Similarly to saving
regular preferences for a user, reseting the default value for preferences means that for every
preference passed to the User, the corresponding Preference object is retreived from the
User’s Setting object. That Preference’s current value attribute is then replaced by its default.
Each Preference is responsible for knowing (having an unalterable attribute) its default
value.Once all the selected Preferences have been reset, the newly altered Setting is ordered
to be saved to persistance by the appropriate StorageFront.

Figure 5.10-7: Sequence Diagram "Reset Default Values". Preferences

 188

5.11 “Favorites” Usability Guideline for Software Development
The Favorites Functional Usability Feature covers the user’s need to bookmark and keep a
collection of favorite places within an application. When the array of places that users can
visit within an application is vast, they will need a way to remember those of interest to them
and retrieve them easily at a later time.

The Usability Guideline for Software Development is made up of Analysis and Design
artifacts, described for the Warning feature in the following two sections.

5.11.1 Usability Guideline for Software Development: Analysis artifacts
There are four artifacts to be used during the analysis phase: the Usability Elicitation
Guideline, the Usability Elicitation Clusters, the Usability Use Case Meta-models, the System
Responsibilities for Usability. These artifacts are described in the following four sections.

5.11.1.1 Usability Elicitation Guideline
Table 5.11-1 shows the Usability Elicitation Guideline for the Favorites Functional Usability
Feature. There are two HCI recommendations in this guideline, covering what the Favorites
list is and how it should be structured. These recommendations are explained below.

5.11.1.1.1 Favorites List
HCI authors suggest that users need to record their points of interest within an application in
order to return to them later (F_HCI-1). Points of interest can lie within the application itself
(i.e. marking an email as ‘important’ within an email program, to easily identify it and return
to it later) or beyond the scope of the application (i.e. a web bookmark, within the application,
that loads an external website). This subtle but significant difference should be carefully
noted in each case during the elicitation phase (F _ELAB-1). Discussions should revolve
around defining a bookmark (or ‘favorite’), how they will be stored, what information they
will hold, how they will retrieved and the maximum number (if any) of bookmarks that can
be saved in the application (F_Q-1 to F_Q-5).

Table 5.11-1, example F_EX-1 “Favorites in Navigation” describes an example for this HCI
recommendation.

5.11.1.1.2 Favorites List Structure
HCI authors suggest that if the list of bookmarks gets too long, the user should be allowed to
structure it or rank it for ease of access (F_HCI-2). The most common way to organize a list
of bookmarks is by allowing the user to sort them in folders. Another, more recent sorting
technique is the tagging of bookmarks (F _ELAB-2). Stakeholders must discuss which means
the system must provide the user for sorting bookmarks (F _Q-4 to U_Q-6).

Example F_EX-2 “Browser Bookmarks” in Table 5.11-1 describes an example for this HCI
recommendation.

 189

Table 5.11-1. Usability Requirements Elicitation Guideline. Favorites.
Identification

Name Favorites
Family User Profile
Aliases Bookmarks [42]; Favourites [49]
Intent
Providing a mechanism for bookmarking and keeping a collection of such favorite places within an application
Problem
When the array of places that users can visit within an application is vast, they will need a way to remember those of interest to them and retrieve them easily at a later time.
Context
In a navigable software system, when the system is possibly large and complex and allows the user to move freely through it in ways not directly supported by the artefact’s structure.

HCI Recommendation Elaboration Discussions with Stakeholders Usage Examples (optional)
F_HCI-1 Favorites list
Let the user make a record of their points of interest, so
that they can easily go back to them later. The user
should be able to label them, since users are in a better
position to choose labels that are memorable to them.
Save the list for later use [42].
Users need to temporarily gather a set of items for later
use. Allow users to build their list of items by selecting
the items as they are viewing them. [49]

F_ELAB-1 Favorites scope
Points of interest, or bookmarks, can be more than simple
locations within the application. They can also be outside of the
scope of the application as is the case of a Favorite’s list of URLs
gathered within a “home” website.

F_Q-1 Will user be allowed to collect bookmarks of
locations into a “Favorites” list?

F_Q-2 If so, what constitutes a bookmark?
F_Q-3 How will the user add these bookmarks to the

Favorites list?
F_Q-4 How will the user retrieve the contents of the

bookmarked item?
F_Q-5 How many bookmarks is the user allowed to

add to the Favorites list?

F_EX-1 Favorites in navigation
In applications where users navigates through
(ordered or unordered) “spaces”, not having a
means to keep track of places that s/he would like
to revisit can be frustrating for the user.
A lack of such a mechanism would limit the user’s
potential within the application (if e-commerce
site, for example, user may not remember items
s/he intends to buy later)

F_HCI-2 Structure of the Favorites list
If the list becomes long, allow users to structure it [49].
Support at least an ordered linear organization, so that a
user can rank them according to whatever criteria they
choose; if possible, support a grouping structure of
some kind [42].

F_ELAB-2 Structure: Folders and Tags
The grouping of bookmarks is usually done by means of either
“folders” or “tags”. In the case of folders, a bookmark belongs to
the folder where they are placed, and can only exist in one folder
at a time.
Tags, conversely, are assigned bookmarks. One bookmark can
have many tags, and the same tag can be assigned to many
bookmarks.

F_Q-6 Will the Favorites list be structured?
F_Q-7 If so, will structuring be done linearly or in

groups?
F_Q-8 If linearly, what will be the ordering criteria?
F_Q-9 If grouped, will grouping be static (folders)

and/or dynamic (tags)?
F_Q-10 How will a bookmark be added to a folder (if

applicable)?
F_Q-11 How will a bookmark be tagged (if

applicable)?

F_EX-2 Browser Bookmarks
Once a favorites list contains more than just a few
browser bookmarks, finding a bookmark becomes
a daunting task. The usefulness of the list is
diminished by the user’s inability to find something
they’ve previously saved.

 190

5.11.1.2 Usability Elicitation Clusters
The Usability Elicitation Guideline suggests nine discussions items to be held with
stakeholders in order to elicit all aspects of the Favorites Functional Usability Feature. These
discussion items can be clearly divided into six clusters, as described in the Usability
Elicitation Cluster Map in shown in Figure 5.11-1, according to the portion of the Favorites
functionality that they cover.

F_EC_1 Adding bookmark to favorites list: The discussion items in this cluster cover
determining whether favorites will be needed in the system and if so, what they
will be and how they’ll be collected.

F_EC_2 Retrieving bookmark: Once it is established what constitutes a bookmark,
stakeholders must define how its contents will be retrieved.

F_EC_3 Structuring favorites list: These discussions deal with determining, for large sets
of bookmarks, how they will be organized. Options include linear lists and groups,
where groups can be dynamic or static (see below)

F_EC_4 Determining order criteria: If lists are to be linear, it must be determined in
which ways they can be sorted. These discussions deal with the different criteria
that might be used for doing so.

F_EC_5 Grouping bookmarks: If stakeholders decide that bookmarks will be grouped
statically (into classic folders), it must be determined how a bookmark or group of
bookmarks will be added to such groups.

F_EC_6 Tagging Bookmarks: If tags are to be used for grouping bookmarks
(dynamically), stakeholders must determine how tags will be associated with
bookmarks, i.e. how tagging will take place.

 191

Figure 5.11-1: Elicitation Clusters. Favorites

 192

5.11.1.3 Use Case Meta-model
The Use Case Meta-model for the Favorites feature is shown in Figure 5.11-2 (See page 71
for color legend), in which six use cases are identified and described below.

F_UC_1 CreateFavorite: This use case begins when the user requests to bookmark an
object. This implies adding it to the favorites list (AddToList) and can entail adding
it to a group (Group) or tagging it (Tag)

F_UC_2 AddToList: The CreateFavorite use case triggers this use case. It entails adding a
newly created bookmark to the favorites list.

F_UC_3 Tag: A tag or tags are associated to the newly created bookmark. Many tags can be
associated with one or more bookmarks.

F_UC_4 Group: The newly created bookmark is added to an existing group. A bookmark
can only be added to a single group at a time

F_UC_5 ViewFavorites: The user requests to see a full list of all the saved favorites. Upon
displaying the list, ViewFavorites must first call for the bookmarks to be sorted first,
as determined at elicitation time (if applicable)

F_UC_6 SortFavorites: This use case is invoked from within ViewFavorites and involves
sorting the bookmarks as requested for display.

Figure 5.11-2 Use Case Meta-model. Favorites

As mentioned above, the applicability of each of these use cases will depend on the results of
the elicitation process. If during elicitation of the Favorites Functional Usability Feature it is
determined that, for example, no tags will ever be used, then the F_UC-3 use case will be
excluded from the model. Use cases also depend on one another. These dependencies are
shown in Table 5.11-2 we can see the following

• The CreateFavorite use case will invariable need the AddToList use case, as the newly
created bookmark will need to be stored after creation. Creating a favorite may require
tagging or grouping, but neither action would impede this use case.

• ViewFavorites will need the SortFavorites use case to be viable (conditionally, hence
the asterisk) only in the instances where some kind of sorting was determined to be
required at elicitation time.

• Finally, every use case will need CreateFavorite because a bookmark must exist in
order for these three use cases to be viable

Table 5.11-2 Usability Use Case Dependencies: Favorites Functional Usability Feature
 F_UC-1

Create Favorite
F_UC-2

Add ToList
F_UC-3

Tag
F_UC-4
Group

F_UC-6
View Favorites

F_UC-6
Sort Favorites

F_UC-1 CreateFavorite - X
F_UC-2 AddToList X -
F_UC-3 Tag X -
F_UC-4 Group X -
F_UC-6 ViewFavorites X - X*
F_UC-6 SortFavorites X -

 193

By looking at the columns, it becomes evident that the CreateFavorite use case is core to the
Favorites feature. Furthermore, all but the CreateFavorite and AddToList use cases could
potentially be discarded and still the Favorites feature would be viable (bookmarks would
only be created and stored). This would be the minimal expression of this feature.

5.11.1.4 System Responsibilities
Table 5.11-3 shows the proposed System Responsibilities for the Warning feature.

Table 5.11-3 System Responsibilities List for Favorites
System Responsibilities List for Undo

F_SR-1 Create Bookmark
The system must store all bookmarks upon creation by the user
F_SR-2 Retrieve Bookmark
The system provide a way for retrieving each bookmark’s content
F_SR-3 Set order criteria
The system must provide ways for the user to sort the bookmarks
F_SR-4 Group bookmark(s)
The system must allow users group bookmarks in folders
F_SR-5 Tag bookmark(s)
The system must provide a way to tag bookmarks

These System Responsibilities are derived from the Usability Elicitation Clusters as follows:

F_EC_1 Adding bookmark to favorites list: This cluster contemplates creating a
bookmark and saving it. It yields one System Responsibility: F_SR-1 Create
Bookmark.

F_EC_2 Retrieving bookmark: This cluster holds a single stakeholder discussion,
regarding the method through which bookmarks will be retrieved, giving way to a
single System Responsibility: F_SR-2 Retrieve Bookmark.

F_EC_3 Structuring favorites list: This cluster contains discussion items aimed at
defining the exact structure of favorites list. It does not yield a System
Responsibility on its own, but rather in conjunction with the next three clusters,
which deal with the specific types of structuring available.

F_EC_4 Determining order criteria: Together with F_EC-3, this elicitation cluster yields
the System Responsibility: F_SR-3 Set order criteria. If it is determined that the
favorites list will be structured linearly (as opposed to in groups), this cluster will
determine what the ordering criteria will be

F_EC_5 Grouping bookmark(s): Together with F_EC-3, this elicitation cluster yields the
System Responsibility: F_SR-4 Group Bookmark(s). If the favorites list is to be
structured in groups, the discussion items in this cluster will determine the method
for grouping bookmarks statically (in folders)

F_EC_6 Tagging bookmark(s): Together with F_EC-3, this elicitation cluster yields the
System Responsibility: F_SR-5 Tag Bookmark(s). If the favorites list is to be
structured in groups, this cluster will determine how bookmarks will be grouped
dynamically, through assigned tags.

Table 5.11-4 maps these relationships between the Usability Elicitation Clusters and the
Usability System Responsibilities for easy reference. Any project determined to require a
specific cluster will also require its related System Responsibilities. Likewise, if a cluster is
discarded during elicitation, its related responsibilities will not be a part of the resulting
system.

 194

Table 5.11-4 Use Case/ System Responsibilities Mapping for Favorites
Use Cases Dependent Responsibilities

F_EC-1 Adding bookmark to favorites list F_SR-1 Create Bookmark
F_EC-2 Retrieving bookmark F_SR-2 Retrieve Bookmark
F_EC-3 Structuring favorites list F_SR-3 Set order criteria

F_SR-4 Group Bookmarks
F_SR-5 Tag Bookmarks

F_EC-4 Determining order criteria F_SR-3 Set order criteria
F_EC-5 Grouping bookmark(s) F_SR-4 Group Bookmarks
F_EC-6 Tagging bookmark(s) F_SR-5 Tag Bookmarks

5.11.2 Usability Guideline for Software Development: Design artifacts
The design artifacts of the Usability Guideline for Software Development for the Favorites
feature are described in the following sections. The System Responsibilities described above
are brought to a lower abstraction level as High-level Design Component Responsibilities in
section 5.11.2.1. Section 5.11.2.2 expresses them as Low-level Design Component
Responsibilities for MVC. Finally, section 5.11.2.3 shows the Usability Design Meta-models.

5.11.2.1 High-level Design Component Responsibilities
To support the System Responsibilities at design level, the following sections describe the
suggested High-level Design Components for the Warning feature, shown in Table 5.11-5.

5.11.2.1.1 User Interface (UI) Component
This component is responsible for capturing all user invocations and forwarding them
(possibly through a delegating component) to the appropriate part of the domain, usually that
responsible for executing the invoked action. Specifically for this feature, calls to create a
new bookmark or to view the bookmarks list are captured by the UI Component. The UI
Component is also responsible for relaying information to the user, including appropriate
feedback after an action has been executed, as is displaying the bookmarks list when
requested.

5.11.2.1.2 Domain Component
A Domain Component represents the part of the system that is ultimately responsible for
executing the actions requested by the user. In this case, the domain component represents the
bookmarked object, if applicable.

For example, in the case of a browser with bookmarks that point to existing websites, all the
information about the bookmark is contained within it, and the bookmarked element (the site)
lies outside of the scope of the feature. In such a case, no DomainComponent would be
needed.

In a contrasting example, when working within photo organizing software like Picasa or
iPhoto, favorites tend to be pictures or groups of pictures, which are objects that do indeed lie
within the scope of the feature and must be represented by the appropriate
DomainComponent.

5.11.2.1.3 Bookmark Component
The Bookmark component holds all the information pertaining to the object being
bookmarked. It is responsible for controlling this information, including any tags that may be
assigned to it

5.11.2.1.4 Group Component
The Group Component may hold many Bookmarks, yet a single Bookmark may belong to
only one Group at a time. Groups can belong to Groups in the same way, providing for nested
grouping (trees).

 195

5.11.2.1.5 Tag Component
The Tag Component holds a tag’s information. One tag can be associated to many
Bookmarks at any one time and vice-versa.

5.11.2.1.6 Favorites List Component
This component is responsible for holding all of the Bookmarks and/or Groups of Bookmarks
when applicable. It is also responsible for setting the ordering criteria as requested by the
user. No more than one instance of this component should exist within the system at any
given time.

Table 5.11-5: Usability Guideline: High-level Design Component Responsibilities. Favorites
System Responsibility Generic Component Responsibilities

F_SR-1 Create bookmark The UI Component is responsible for listening for user calls to create a new bookmark. It is also
responsible for gathering the information about the newly created bookmark. This information must entail
the minimum bookmark details (i.e. name, address) but can also contain any groups the user wishes to
add the bookmark to or any tags the user wishes to append to the bookmark. Additional descriptive
information is also encouraged.

The delegating component (if any) must forward the call to create a bookmark along with the information to
a FavoritesList Component. The FavoritesList Component is responsible for keeping bookmarks organized
and for their storage/retrieval

F_SR-2 Retrieve bookmark The UI Component is responsible for listening for user calls to load an existing bookmark. To do so, the
user could provide specific information about a single bookmark (i.e. name) or information regarding tags
or groups that may yield a list of more than one bookmark.
In either case, a delegating component (if any) forwards the call and the data to the Favorites List
Component for retrieval

The Favorites List Component uses the data provided to filter through its bookmarks and returns only
those that match the user’s request

The UI Component (through a delegating component, if any) receives the list of bookmarks and prompts
the user to select the one s/he wishes to load

Upon selection, the UI is also responsible for loading the chosen bookmark (i.e. if it’s a URL, the UI is
responsible for making the necessary calls to domain classes--outside the scope of this pattern--to load
the desired website)

F_SR-3 Structure Favorites
List: Set Ordering Criteria

The Favorites List Component is responsible for keeping its bookmarks in the order specified by the user.
It’s responsible for providing different means of organization for the user to choose from .

The UI Component is responsible for listening for user calls to set a new ordering criterion

The delegating component (if any) must forward the call to the Favorites List, which will set the new
ordering criterion as ‘active’

F_SR-4 Structure Favorites
List: Group Bookmark(s)

Bookmarks can be added to groups at create-time or after-the-fact. In the latter case, the UI Component
listens for user calls to add an existing bookmark to an existing group.

The delegating component (if any) locates the appropriate group and orders it to add (unto itself) said
bookmark
Groups can hold many bookmarks and one bookmark can reside in only one group at a time.

F_SR-5 Structure Favorites
List: Tag Bookmarks

Bookmarks can be tagged at create-time or after-the-fact. In the latter case, the UI Component listens for
user calls to add a tag (or tags) to an existing bookmark.
The delegating component (if any) locates the appropriate bookmark and orders it to add (unto itself) the
tags introduced by the user.

Tags are assigned to bookmarks. One bookmark can have many tags and one tag can be assigned to
many bookmarks

 196

5.11.2.2 Low-level Design Component Responsibilities for MVC
When instantiating for a MVC architecture, the UI Component is instantiated by View the
object(s) and takes over all of its responsibilities except for the delegation of actions to other
objects. This responsibility falls on the Controller object(s) of the MVC architecture.

The DomainComponent is represented by BookmarkedElement, and represents the object
that a bookmark may link to if it lies within the scope of the application, as explained earlier.

The Bookmark, Tag and Group components are represented by the objects of the same
name, and cover all of their functionalities, respectively.

Table 5.11-6 details the Low-level Design Component Responsibilities described above and
how they carry out each of the System Responsibilities defined in section 5.2.1.4. For each
System Responsibility, the sequence of actions required by the different objects is presented
as well as a set of UML diagrams that depict each of these interactions.

Table 5.11-6: Usability Guideline: Low-level design component responsibilities (MVC). Favorites.
System

Responsibility
Objects Fig

View Controller Bookmark FavoritesCollection Group
F_SR-1 Create
bookmark

1. The View listens for calls from
the user to create a
newBookmark(). Aside
from the bookmarkInfo, said
call can include a group to add
the bookmark to and a list of
tags[] to add to the new
bookmark
2. The View passes on the
information and the call to the
Controller

2. The Controller,
in turn, orders the
FavoritesCollection
to create the new
bookmark with this
information

6. The
Bookmark adds
as many
tags[] as
are passed on
unto itself

3. The FavoritesCollection
creates a new Bookmark
object with the
corresponding
bookmarkInfo.
4. If a group was sent along
in the call, the newly
created bookmark to said
group. If no group was sent,
then the bookmark is added
to a default group.
5. If tags[] were sent along,
the FavoritesCollection
passes them on to the
newly created Bookmark. If
no tags were sent, no tags
are added to the Bookmark.

 Figure
5.11-4

F_SR-2
Retrieve
bookmark

1. The View listens for calls from
the user to get() existing
bookmarks according to a given
criteria and forwards them to the
Controller.
5. The View prompts the user to
select, from among the received
bookmarks[], the one that
s/he wishes to load
6. When the user selects a
bookmark, the View makes the
necessary method calls to load
the Bookmark.

2. The Controller, in
turn, orders the
FavoritesCollection to
load all the
bookmarks (if any)
that match the criteria
4. The Controller
forwards the resulting
list of
bookmarks[] to
the View

 3. The FavoritesCollection
filters its bookmarks and
returns only those matching
the criteria to the Controller.

 Figure
5.11-5

F_SR-3
Structure
Favorites List:
Set Ordering
Criteria

1. The View listens for calls from
the user to
setOrderingCriteria(
) over the list of bookmarks. It
forwards said call to the Controller

2. The Controller, in
turn, orders the
FavoritesCollection to
sort itself accordingly

 3. The FavoritesCollection
sets the new ordering
criteria as ‘active’ and uses
it to sort the list of
bookmarks

 Figure
5.11-6

F_SR-4
Structure
Favorites List:
Group
Bookmark(s)

1. The View listens for calls from
the user to
addBookmarkToGroup().
It forwards said call to the
Controller

2. The Controller then
orders newGroup
to add the bookmark
unto itself, but only
after ordering said
bookmark to be
removed from
oldGroup

 3.
oldGroup
removes
the
Bookmark
and
newGroup
adds it

Figure
5.11-7

F_SR-5
Structure
Favorites List:
Tag
Bookmarks

1. The View listens for calls from
the user to
addTagsToBookmark(). It
forwards said call to the Controller

2. The Controller
orders the Bookmark
to add the tags unto
itself

3. Bookmark
adds the tags[]

 Figure
5.11-8

 197

5.11.2.3 Usability Software Design Meta-models
The UML diagrams below represent the Low-level Design Component Responsibilities
described in earlier. The following sections describe the class diagram and the classes and
interrelationships involved in this feature, followed by the sequence diagrams.

5.11.2.3.1 Class Diagram
Figure 5.11-3 below shows the class diagram for the Favorites Functional Usability Feature.
As described in the Low-level Design Component Responsibilities Table (see Table 5.2-6),
the main objects involved are the View, Controller, Bookmark, Tag, Group,
FavoritesCollection. The first two, fulfilling their role within MVC, respectively capture and
distribute the user calls to perform actions. The FavoritesCollection singleton is the gateway
for accessing bookmarks and sorting them as requested, whether they belong to groups or not.

The Group class holds one or more Bookmarks, all which may be tagged by one or more
Tags. Each bookmark holds an array of strings as part of their identification information as
well as the list of tags associated to it.

Bookmarks are responsible for tagging themselves as requested.

Figure 5.11-3: Usability Design Meta-model. Class diagram. Favorites.

5.11.2.3.2 Sequence Diagram “Add Bookmark”
Figure 5.11-4 shows the sequence diagram for the Low-level Design Component
Responsibilities of F_SR-1 as described in Table 5.2-6. This diagram covers all the object
responsibilities associated with creating a new bookmark and storing it. It starts with the
user’s request to create a new bookmark. The view captures all the bookmark information
along with that of any groups it is to belong to or tags it must hold. It passes this information
to the Controller which forwards it to the FavoritesCollection.

The FavoritesCollection is the one responsible for creating the new bookmark with the
provided information, tagging it (if applicable), finding the appropriate group and adding it to
it (if applicable). If no group was selected upon creation of the bookmark, FavoritesCollection
adds it to the defaultGroup, an instance of Group holding such ‘orphan’ bookmarks.

Classes and methods depicted in purple represent they belong to the Favorites feature. For the
full color legend see page 71.

 198

Figure 5.11-4: Sequence Diagram “Add Bookmark”. Favorites.

5.11.2.3.3 Sequence Diagram “Retrieve Bookmark”
Figure 5.11-5 shows the sequence diagram for F_SR-2 This diagram covers all the object
responsibilities related to retreiving a bookmark.

This sequence starts when the user selects a previously stored Bookmark from the Favorites
List. The View receives this request and passes it on to the Controller, which in turn requests
the FavoriteCollection to return the Bookmark matching the request.

Figure 5.11-5: Sequence Diagram “Retrieve Bookmark”. Favorites.

 199

5.11.2.3.4 Sequence Diagram “Set Order”
Figure 5.11-6 shows the sequence diagram for F_SR-1, covering all the object responsibilities
listed for sorting the Favorites List. It starts when the user sets a new order criteria by, for
example, clicking on the header of a colum where the bookmarks are shown (i.e. clicking on
the ‘date’ column would order the bookmarks by date added). This call is forwarded via the
Controller to the FavoritesCollection, which sets the new criteria (c) as the ‘active criteria’.

Figure 5.11-6: Sequence Diagram “Set Order”. Favorites.

5.11.2.3.5 Sequence Diagram “Add Bookmark to Group”
Figure 5.11-7 shows the sequence diagram for F_SR-4. This diagram covers all the object
responsibilities listed for adding a bookmark to a group. The sequence starts when the user
requests to add an existing bookmark to a new group. The View gathers this information
along with the group currently holding the bookmark to move (this would be the
defaultGroup for unsorted bookmarks). This call is forwarded to the Controller which finds
the current group, removes the bookmarks, finds the new group and adds it to it.

Figure 5.11-7: Sequence Diagram “Add Bookmark to Group”. Favorites.

5.11.2.3.6 Sequence Diagram “Tag Bookmark”
Figure 5.11-8 shows the sequence diagram for F_SR-5 This diagram covers all the object
responsibilities listed for tagging a bookmark. The sequence starts when the user requests to
tag an existing bookmark. The View captures this information, including the tag(s) the user
may want to add to the bookmark. This call is forwarded to the Controller which finds the
bookmark in question and orders it to tag itself with each of these tags.

Figure 5.11-8: Sequence Diagram “Tag Bookmark”. Favorites.!

 200

5.12 “Personal Object Space” Usability Guideline for Software Development
The Personal Object Space Functional Usability Feature covers allowing the user to arrange
and manipulate objects graphically on screen. Users may need to lay out and organize
application elements to his convenience and not be bound by pre-determined setups that may
restrict his performance

The Usability Guideline for Software Development is made up of Analysis and Design
artifacts, described for the Warning feature in the following two sections.

5.12.1 Usability Guideline for Software Development: Analysis artifacts
There are four artifacts to be used during the analysis phase: the Usability Elicitation
Guideline, the Usability Elicitation Clusters, the Usability Use Case Meta-models, the System
Responsibilities for Usability. These artifacts are described in the following four sections.

5.12.1.1 Usability Elicitation Guideline
Table 5.6-1 shows the Usability Elicitation Guideline for the Undo Functional Usability
Feature. In this guideline, there is a single HCI recommendation, described below.

5.12.1.1.1 Personal object space
HCI authors suggest that users should be provided with a canvas where they could arrange
things (i.e. graphic representations of application functionality) to their liking. (POS_HCI-1).
This is most commonly achieved by allowing the user to organize objects within a grid,
though other presentations are possible (POS_ELAB-1). During elicitation, discussions with
stakeholders must determine which objects will be suitable for arranging in a personal object
space (or a series of spaces), how they will be organized and information on default object
positions and maximum number of objects allowed. (U_Q-1 to U_Q-3)

In Table 5.6-1, example POS_EX-1 “iGoogle’s POS” describes an example for this HCI
recommendation.

 201

Table 5.12-1. Usability Requirements Elicitation Guideline. Personal Object Space.
Identification

Name Personal Object Space
Family User Profile
Aliases Personal Object Space [42] Personalized ‘MY’ site [49]
Intent
Allowing the user to arrange and manipulate objects graphically on screen
Problem
User may need to layout and organize application elements to his convenience and not be bound by pre-determined setups that may restrict his performance.
Context
Applications for which a set of objects or functionality can be represented graphically in a canvas for the user to manipulate and use.
Interrelationships
Undo: Not considering the ‘undo’ feature will mean that any changes to a user’s personal space (adding, moving, deleting objects) cannot be undone
Warning: Not considering the ‘warning’ feature will mean that the system will not be able to alert the user about, for example, objects deletion (which, when not undoable, might need to display a warning)

HCI Recommendation Elaboration Discussions with Stakeholders Usage Examples (optional)
POS_HCI-1 Personal object space
The user should be able to arrange things in a way that
works best for him, since he knows more about how he
works than the artefact’s designer does. This way he
can better remember where things are than if the items
are arranged for him [42]. Allow users to place things
where they want, at least in one dimension but
preferably in two. It is tedious for the user to do all the
item placement themselves, especially if they want
precision or a sorting order. So, start out with a
reasonable default layout. However, permit stacking,
moving, grouping, aligning, “neatness” adjustments,
sorting and other layout operations. Do not capriciously
rearrange the user’s space, only do automatic layout if
the user specifically requests it. The artifact should
maintain the user’s layout between users.

POS_ELAB-1: Personal object space: layout
The Personal Object Space is most commonly achieved
by using a grid in which to place objects, which can be
arranged by column, row, or both.

POS_Q-1 Will users be allowed to align certain objects graphically in a
personal space?

POS_Q-2 If so, which objects?
POS_Q-3 What is the maximum number of objects to lay out?

POS_Q-4 How will objects be arranged on screen?
POS_Q-5 How will users move objects within layout?

POS_Q-6 When an object is deleted, what happens to remaining objects?

POS_Q-7 Where will a newly created object fall within arrangement?
POS_Q-8 What will be the default arrangement?

POS_Q-9 Will user be allowed to arrange objects within more than one
space?

POS_Q-10 How will users navigate between spaces?
POS_Q-11 What is the maximum number of spaces?

POS_EX-1 iGoogle’s POS
In iGoogle users are allowed to place
‘widgets’ in their own personal object
space. Widgets are laid out in a grid,
and distributed by columns.
Deleting a widget shifts the rest of the
widgets in that column up.
Every new widget falls in the (1,1)
position of the grid

Multiple spaces are allowed and they
are represented by tabs to allow
navigation

 202

5.12.1.2 Usability Elicitation Clusters
The Usability Elicitation Guideline suggests eleven discussions items to be held with
stakeholders in order to elicit all aspects of the Personal Object Space Functional Usability
Feature. These discussion items can be clearly divided into three initial groups, or clusters, as
described in the Usability Elicitation Clusters, shown in Figure 5.12-1 according to the
portion of the Personal Object Space functionality that they cover.

POS_EC-1 Arranging objects within space: The discussion items in this cluster cover
determining which objects will be suited for graphic arrangement on a Personal
Object Space (POS), the maximum number of objects that may be allowed, how
the objects will be arranged on screen and how they will be moved around a
repositioned.

POS_EC-2 Handling default positions: This cluster deals with the state of a space after
object manipulation. Discussions entail determining what will happen to the
objects in a space once one is deleted, or a new one is added or moved.
Stakeholders must also determine what the default arrangement for a space will
be, prior to user manipulation.

POS_EC-3 Managing multiple spaces: This last cluster contains discussion items
regarding the need for having more than once space for laying out objects.
Should this need be present for a system, stakeholders must determine how
navigation among spaces will take place and the maximum number of spaces
that will be allowed.

 203

Figure 5.12-1: Elicitation Clusters. Personal Object Space.

 204

5.12.1.3 Use Case Meta-model
The Use Case Meta-model for the Personal Object Space feature is shown in Figure
5.12-2(See page 71 for color legend), in which six use cases are identified and described
below.

POS_UC-1 ManageObject: This is the parent use case for moving an object (POS_UC_3),
adding an object (POS_UC_4) and deleting an object (POS_UC_5) from the
personal object space. These use cases all have in common the fact that, after
each of their respective operations have been carried out (moving, adding,
deleting) in all cases, the space in which they were performed must be rearranged
around the change, as explained below.

POS_UC-2 RearangeSpace: Rearranging a space entails moving the space’s existing objects
so that they conform to a set of rules. Rearrangement only happens after an object
in the space has been ‘managed’ in some way (see use case above), possibly
leaving the space in an unstable state, needing to be rearranged for that stability
to be attained once again. For example, if a new object is deleted from a space,
other objects in that space may need to be repositioned to fill this newly vacated
spot. Similar scenarios play out when moving or adding objects

POS_UC-3 MoveObject: This use case starts when the user picks up an object from the
space and moves it to a new position. This new position may be occupied or
empty. After the object is moved, the remaining elements of the space are
rearranged as/if needed

POS_UC-4 AddObject: This use case starts when the user selects the option to add a new
object to the space. The object can be added to a specific position of the space
(occupied or not) or to the ‘default’ position in the space to which new objects are
added.

POS_UC-5 DeleteObject. Deletion starts when the user selects the object he wishes to delete
and then chooses the option to eliminate it from the space. The rest of the objects
in the space may have to be rearranged around the deletion (i.e. to fill out the
newly vacated position)

POS_UC-6 GoToSpace: When multiple spaces are allowed, this use case describes how the
user can switch from one to another

Figure 5.12-2 Use Case Meta-model. Personal Object Space

 205

As mentioned above, the applicability of each of these use cases will depend on the results of
the elicitation process. If during elicitation of the Personal Object Space Functional Usability
Feature it is determined that, for example, multiple spaces will not needed, then the
GoToSpace (POS_UC-2) use case would be discarded. Use cases also depend on one another.
These dependencies are shown in Table 5.12-2, where we can see the following:

• The ManageObject use case and all of its children need the RearangeSpace use
case, because every time an object is deleted/moved/added within a space, the rest of
the objects will most likely need to be rearranged to leave the space in a stable state.

• The RearangeSpace is included within the ManageObject use cases, and needs
them to exist, because the user never calls it directly, only through these use cases.

• The GoToSpace use case needs no other use case to be viable, as it is only a means
to move among spaces, regardless of the activities that may take place in them.

Table 5.12-2 Usability Use Case Dependencies: Personal Object Space Functional Usability Feature
 POS_UC-1

Manage Object
POS_UC-2

Rearrange Space
POS_UC-3

MoveObject
POS_UC-4
AddObject

POS_UC-5
DeleteObject

POS_UC-6
GoToSpace

POS_UC-1 ManageObject - X
POS_UC-2 RearrangeSpace X -
POS_UC-3 MoveObject X X -
POS_UC-4 AddObject X X -
POS_UC-5 DeleteObject X X -
POS_UC-6 GoToSpace -

By looking at the columns in Table 5.12-2, it becomes evident that, aside from
ManageObject, RearangeSpace is core to the Personal Object Space feature.

5.12.1.4 System Responsibilities
Table 5.12-3 shows the proposed System Responsibilities for Usability for the present feature.

Table 5.12-3 System Responsibilities List for Personal Object Space
System Responsibilities List for Undo

POS_SR-1 Initialize space
The system must know how objects are represented on screen and the rules that govern a space
POS_SR-2 Move Object
The system must allow for objects to be moved within a space
POS_SR-3 Add Object
The system must allow for new objects to be added to a space
POS_SR-4 Delete Object
The system must allow the user to delete objects from a space
POS_SR-5 Manage multiple spaces
The system must allow the user to navigate from one space to another

These System Responsibilities are derived from the Elicitation Clusters as explained below:

POS_EC-1 Arranging objects within a space: This cluster contains the discussions that
determine the ‘rules’ of every space (which objects are allowed, how they’ll be
arranged, etc.). It also deals with the rules governing object movement within a
space. As such, this elicitation cluster would yield two System Responsibilities,
namely POS_SR-1 Initialize space and POS _SR-2 Move object.

POS_EC-2 Handling default positions: This cluster deals with the default positions objects
will go to when added to a space. Also, it details how after deletion/addition of a
new object into a space, said space will regain stability (i.e. once again conform
to the rules mentioned above). This cluster then gives way to two more system
responsibilities: POS_SR-3 Add object and POS _SR-4 Delete object.

POS_EC-3 Managing multiple spaces: This cluster focuses on handling multiple spaces in
a system, producing one System Responsibility POS _SR-5 Move object.

 206

Table 5.12-4 maps the relationships between the Usability Elicitation Clusters and the
Usability System Responsibilities described above, for easy reference. Any project
determined to require a specific Elicitation Cluster will also require its related System
Responsibilities. Likewise, if a cluster is discarded during elicitation, its related
responsibilities will not be a part of the resulting system.

Table 5.12-4 Usability Elicitation Clusters / System Responsibilities Mapping for Personal Object Space
Elicitation Clusters Dependent Responsibilities

POS _EC-1 Arranging objects within a space POS_SR-1 Initialize Space
POS_SR-2 Move Object

POS_EC-2 Handling default positions POS_SR-3 Add Object
POS_SR-4 Delete Object

POS _EC-3 Managing multiple spaces POS_SR-5 Move Object

5.12.2 Usability Guideline for Software Development: Design artifacts
The design artifacts of the Usability Guideline for Software Development for the Warning
feature are described in the following sections. The System Responsibilities described above
are brought to a lower abstraction level as High-level Design Component Responsibilities in
section 5.12.2.1. Section 5.12.2.2 expresses them as Low-level Design Component
Responsibilities (for a MVC architecture). Finally, section 5.12.2.3 presents the Usability
Design Meta-models for said Low-level Design Component Responsibilities as object-
oriented class and sequence diagrams.

5.12.2.1 High-level Design Component Responsibilities
In order to support the System Responsibilities at design level, the following sections describe
the suggested High Level Design Components for the Progress feature, shown in Table 5.2-5.

5.12.2.1.1 User Interface (UI) Component
This component is responsible for capturing all user invocations and forwarding them
(possibly through a delegating component) to the appropriate part of the domain, usually that
responsible for executing the invoked action. For example, every time the user drags-and-
drops an object in a space, the UI must be aware of the move, and forward it to the part of the
domain responsible for determining what the move means

5.12.2.1.2 Domain Component
A Domain Component represents the part of the system functionality that is represented
graphically on-screen as an object.

For example, in an application like iGoogle, the Domain Component is the widget (widgets
hold application functionality). An iGoogle space is made up of a grid of widgets that the user
can organize as he best sees fit.

5.12.2.1.3 Placeholder Component
A Placeholder Component represents an unmovable place within a space, with a defined
position. It is responsible for storing a single object (Domain Component) within a space.

5.12.2.1.4 Space Component
A space is represented by the Space Component. The Space Component is responsible for
rearranging objects upon request from the UI (according to a positioning scheme, see below)
whenever a new object is added, deleted or moved.

5.12.2.1.5 Home Component
A Home Component is responsible for holding all Space Components. It is responsible for
knowing the order in which spaces are laid out. It is also responsible for knowing which is the

 207

space to be loaded upon application startup, and whether more (or even all) spaces will need
to be loaded in the background when doing so.

5.12.2.1.6 Positioning Scheme Component
This component is responsible for knowing the rules pertaining to how objects are laid out
within a space. Given any (continuous) point in the UI, the Positioning Scheme Component is
responsible for determining what Position (see component below) it represents. It is also
responsible for knowing where the next empty position is, depending on its internal rules of
order (by column, by row, etc)

5.12.2.1.7 Position Component

A Position Component represents a place where a Placeholder Component can reside within a
Space Component.

Table 5.12-5: Usability Guideline: High-level Design Component Responsibilities. Personal Object Space
System Responsibility Generic Component Responsibilities

POS_SR-1 Initialize
space

A Space component is responsible for loading itself upon request. The Home component is responsible for
knowing which space should be loaded at each time

POS_SR-2 Move Object A Placeholder Component represents an unmovable place within a space, with a defined position, where a
single object can be stored.
A Placeholder Component lives within a Space Component, which represents a single user space. The Space
Component is responsible for rearranging objects upon request from the UI, according to a positioning scheme,
whenever a new object is added, deleted or moved.
A Positioning Scheme Component holds the rules pertaining to how objects are laid out within a space. Given
any (continuous) point in the UI, the Positioning Scheme Component is responsible for determining a single
Position. It is also responsible for knowing where the next empty position is, depending on its internal rules of
order (by column, by row, etc)
A Position Component represents a place where a Placeholder Component can reside within a Space
Component.

POS_SR-3 Add Object The Space Component is also responsible for knowing a set of default positions for its Placeholders, should the
user request to reset to one.

POS_SR-4 Delete Object A Placeholder Component where an object resides is responsible for deleting it upon request by the Space
Component that contains it.

POS_SR-5 Manage
multiple spaces

A Home Component is responsible for holding multiple Space Components when needed. It is responsible for
knowing the order in which spaces are laid out (and which one is the first to be loaded upon application start)

5.12.2.2 Low-level Design Component Responsibilities for MVC
When instantiating for a MVC architecture, the UI Component is represented by View
object(s) and takes over all of its responsibilities except for the delegation of actions to other
objects. This responsibility falls on the Controller object(s) of the MVC architecture.

The components in the previous section are represented by the objects of the same name in
Table 5.2-6, and each all the responsibilities described for their respective components
described in the previous section

Table 5.2-6 details the Low-level Design Component Responsibilities and how they carry out
each of the System Responsibilities defined in section 5.2.1.4. For each System
Responsibility, the sequence of actions required by the different objects is presented as well
as a set of UML diagrams that depict each of these interactions.

 208

Table 5.12-6: Usability Guideline: Low-level Design Component Responsibilities (MVC). Personal Object Space.
System Responsibility Objects Fig

View Controller Space PositioningScheme Home Placeholder
POS_SR-1 Initialize space 1. The View listens for the user call to

loadStartSpace() and forwards it to the
Controller.
7. The View displays the first space of those
received from the Controller. If only one was
received, it is the start space itself, and is loaded.

2. The Controller
orders the Home
to load the initial
Space(s)
6. The Controller
forwards the
loaded spaces to
the View.

4. Each Space loads itself (loads all the objects within it,
getting ready for display)

 3. The Home, knowing
which Spaces need to be
loaded together with the
start space (if applicable)
orders it/them to load
5. The Home returns the
loaded spaces to the
Controller.

 Figure
5.12-4

POS_SR-2 Move Object 1. The View listens for user call to move() an
object from one point in the screen
(from_placement_data[]) to another
(to_placement_data[]) , and forwards the call to
the Controller, along with the identifier of the
current active_space
8. The View updates accordingly after being
notified of changes in the current Space

2. The Controller
finds the current
active_space and
orders it to move
the object
according to the
from/to data
passed on by the
View

3. The Space, calls unto its PositioningScheme to
determine what Position corresponds to the
to_placement_data[] sent along by the View.
5. Space finds the Placeholder corresponding to that
Position, gets() its current object, if any, and puts() the new
object inside.
7. Space rearranges() its remaining objects according to its
internal rules (i.e. swapping, shifting) and notifies the View

4. The
PositioningScheme
determines the Position
corresponding to the
screen coordinates and
returns it to the Space

 6. Placeholder
substitutes its
current object
by the new
object

Figure
5.12-5

POS_SR-3 Add Object 1. The View listens for user call to add() an
object at to the current space , and forwards the
call to the Controller, along with the identifier of
the current active_space
8. The View updates accordingly after being
notified of changes in the current Space

2. The Controller
finds the current
active_space and
orders it to add
the object to itself

3. The Space, calls unto its PositioningScheme to
determine the default Position to add new objects
5. Space finds the Placeholder corresponding to that
Position and puts() the new object inside.
7. Space rearranges() its remaining objects according to its
internal rules and notifies the View

4. The
PositioningScheme
determines the Position
corresponding to the
screen coordinates and
returns it to the Space

 6. Placeholder
adds the new
object

Figure
5.12-6

POS_SR-4 Delete Object 1. The View listens for user call to delete() an
object in a specific location in the screen
(placement_data[]), and forwards the call to the
Controller, along with the identifier of the current
active_space
8. The View updates accordingly after being
notified of changes in the current Space

2. The Controller
finds the current
active_space and
orders it to delete
the object
according in that
placement

3. The Space, calls unto its PositioningScheme to
determine what Position corresponds to the
placement_data[] sent along by the View.
5. Space finds the Placeholder corresponding to that
Position and deletes() its current object
7. Space rearranges() its remaining objects according to its
internal rules (i.e. swapping, shifting) and notifies the View

4. The
PositioningScheme
determines the Position
corresponding to the
screen coordinates and
returns it to the Space

 6. Placeholder
deletes its
current object

Figure
5.12-7

POS_SR-5 Manage multiple
spaces

1. The View listens for user calls to
goToSpace(s)
2a. If the system is set up to load all spaces
upon startup (and, therefore, s and all its
elements are already loaded) the View proceeds
to makeActive(s) and display(s)
2b. If the system only loads an initial space upon
startup, the request for space s is forwarded to
the Controller.
5. The View loads the space

2. The Controller
forwards the
request to the
Home object
4. The Controller
receives the
space and passes
it on to the view

 3. Home finds the Space
with id space_id and asks
it to load() all of its
components. Home then
returns space to the
Controller

 Figure
5.12-8

209

5.12.2.3 Usability Software Design Meta-models
This section describes the UML diagrams representing the Low-level Design Component
Responsibilities described above. Below, the class diagram is described, as well as the classes
involved in this feature and their interrelationships, followed by the descriptions of the
sequence diagram.

5.12.2.3.1 Class Diagram
Figure 5.2-3 below shows the class diagram for the Personal Object Space feature. The main
objects involved are the View, Controller, Home, Space, Placeholder, PositioningScheme,
Position. Additional classes such as Grid, GridPosition, Rows, RowsPosition, etc., are also
present in the class diagram and are explained below.

The first two classes, View and Controller fulfilling their role within MVC, respectively
capture and distribute the user calls to perform actions. The Home class holds multiple spaces
(or a single one, in systems where only one space is needed). The Space class holds many
Placeholders, and each Placeholder is the location, with a given Position, where a
DomainClass is stored.

Every space has a single PositioningScheme, which is a set of rules, which govern the
Space’s layout and ordering. The Positioning Scheme can be a Grid, Rows, Columns,
Absolute (positioning) and so on. These concrete schemes are depicted in the class diagram,
but many more can exist. The rules in each concrete scheme will be unique, and will define
the scheme. Such rules could include, for example, that any new object added to a Space
governed by a Columns positioning scheme will always fall at the bottom of the last row.

Finally, the Position object, associated with every Placeholder in a Space, also has concrete
inheriting classes, closely related to the chosen PositioningScheme. For example, in a Space
ordered by Rows, a Position will be of the type RowsPosition, and may read as “object is in
row 7, position 3”. A position for a Grid scheme may read “object is in position (3,4)” while
an Absolute scheme will lead to Absolute Positions, of the type “h: 723px, w: 123px”.

Figure 5.12-3: Usability Design Meta-model. Class diagram. Personal Object Space.

210

Classes and methods depicted in dark pink represent they belong to the Personal Object Space
fdature. The gray DomainClass is a template class to be substituted at desing time by the
system class containing the undoable action. For the color legend see page 71.

5.12.2.3.2 Sequence Diagram “Load Start Space”
Figure 5.12-4 shows the sequence diagram for the Low-level Responsibilities corresponding
to the System Responsibility POS_SR-1 Initialize Space.

This sequence starts when the user requests for the initial space to be loaded. This usually
happens automatically at application startup, but can be called independently for flexibility.
The call is captured by the View and forwarded to the appropriate Controller, which locates
the Home comopnent and asks it for its spaces.

Depending on what has been elicited, starting up an application may load more than just the
start space. For example, some systems may require all spaces to be loaded at startup, while
just displaying the first. In any case, it is the Home’s responsibility to know which spaces
(other than the start space, if any) are to be loaded upon startup and returns the set to the
Controller. This is forwarded to the View, which picks the first element of the array (the start
space) and displays it for the user, setting it as the active space

Figure 5.12-4: Sequence Diagram “Initialize Space”. Personal Object Space.

5.12.2.3.3 Sequence Diagram “Move Object”
Figure 5.12-5 shows the sequence diagram for the Low-level Design Component
Responsibilities corresponding to the System Responsibility POS_SR-2 Move Object.

This sequence starts when the user moves an object from one point in the screen to another.
The View captures the raw value of the exact point of origin (from_placement_data[]) and the
exact point where the user released the mouse button (to_placement_data[]). This information
is sent to the Controller who locates the current active spaces and orders it to move the
selected object and gives it the too raw screen coordinates.

The active space calls unto its Positioning Scheme and orders it to calculate the Position
(object) for that raw screen data, corresponding to the point of destination (where the object
was ‘dropped’ by the user). The Positioning Scheme calculates the Position and returns it to

211

the active Space, which locates the Placeholder at that Position. If an object is currently
residing in that Placeholder, it is taken out (held) and the new object is moved in.

The state of the space is now the following: The original placeholder for the object being
moved is empty, the destination placeholder contains the moved object, any object that was
there previously is on hold, and the space still needs to be returned to a stable state.

The following step is for the Space to order the PositioningScheme to calculate the Position
for the original Placeholder. With this information, the Space is now capable of rearanging
itself according to its internal rules (including returing to a state of stability, and placing the
held object where appropriate).

Once the space is done rearranging itself, it notifies the View, which updates the display to
reflect the changes.

Figure 5.12-5: Sequence Diagram “Move Object”. Personal Object Space

5.12.2.3.4 Sequence Diagram “Add Object”
Figure 5.12-6 shows the sequence diagram for the Low-level Design Component
Responsibilities corresponding to the System Responsibility POS_SR-3 Add Object.

This sequence starts when the user selects the option to add a new object to the space. The
View captures the call and forwards it, along with the object and the id of the space to which
it’s being added, to the Controller. The Controller finds the space by its id and orders it to add
the object into itself.

Being given no specific location where to add the object, the Space determines its default
Placeholder and adds the object to it, rearanging the rest of its objects accordingly. Once that
is done, the Space notifies the View, which updates itself to reflect the changes.

212

Figure 5.12-6: Sequence Diagram “Add Object”. Personal Object Space.

5.12.2.3.5 Sequence Diagram “Delete Object”
Figure 5.12-7 shows the sequence diagram for the Low-level Design Component
Responsibilities corresponding to the System Responsibility POS_SR-4 Delete Object.

This sequence starts when the user chooses an object within a space and selects the option to
delete it. The View captures this call and, along with the id of the current active space, the
object being deleted and its location (placement_data) forwards it to the controller. The
controller finds the Space and orders it to delete the object located at that placement_data.
With this information, the space first orders the PositioningScheme to calculate the Position
corresponding to that placement_data. With that Position, the Space can locate the
Placeholder that is being affected, and order it to empty itself.

After emptying the Placeholder, the Space rearanges itself around the change and notifies the
View once its done. The View, updates itself to reflect the new state of the Space.

Figure 5.12-7: Sequence Diagram “Delete Object”. Personal Object Space.

213

5.12.2.3.6 Sequence Diagram “Go to space”
Figure 5.12-8 shows the sequence diagram for the Low-level Design Component
Responsibilities corresponding to the System Responsibility POS_SR-5 Manage Multiple
Spaces.

This sequence begins when the user choses to go to a diferent space from the one he’s
currently in. Two possibilities arise, depending on whether or not all spaces were loaded onto
memory during application start up. If they were (else portion of the alt box in Figure 5.12-7),
the View has direct access to them, and simply makes the space selected by the user be the
new active space, and displays it.

If during application startup only the initial space was loaded, then when switching to a new
space, the system must locate that space first. The call to load the new space is forwarded to
the Controller who asks the Home class to locate the space corresponding to the given id. The
Home locates the Space and orders it to load all of its objects, while returning it to the View
through the Controller.

Having access now to the new Space, the View makes it the active space and displays it on
screen, along with all of its objects.

Figure 5.12-8: Sequence Diagram “Go to space”. Personal Object Space.

214

!"#$%&'()* +#,-.#%-/0(

6.1 Introduction
Our proposed Usability-oriented Software Development Process and the Usability Guidelines
for Software Development were tested across multiple projects to prove the proposed
hypotheses regarding their usefulness. This chapter presents the experiments that were
conducted and an analysis of their results, using an adaptation of the Common Industry
Format (CIF) for Usability Test Reports [29].

6.2 Hypothesis
As described in Chapter 3, the hypothesis for this work proposes that:

“Applying the proposed usability-oriented software development process will:
• Reduce development time of the usability-related functionalities and, as a consequence,

of the project over all,
• improve the quality of resulting software designs,
• facilitate the inclusion of functional usability features into software projects by reducing

the perceived complexity of usability features by developers,
over applying the process partially and over not applying it altogether.”

This general hypothesis is further broken down as follows for accurate validation:

“Applying the proposed usability-oriented software development process in full will:
H1. Reduce development time of the usability-related functionalities and, as a

consequence, of the project over all, over applying the process partially,
H2. reduce development time of the usability-related functionalities and, as a

consequence, of the project over all over not applying the process,
H3. improve the quality of resulting software designs, over applying the process partially,
H4. improve the quality of resulting software designs, over not applying the process,
H5. facilitate the inclusion of functional usability features into software projects by

reducing the perceived complexity of usability features by developers, over applying
the process partially,

H6. facilitate the inclusion of functional usability features into software projects by
reducing the perceived complexity of usability features by developers, over not
applying the process.

215

The proposed null hypothesis is the following:

“When applying the proposed usability-oriented software development process:
• development time is not reduced,
• quality of the resulting designs is not improved,
• perceived complexity of usability features is not reduced,

over applying the process partially and over not applying it altogether.”

which is similarly broken down as follows:

“When applying the proposed usability-oriented software development process:
H1_0. Development time is not reduced over applying the process partially,
H2_0. development time is not reduced over not applying the process,
H3_0. quality of the resulting designs is not improved over applying the process partially,
H4_0. quality of the resulting designs is not improved over not applying the process,
H5_0. perceived complexity of usability features is not reduced over applying the process partially,
H6_0. perceived complexity of usability features is not reduced over not applying the process,

Section 6.3 below describes the methods that were used to test the above hypotheses. Section
6.4 explains the variables that were observed and how data for them was collected. Section
6.5 describes the subjects who participated in the experiments, followed by the data that was
collected, in Section 6.6. Section 6.7 elaborates the analysis of these data and finally, in
section 6.8, the results and findings of the validation process as a whole.

6.3 Methods
To test the proposed hypotheses, nine subjects were assigned to develop the following
software applications:

1. An online task manager: An application to manage to-do lists with the possibility of
sharing and scheduling tasks, as well as organizing them visually.

2. A console for a home automation system: An application to operate a simulated
network of sensors and actuators that controlled various features of a home
environment (lights, air conditioner, blinds, garage door, etc.) in real time.

3. An auction site: A web application with basic auction functionalities.

These proposed projects were designed to be of similar complexities. See Appendix 9.4 for
the full Software Requirement Specification (SRS) of each project.

The three SRSs for the three proposed projects already included usability requirements
freeing subjects from the task of eliciting usability aspects in these experiments (first step of
the proposed process), as the effectiveness of the elicitation guidelines has already been
proven in [32].

With the focus on the remaining phases of the proposed process, each subject was expected to
analyze, design and implement their software applications, including all usability aspects
already present in the SRSs.

Each project was assigned to three different subjects, numbered PiSj (for Project ‘i’, Subject
‘j’). Each subject in each project was provided with the same SRS for that project as follows:

• Subjects numbered “1” for each project (the PiS1s), were asked to develop the project
without any knowledge of the usability-oriented software development process.

216

• Subjects numbered “2” for each project (the PiS2s), were provided only with
information regarding the elicitation and analysis phase of the usability-oriented
software development process to develop their projects. In other words, they were was
kept from all information about the design phase of the process (including the software
design-specific parts of the software usability guidelines).

• This would provide these subjects with clear guidance on how to perform the analysis of
their project and an overview of the responsibilities that their system was expected to
fulfill. They were, however, given no direction on how to design such responsibilities
and were asked to do so to the best of their abilities.

• Subjects numbered “3” for each project (the PiS3s), were asked to develop their projects
applying the full usability-oriented development process and, as such, were provided
with the full software usability guidelines.

All teams developed their projects iteratively, covering the analysis, design, implementation
and testing phases in each iteration. They produced analysis artifacts such as use case models
and extended use cases, and design artifacts such as class and collaboration diagrams. Once
finished, the results were analyzed as explained in the following sections. The results of each
of these projects can be found on the digital media support that accompanies this work.

6.4 Variables
In the previous section we have established our independent variable to be “type of process
used” in regards to our proposed process (i.e. full, partial or none). Furthermore, the
following dependent variables were observed in each project in order to test the proposed
hypotheses: development time, perceived complexity of the usability features and resulting
design quality. Sections 6.4.1, 6.4.3 and 6.4.2 describe these metrics and how measurements
were made in each case.

6.4.1 Development Time
Subjects were asked to closely measure the time they spent on the different phases of
development. Specifically, they were asked to keep track of the amount of time they spent
performing activities that pertained to any of the usability features.

These measurements would allow us to determine if a significant amount of time is saved
during development of the usability-related functionality due to the application of the
proposed process. Such a reduction would also imply, given that no other factors are altered, a
reduction in the over-all development time for the project as a whole.

Development time is a ratio variable.

6.4.2 Resulting design quality
Software design quality can be defined by multiple factors, as described in [1][21] and [37].
The attributes that were chosen on which to evaluate projects, listed below, were selected
from among the many proposed by [1] due to their relevance to our project and their ease of
evaluation. Wide variations in these simple measurements among projects provide a general
idea of the impact that the proposed process may have over design quality. The attributes are:

• Notation correctness
• Adequate responsibility allocation
• Diagram readability

After each project was finished, the resulting designs were evaluated by rating the
aforementioned aspects on a 1 to 5 interval scale [47], where all pairs of adjacent scores are

217

equidistant. This means that a design scoring “5” is better than one scoring “4” in the same
amount that one scoring “2” is better than another scoring “1”.

This evaluation was performed blindly by removing the name of the student (along with any
other identifying information) from the designs, prior to evaluation.

6.4.3 Perceived complexity of usability mechanisms
In order to gauge the complexity of the usability mechanisms as perceived by the test
subjects, they were asked to answer the following two questions on a 1-to-5 interval scale
[47] upon completion of their projects:

“How would you rank this feature in terms of the complexity you encountered during the:

1. Design phase?”
2. Implementation phase?”

To reinforce the notion that all five possible marks are equidistant, this questionnaire was
presented to subjects along with a visual analog scale, where the spacing between response
levels was clearly indicated as equally spaced points in a line. Furthermore, they were
presented with a brief description of the scale prior to filling out the questionnaire and an
relatable example explaining that while a guideline with a complexity of “4” is not
necessarily “twice as complex” as one with a complexity of “2”, the first is more complex
than the second in the same amount as two guidelines scoring, for example, “5” and “3”.

Though the focus of this qualitative evaluation is design, a question about implementation
was included in the questionnaire. This was done to determine whether designs produced
when applying the proposed process helped developers beyond just that phase, transferring its
benefits into the implementation phase as well by making the code that resulted from these
designs seem less daunting to developers.
Answers to these questions would help to determine if there is a significant difference in how
the features (and, by extension, usability in general within the scope of their projects) is
perceived by developers, depending on whether they applied the proposed process in full,
partially or not at all.

6.5 Subjects
The pool of subjects chosen to test the proposed hypotheses was comprised of final-year BS
students as well as first-year master students of Software Engineering at the UPM School of
Computing. As shown in Table 6.5-1, the subjects were chosen to have similar levels of
knowledge in programming and software engineering, having attended the same school and
taken most of the same courses related to these areas of interest. They were also chosen to
have none to minimal work experience in the field.

Table 6.5-1 Characteristics and capabilities of the test subjects
Subject Gender UPM

BS Prog. Courses
UPM

BS SE Courses
UPM

MSc SE Courses
Work Experience

P1S1(NP) M Yes Yes Yes No
P1S2(PP) F Yes Yes No No
P1S3(FP) M Yes Yes No < 1 year
P2S1(NP) F Yes Yes Yes No
P2S2(PP) M Yes Yes No < 1 year
P2S3(FP) M Yes Yes No No
P3S1(NP) M Yes Yes Yes No
P3S2(PP) M Yes Yes No 2 years
P3S3(FP) M Yes Yes No < 1 year

218

6.6 Data
The following sections present a synopsis of the data that was collected during
experimentation for each of the variables presented in section 6.4

6.6.1 Development time data
Table 6.6-1 shows the average total times spent by subjects in developing the usability-related
functionality for their assigned projects. Rows represent each development phase of the
project, namely analysis, design, implementation and testing. Columns designate the degree
to which the proposed process that was applied: full process (FP), partial process (PP) or none
at all (NP).

Table 6.6-1 Average total time (in min) to develop all usability-related functionality
 NP PP FP
Analysis 250.00 215.33 247.33
Design 536.00 365.67 207.75
Implementation 771.67 579.67 334.71
Testing 408.67 206.67 23.67
TOTAL 1,966.33 1,367.33 813.46

The values above were obtained by averaging and adding up the times that the subjects spent,
during each of these phases, in developing the software functionality related to each of the
functional usability features. Table 6.6-2 to Table 6.6-5 show these source values. These
values are the times spent by subjects during the design of the parts of their projects related to
the usability features.

The first three columns in each section represent the project (P1, P2, P3), followed by the
mean (avg) and standard deviation (stdv) for each type of process that was applied (NP, PP,
FP). At the bottom of each table is the sum of these averages, shown above, in Table 6.6-1.

Table 6.6-2 Time (in min) spent by subjects in analyzing the usability-related functionalities of their project
 NP

(P1)
NP
(P2)

NP
(P3)

NP
avg

NP
stdv

PP
(P1)

PP
(P2)

PP
(P3)

PP
avg

PP
stdv

FP
(P1)

FP
(P2)

FP
(P3)

FP
avg

FP
stdv

Abort 10 30 27 22.33 10.79 34 25 30 29.67 4.51 10 25 32 22.33 11.24
Undo 10 50 30 30.00 20.00 30 18 20 22.67 6.43 90 20 15 41.67 41.93
Comm 13 45 45 34.33 18.48 10 22 20 17.33 6.43 10 25 20 18.33 7.64
Prog 12 40 30 27.33 14.19 35 21 15 23.67 10.26 72 20 25 39.00 28.69
Status 13 15 12 13.33 1.53 19 25 18 20.67 3.79 15 20 15 16.67 2.89
Warn 10 20 39 23.00 14.73 5 18 25 16.00 10.15 30 15 20 21.67 7.64
Help 13 15 31 19.67 9.87 5 13 10 9.33 4.04 19 15 13 15.67 3.06
Fav 15 20 21 18.67 3.21 15 10 18 14.33 4.04 30 8 14 17.33 11.37
POS 17 30 20 22.33 6.81 10 25 30 21.67 10.41 19 15 28 20.67 6.66
Pref 13 18 28 19.67 7.64 5 15 35 18.33 15.28 13 12 32 19.00 11.27
SbS 18 20 20 19.33 1.15 20 25 20 21.67 2.89 18 5 22 15.00 8.89
TOTAL 250.0 215.3 247.3

Table 6.6-3 Time (in min) spent by subjects in designing the usability-related functionalities of their project
 NP

(P1)
NP
(P2)

NP
(P3)

NP
avg

NP
stdv

PP
(P1)

PP
(P2)

PP
(P3)

PP
avg

PP
stdv

FP
(P1)

FP
(P2)

FP
(P3)

FP
avg

FP
stdv

Abort 10 120 29 53.00 58.80 30 107 35 57.33 43.09 40 20 20 26.67 11.55
Undo 81 150 120 117.00 34.60 43 80 45 56.00 20.81 43 30 25 32.50 9.01
Comm 70 93 85 82.67 11.68 25 25 35 28.33 5.77 0 30 20 16.67 15.28
Prog 35 100 70 68.33 32.53 27 70 50 49.00 21.52 23 35 25 27.50 6.61
Status 22 35 7 21.33 14.01 23 28 31 27.33 4.04 13 25 25 20.83 7.22
Warn 40 35 45 40.00 5.00 20 20 42 27.33 12.70 21 20 30 23.75 5.45
Help 15 10 26 17.00 8.19 23 18 20 20.33 2.52 3 20 15 12.50 9.01
Fav 10 30 14 18.00 10.58 30 15 14 19.67 8.96 6 10 20 12.08 7.11
POS 65 40 55 53.33 12.58 26 32 30 29.33 3.06 34 10 22 21.92 11.88
Pref 50 26 29 35.00 13.08 23 25 30 26.00 3.61 8 5 10 7.50 2.50
SbS 15 38 38 30.33 13.28 23 30 22 25.00 4.36 3 5 10 5.83 3.82
TOTAL 536.0 365.7 207.8

219

Table 6.6-4Time (in min) spent by subjects in implementing the usability-related functionalities of their project
 NP

(P1)
NP
(P2)

NP
(P3)

NP
avg

NP
stdv

PP
(P1)

PP
(P2)

PP
(P3)

PP
avg

PP
stdv

FP
(P1)

FP
(P2)

FP
(P3)

FP
avg

FP
stdv

Abort 5 180 20 68.33 97.00 30 90 15 45.00 39.69 30 45 8 27.67 18.61
Undo 40 300 90 143.33 137.96 120 90 150 120.00 30.00 71 47 32 50.03 19.93
Comm 10 140 110 86.67 68.07 60 45 53 52.67 7.51 0 57 10 22.22 30.25
Prog 30 270 90 130.00 124.90 90 60 60 70.00 17.32 30 47 15 30.56 15.84
Status 40 60 5 35.00 27.84 65 85 18 56.00 34.39 46 50 12 35.90 20.81
Warn 20 105 65 63.33 42.52 30 60 31 40.33 17.04 29 40 10 26.19 15.14
Help 5 120 25 50.00 61.44 35 50 22 35.67 14.01 6 40 10 18.57 18.68
Fav 5 34 120 53.00 59.81 20 20 60 33.33 23.09 29 10 20 19.52 9.29
POS 40 90 155 95.00 57.66 105 60 43 69.33 32.04 151 50 20 73.81 68.87
Pref 10 45 34 29.67 17.90 35 30 22 29.00 6.56 11 30 10 17.14 11.16
SbS 5 25 22 17.33 10.79 20 45 20 28.33 14.43 14 20 5 13.10 7.57
TOTAL 771.7 579.7 334.7

Table 6.6-5 Time (in min) spent by subjects in testing the usability-related functionalities of their project
 NP

(P1)
NP
(P2)

NP
(P3)

NP
avg

NP
stdv

PP
(P1)

PP
(P2)

PP
(P3)

PP
avg

PP
stdv

FP
(P1)

FP
(P2)

FP
(P3)

FP
avg

FP
stdv

Abort 20 40 10 23.33 15.28 10 10 5 8.33 2.89 2 1 3 2.00 1.00
Undo 60 60 45 55.00 8.66 10 15 45 23.33 18.93 5 1 5 3.67 2.31
Comm 30 45 45 40.00 8.66 10 10 45 21.67 20.21 1 1 1 1.00 0.00
Prog 10 130 45 61.67 61.71 50 5 45 33.33 24.66 1 3 1 1.67 1.15
Status 10 40 3 17.67 19.66 10 5 25 13.33 10.41 2 1 2 1.67 0.58
Warn 45 55 30 43.33 12.58 10 5 15 10.00 5.00 1 1 2 1.33 0.58
Help 10 20 8 12.67 6.43 10 5 15 10.00 5.00 1 1 2 1.33 0.58
Fav 10 45 50 35.00 21.79 10 5 30 15.00 13.23 1 1 1 1.00 0.00
POS 100 60 60 73.33 23.09 80 30 45 51.67 25.66 10 1 10 7.00 5.20
Pref 20 30 30 26.67 5.77 10 5 25 13.33 10.41 2 1 2 1.67 0.58
SbS 10 30 20 20.00 10.00 10 5 5 6.67 2.89 2 1 1 1.33 0.58
TOTAL 408.7 206.7 23.7

6.6.2 Design quality data
Table 6.6-6 shows the mean scores of the designs of subjects who didn’t apply the proposed
process (NP), those who applied it partially (PP) and those who applied it in full (FP).

Table 6.6-6 Average quality scores (scale of 1-to-5) for resulting designs for all projects
 NP PP FP
Adequate Responsibility Allocation (ARA) 2.33 2.33 5.00
Diagram Readability (DR) 3.33 2.67 4.67
Notation Correctness (NC) 4.00 3.67 4.67
Over-all quality score (avg) 3.22 2.89 4.78

The data above was obtained by averaging the scores obtained by the designs of each subject
(three per type of process applied) as shown in Table 6.6-7.

Table 6.6-7 Quality score (1 min, 5 max) of each project’s design
 NP

(P1)
NP
(P2)

NP
(P3)

NP
avg

NP
stdv

PP
(P1)

PP
(P2)

PP
(P3)

NP
avg

NP
tdv

FP
(P1)

FP
(P2)

FP
(P3)

NP
avg

NP
stdv

ARC 2 2 3 2.33 0.58 2 3 2 2.33 0.58 5 5 5 5.00 0.00
DR 3 3 4 3.33 0.58 4 2 2 2.67 1.15 4 5 5 4.67 0.58
NC 4 4 4 4.00 0.00 4 4 3 3.67 0.58 5 5 4 4.67 0.58
avg 3.22 2.89 4.78
stdv 0.83 0.93 0.44

6.6.3 Perceived complexity data
Table 6.6-8 shows the averages of the answers to questions 1 and 2 of the questionnaires
shown in section 6.4.3, namely ranking the complexity that they found when designing and
implementing the usability features. The row labeled “Design” represents the average of the
1-to-5 ranking given by subjects about how complex they found designing the usability
features, while the “Implementation” row shows their answers regarding implementation of
the features. The columns represent the type of process that was used, NP for no process, PP
for the partial version of the process and FP for the full process.

220

Table 6.6-8 Average perceived complexity of all functional usability features as reported by subjects who didn’t apply
the proposed process (NP), who applied a partial process (PP) and who applied the full process (FP)

 Subjects who didn’t apply the
process (NP)

Subjects who applied the partial
process (PP)

Subjects who applied the full
process (FP)

Design 3.32 2.70 1.73
Implementation 3.33 2.62 1.76
avg 3.33 2.66 1.74

The data in Table 6.6-8 was obtained by averaging the subjects’ scores of all functional usability features. These
averages, as well as the individual scores given for each feature are shown in Table 6.6-9 and

Table 6.6-10. The first three columns in each section represent a project (P1, P2, P3),
followed by the mean (avg) and standard deviation (stdv) for each type of process that was
applied (NP, PP, FP). At the bottom of each table is the average across all features (shown in
Table 6.6-8) along with their standard deviations.

Table 6.6-9 Complexity to implement each feature (on a 1-5 scale) as perceived by each subject
 NP

(P1)
NP
(P2)

NP
(P3)

NP
avg

NP
stdv

PP
(P1)

PP
(P2)

PP
(P3)

PP
avg

PP
stdv

FP
(P1)

FP
(P2)

FP
(P3)

FP
avg

FP
stdv

Abort 3 2 4 2.77 1.20 2 2 4 2.67 1.15 2 1 2 1.67 0.58
Undo 4 3 4 3.75 0.48 4 3 4 3.68 0.59 3 4 3 3.33 0.58
Comm 4 3 3 3.35 0.61 4 3 2 3.00 1.00 1 1 2 1.33 0.58
Prog 4 3 3 3.42 0.56 3 3 3 2.90 0.17 3 2 1 2.00 1.00
Status 4 2 2 2.55 1.31 3 2 2 2.23 0.40 2 4 2 2.67 1.15
Warn 3 2 3 2.43 0.74 1 3 4 2.78 1.34 1 3 1 1.67 1.15
Help 1 3 1 1.73 1.27 1 2 2 1.78 0.38 1 1 1 1.00 0.00
Fav 4 4 3 3.68 0.59 1 1 3 1.78 1.07 1 1 1 1.00 0.00
POS 5 5 5 5.13 0.23 5 4 4 4.47 0.81 3 2 2 2.33 0.58
Pref 4 5 2 3.68 1.53 3 2 3 2.57 0.51 1 1 1 1.00 0.00
SbS 4 4 4 4.02 0.03 1 2 2 1.78 0.38 1 1 1 1.00 0.00
AVG 3.32 2.70 1.73
STDV 1.16 1.05 0.94

Table 6.6-10 Complexity to implement each feature (on a 1-5 scale) as perceived by each subject
 NP

(P1)
NP
(P2)

NP
(P3)

NP
avg

NP
stdv

PP
(P1)

PP
(P2)

PP
(P3)

PP
avg

PP
stdv

FP
(P1)

FP
(P2)

FP
(P3)

FP
avg

FP
stdv

Abort 4 3 4 3.68 0.59 3 4 3 3.23 0.68 2 3 2 2.33 0.58

Undo 4 3 4 3.67 0.58 5 3 3 3.80 1.39 2 2 2 2.00 0.00

Comm 4 3 3 3.35 0.61 4 3 2 3.00 1.00 2 1 1 1.33 0.58

Prog 5 4 3 4.13 1.21 5 2 4 3.80 1.71 2 5 1 2.67 2.08

Status 4 1 2 2.35 1.55 3 1 2 1.90 0.85 1 2 3 2.00 1.00

Warn 3 2 3 2.57 0.51 3 2 3 2.57 0.51 1 3 2 2.00 1.00

Help 1 2 2 1.67 0.58 1 1 1 1.12 0.20 1 1 1 1.00 0.00

Fav 4 3 4 3.68 0.59 1 3 2 2.12 0.83 2 1 1 1.33 0.58

POS 5 5 5 5.00 0.00 3 4 3 3.23 0.68 3 2 2 2.33 0.58

Pref 3 4 2 2.90 1.01 3 2 2 2.23 0.40 1 1 1 1.00 0.00

SbS 4 3 4 3.68 0.59 1 2 2 1.78 0.38 1 1 2 1.33 0.58

AVG 3.33 2.62 1.76
STDV 1.11 1.12 0.90

6.7 Analysis
This section presents the results of comparing the averages obtained for the metrics presented
in section 6.6, namely: development time, design quality and perceived complexity. It
contrasts the results of using the full usability-oriented process (FP) versus not using it (NP)
and using it partially (PP) for all three metrics, in order to test the hypotheses presented in
section 6.2.

This analysis was performed by executing Kruskal-Wallis (KW) tests over the
aforementioned data groups (NP, PP and FP) for each metric, globally and per development
phase, with a set significant level of 0.05 and a confidence interval of 95%. Further (adjusted)

221

pairwise testing was conducted for every case in which the result of KW was significant, to
determine exactly which of the groups were different from one another.

The hypotheses for this work focus on comparing the use of the FP against using NP and PP.
While they are not concerned with comparing the PP to NP, the pairwise KW test provides p-
values for all combinations (FP-NP, FP-PP and PP-NP), so they will all be presented and
discussed in this section.

Additional testing through the Tamhane test was performed in relevant cases.

Section 6.7.1 presents the analysis of the development time data, section 6.7.2 for the design
quality data, and finally, section 6.7.3 analyzes the data for perceived complexity of the
functional usability features.

6.7.1 Development time data analysis
The next section presents an analysis for the development time data for the entire project
development, followed by an analysis for the development time data over the individual
project phases: analysis, design, implementation and testing.

6.7.1.1 Global Analysis
Figure 6.7-1 shows the average total time taken by subjects to develop the usability related
parts of their projects (analysis, design, implementation and testing phases combined).

0

500.00

1,000.00

1,500.00

2,000.00

NP PP FP

Figure 6.7-1 Average time to develop the usability of a project.

The subjects who used NP took longer in average than subjects who used a PP, who, in turn,
took longer to develop their full projects than their counterparts with the FP.

A Kruskal Wallis test (applied over all 395 data points from Table 6.6-2 to Table 6.6-5,
separated in the three groups, NP, PP and FP) shows that the means differ across the groups
with a significance of p < 0.05. Figure 6.7-2 illustrates these results.

222

Figure 6.7-2 KW test results for comparison of means across groups for total development time of usability features

Even if there is proof of difference in means, it must be determined which groups were
different from each other within the three. For this purpose, the KW test was performed for
pair-wise comparisons. Figure 6.7-3 illustrates the results of this test, which show that the
differences in means are statistically different only for NP vs. FP and PP vs. FP, but no
evidence of a statistically significant difference in means exists for the PP-NP pair.

Figure 6.7-3 KW test results for pairwise comparison of means for total development time of usability features

Additionally, a Tamhane test applied over this data also shows statistically significant
differences between our focus pairs, FP-NP and FP-PP, as in Table 6.7-1. Furthermore,
though with a lower confidence, the FP-PP pair is also confirmed different through this test.

223

Table 6.7-1 Tamhane test results for pairwise comparison of means for total development time of usability
(I) process (J) process Mean Difference (I-J) Std. Error Sig. 95% Confidence Interval

Lower Bound Upper Bound

NP
PP 13.54436* 4.61067 .011 2.4437 24.6450

FP 26.17424* 4.40191 .000 15.5638 36.7847

PP
NP -13.54436* 4.61067 .011 -24.6450 -2.4437
FP 12.62989* 2.81651 .000 5.8588 19.4009

FP
NP -26.17424* 4.40191 .000 -36.7847 -15.5638

PP -12.62989* 2.81651 .000 -19.4009 -5.8588
*. The mean difference is significant at the 0.05 level.

6.7.1.2 Analysis per development phase
The next step in the analysis is to determine if such differences in terms of development time
exist not only over-all, but also within each project phase, namely analysis, design,
implementation and testing. Figure 6.7-4 shows the time data in Figure 6.7-1 from Table
6.6-1 discriminated by development phase.

0

200.0

400.0

600.0

800.0

Analysis Design Implementation Testing

Figure 6.7-4 Average time (in min) to develop all usability-related functionality.

For all but the Analysis phase, subjects who used the FP spent less time in average than their
NP and PP counterparts.

Four separate Kruskal-Wallis tests performed on this data (each for 99 data points) confirm
this observation. Table 6.7-2 presents the p-values obtained when applying this test.

Table 6.7-2 p-values of Kruskal-Wallis test comparing the average time spent in each phase for all three groups
 analysis design implementation testing
p-value 0.778 0.000* 0.006* 0.000*

These results show no evidence that the three means (NP, PP and FP) are statistically
different for the analysis phase. For all other development phases, the test shows that the
means are indeed different among the groups.

In order to determine exactly which groups are different among the three in each case, the
KW test was executed for pairwise comparisons for the three development phases that proved
different.

For the design phase, Figure 6.7-5 shows that the groups that are different are FP vs. PP (i.e.
developers took more time to design when using the partial process than those who used the
full process) and FP vs. NP (developers who didn’t apply the process took longer to design
than those who used the full process). Furthermore, no statistically significant difference in
means was found for PP vs. NP.

224

Figure 6.7-5 Pairwise comparisons of Kruskal Wallis test for Design phase

In the case of implementation and testing the situation was the same as shown in Figure 6.7-6
and Figure 6.7-7: the statistically significant differences in means existed between FP and PP,
and also between FP and NP, but no evidence was found for the case of PP vs. NP.

Figure 6.7-6 Pairwise comparisons of Kruskal Wallis test for Implementation phase

225

Figure 6.7-7 Pairwise comparisons of Kruskal Wallis test for Testing phase

Additionally, a Tamhane test was performed over these same data and confirms the results of
these four KW tests, as shown in Table 6.7-3. The Tamhane test further shows a statistically
significant difference between the PP and NP pair for the testing phase, which had scored
only slightly above the confidence threshold for the KW test.

Table 6.7-3 Tamhane results for pairwise comparison of means for development time of usability by phase
Analysis

(I) process (J) process Mean Difference (I-J) Std. Error Sig. 95% Confidence Interval

Lower Bound Upper Bound

NP
PP 3.15152 2.44303 .492 -2.8505 9.1535

FP .24242 3.50470 1.000 -8.3840 8.8689

PP
NP -3.15152 2.44303 .492 -9.1535 2.8505
FP -2.90909 3.26255 .758 -10.9844 5.1662

FP
NP -.24242 3.50470 1.000 -8.8689 8.3840
PP 2.90909 3.26255 .758 -5.1662 10.9844

Design
(I) process (J) process Mean Difference (I-J) Std. Error Sig. 95% Confidence Interval

Lower Bound Upper Bound

NP
PP 15.48485 7.15736 .103 -2.2112 33.1809

FP 29.75758* 6.60747 .000 13.2545 46.2606

PP
NP -15.48485 7.15736 .103 -33.1809 2.2112
FP 14.27273* 3.88458 .002 4.6838 23.8617

FP
NP -29.75758* 6.60747 .000 -46.2606 -13.2545
PP -14.27273* 3.88458 .002 -23.8617 -4.6838

Implementation
(I) process (J) process Mean Difference (I-J) Std. Error Sig. 95% Confidence Interval

Lower Bound Upper Bound

NP
PP 17.45455 14.01910 .525 -17.3383 52.2474

FP 39.69697* 13.71485 .018 5.5609 73.8330

PP
NP -17.45455 14.01910 .525 -52.2474 17.3383
FP 22.24242* 7.48933 .013 3.8687 40.6161

FP
NP -39.69697* 13.71485 .018 -73.8330 -5.5609
PP -22.24242* 7.48933 .013 -40.6161 -3.8687

226

Testing
(I) process (J) process Mean Difference (I-J) Std. Error Sig. 95% Confidence Interval

Lower Bound Upper Bound

NP
PP 18.36364* 5.65767 .006 4.4368 32.2905
FP 35.00000* 4.72406 .000 23.1082 46.8918

PP
NP -18.36364* 5.65767 .006 -32.2905 -4.4368
FP 16.63636* 3.16344 .000 8.6805 24.5923

FP
NP -35.00000* 4.72406 .000 -46.8918 -23.1082

PP -16.63636* 3.16344 .000 -24.5923 -8.6805
*. The mean difference is significant at the 0.05 level.

The following sections break down each development phase into individual functional
usability features and presents they analysis of the time data for each of them, separately.

6.7.1.3 Analysis phase by feature
Figure 6.7-8 presents the average time spent by subjects to perform analysis of the usability
related parts of their projects, broken down by usability feature.

0

15.0

30.0

45.0

60.0

Abort Undo Comm Prog Status Warn Help Fav POS Pref SbS

Figure 6.7-8 Average time spent on analysis, per functional usability feature

In line with the results of the KW test performed over the analysis phase as a whole shown
above, there appears to be no discernible difference among the times spent in analysis for
each of the types of process used, save for the Undo and Progress features. For these features,
the average time spent by those using the FP appears to be greater than for those using a PP or
NP, and the Commands Aggregation feature, for which the average time spent by the subject
with NP appears marginally larger.

To determine if these differences are statistically significant at the desired confidence level,
eleven KW tests were performed, one per usability feature, over the time averages for
analysis (3 data points per average).

Table 6.7-4 shows that the resulting p-values of these tests provide no evidence of statistically
significant differences among the means for any of the features.

Table 6.7-4 p-values of KW tests comparing the average time spent on each feature during analysis of projects
 Abort Undo Comm Prog Status Warn Help Fav POS Pref SbS
pvalue 0.579 0.967 0.421 0.837 0.073 0.739 0.107 0.505 0.864 0.904 0.380

6.7.1.3.1 Design phase by feature
Figure 6.7-9 presents the average time spent by subjects to design the usability-related parts
of their projects, broken down by usability feature.

227

0

37.5

75.0

112.5

150.0

Abort Undo Comm Prog Status Warn Help Fav POS Pref SbS

Figure 6.7-9 Average time spent on design, per functional usability feature

In line with the results of the KW test performed over the design phase as a whole, there
appears to be a discernible difference among the times spent in analysis for each of the types
of process used, for most of the features.

The cluster bars for Abort, Undo, Commands Aggregation, Progress, Personal Object Space,
Preferences and Step by Step features in Figure 6.7-9, all show that subjects using NP or a PP
spent considerably more time in average than their peers who used a FP. In the case of
Warning, subjects who used a FP spent less time in average than only their NP counterparts.

In order to determine if these differences are statistically significant, KW tests were
performed over the time averages (3 data points per average) for the design phase. Table
6.7-5 presents the results of these tests.

Table 6.7-5 p-values of KW test comparing the mean time spent on each functional usability feature during the design
phase of the projects

 Abort Undo Comm Prog Status Warn Help Fav POS Pref SbS
pvalue 0.558 0.032* 0.050* 0.118 0.584 0.182 0.438 0.435 0.061†8 0.051† 0.059†

In contrast with the p-values obtained for the design phase as a whole, more than half of the
p-values obtained for the mechanisms individually present no evidence of difference in
means. Those that do are a subset of the group mentioned above, where the graphic suggested
a decrease in time for the subjects using the FP when compared to the other two. These
resulting p-values are shown in Table 6.7-5.

For the Undo, Commands Aggregation, Personal Object Space, Preferences and Step by Step
features, the KW tests showed that average time spent designing it when using no process was
significantly larger than when using the full process, with a confidence factor of over 95%.

For these cases which resulted in significant differences, adjusted pairwise comparisons were
performed and its results shown in Table 6.7-6. In the case of Undo and Commands
Aggregation, the differences were found between FP and NP. For Preferences and Step by
Step, the differences were found between PP and FP.

Table 6.7-6 p-values of KW test comparing the mean time spent on each functional usability feature during the design
phase of the projects

 Abort Undo Comm Prog Status Warn Help Fav POS† Pref† SbS†
FP-NP 0.026* 0.050* 0.076* 0.179 0.215
FP-PP 0.693 1.000 0.221 0.009* 0.014*
PP-NP 0.465 0.299 1.000 0.733 0.918

8 Though the KW test for this feature scored slightly below the desired confidence value, a Tamhane test was performed to corroborate such
borderline results (that still fall well under 90% confidence, also standard in this kinds of studies) and did indeed confirm pairwise differences.

228

6.7.1.3.2 Implementation phase by feature
Figure 6.7-10 shows the average time spent by subjects during implementation .

0

37.5

75.0

112.5

150.0

Abort Undo Comm Prog Status Warn Help Fav POS Pref SbS

Figure 6.7-10 Average time spent on implementation, per functional usability feature

There’s notable difference among the times spent on the implementation for most of the
features, most prominently the Undo and Progress features, but also for Abort, Commands
Aggregation, Warning, Help and Favorites.

However, after performing KW tests there is no evidence of statistically significant
differences for any of the features, coming only close in the case of Undo and Progress
mentioned above, but ultimately below the desired confidence level of 95%.

Table 6.7-7 p-values of KW tests comparing the mean time spent on each functional usability feature during the
implementation phase of the projects

 Abort Undo Comm Prog Status Warn Help Fav POS Pref SbS
pvalue 0.925 0.161 0.315 0.146 0.430 0.393 0.670 0.725 0.864 0.429 0.325

6.7.1.3.3 Testing phase by feature
Figure 6.7-11 presents the average time spent by subjects to perform testing activities over the
usability related parts of their projects, broken down by usability feature.

0

20.0

40.0

60.0

80.0

Abort Undo Comm Prog Status Warn Help Fav POS Pref SbS

Figure 6.7-11 Average time spent on testing, per functional usability feature

In line with the results of the KW test performed over the testing phase as a whole shown at
the beginning of this section, there’s a discernible difference among the times spent in testing
for every single functional usability feature, and it is most remarkable when comparing the
NP and FP groups.

After performing the KW tests, the differences are confirmed for all features with 95%
confidence, except for Progress and Status at 90%. After performing pairwise comparisons

229

the differences were found to be between FP and NP groups in all cases except for Status,
where the adjustment for pairwise comparisons sends the p-value over 0.1 (90%).

Table 6.7-8 p-values of KW tests comparing the average time spent on each feature during the testing phase
 Abort Undo Comm Prog Status Warn Help Fav POS Pref SbS

pvalue 0.035* 0.030* 0.040* 0.061†9 0.064† 0.027* 0.035* 0.039* 0.048* 0.037* 0.028*

For these cases that resulted in significant differences, adjusted pair-wise comparisons were
performed and its results are shown in Table 6.7-9. Additionally, values marked with † were
found significant at 90% confidence

Table 6.7-9 p-values of pair-wise KW test comparing the average time spent on each feature during the testing phase
 Abort Undo Comm Prog† Status† Warn Help Fav POS Pref SbS

FP-NP 0.030* 0.025* 0.039* 0.088* 0.127 0.021* 0.030* 0.036* 0.048* 0.032* 0.032*
FP-PP 0.388 0.455 0.265 0.181 0.127 0.534 0.388 0.330 0.295 0.398 0.275
PP-NP 0.866 0.681 1.000 1.000 1.000 0.534 0.866 1.000 1.000 0.878 0.940

In every case which resulted in a significant value for the initial KW test, the pair-wise
differences were all found between FP and NP.

6.7.2 Design quality data analysis
The next section presents an analysis for the design quality data for the entire project
development, followed by an analysis for the development time data over the individual
project phases: analysis, design, implementation and testing.

6.7.2.1 Global Analysis
Figure 6.7-12 shows the average of the quality marks of the resulting designs. Each bar
represents the means of the three quality attributes that were proposed, namely adequate
responsibility allocation, diagram readability and notation correctness for UML, by type of
process applied.

0

1.25

2.50

3.75

5.00

NP PP FP

Figure 6.7-12 Average design quality marks (1-5)

The designs of subjects who used the FP scored higher than their NP and PP counterparts who
scored similarly lower.

A Kruskal Wallis test was performed to determine if these three means are significantly
different from one another, finding that they are, as a group, with a confidence of over 95%.
Figure 6.7-13 illustrates these results.

9 For the borderline cases falling bellow the preset 95% confindence level but still aceptable at 90%, further pairwise comparisons were
conducted to determine the source of the differences.

230

Figure 6.7-13 KW test results for comparison of means across groups for over-all quality scores

After determining that there is a significant difference among the three groups, it must be
determined which of the groups were different from each other within the three by performing
pairwise comparisons. Figure 6.7-14 shows that there is evidence of the means being
statistically different for NP vs. FP and PP vs. FP, but no evidence of difference in means
exists for the PP-NP pair.

Figure 6.7-14 Pairwise KW test results for comparison of means across groups for over-all quality scores

231

Additionally, a Tamhane test was applied over this data and also shows statistically
significant differences between our focus pairs, FP-NP and FP-PP. These results can be seen
in Table 6.7-10.

Table 6.7-10 Tamhane test results for pairwise comparison of means for resulting design quality

(I) process (J) process Mean Difference (I-J) Std. Error Sig. 95% Confidence Interval

Lower Bound Upper Bound

NP
PP .33333 .41574 .819 -.7760 1.4426

FP -1.55556* .31427 .001 -2.4244 -.6867

PP
NP -.33333 .41574 .819 -1.4426 .7760
FP -1.88889* .34247 .000 -2.8450 -.9327

FP
NP 1.55556* .31427 .001 .6867 2.4244
PP 1.88889* .34247 .000 .9327 2.8450

*. The mean difference is significant at the 0.05 level.

6.7.2.2 Analysis per development phase
The next step in the analysis is to determine if such differences in terms of design quality
exist not only over-all, but also within each project phase, namely analysis, design,
implementation and testing.

 Figure 6.7-15 shows the averages of the marks obtained for all three quality attributes that
were proposed, namely adequate responsibility allocation, diagram readability and notation
correctness for UML.

0

1.00

2.00

3.00

4.00

5.00

Adequate Responsibility Allocation Diagram Readability Notation Correctness (UML)

Figure 6.7-15 Averages marks obtained by the designs for the three quality attributes

The resulting designs of subjects who used the FP scored higher than their NP and PP
counterparts across the board. Furthermore, the resulting designs of NP and PP subjects are
similar in quality in all cases, with a slight advantage for those of NP subjects for diagram
readability and notation correctness.

Three Kruskal Wallis tests were performed, one for each quality attribute, to determine the
significance of these alleged difference in means for each. Table 6.7-11 shows the results.

Table 6.7-11 p-values of KW test, comparing the average time spent in each phase for all groups
 Adequate Responsibility Allocation Diagram Readability Notation Correctness (UML)
p-value 0.046* 0.059 0.086

The results of the test indicate that for the case of the adequate responsibility allocation
attribute is there evidence to claim that the difference in means are significant among the
groups. For diagram readability and notation correctness, the means cannot be proved to be
different at the desired confidence levels (though they are at 90% confidence).

232

For the adequate responsibility allocation attribute (p value 0.046), adjusted pairwise
comparisons show no difference between any of the pairs as seen in Figure 6.7-16.

Figure 6.7-16 KW pairwise comparisons for the Adequate Responsibility Allocation attribute

Though seemingly contradictory, given that the 3-way test indicates the existence of a
difference in means within the group, the adjustment factor of the pairwise KW test has, in
this case, undermined the significance of the underlying pairwise differences for the given
confidence interval. However, since a significant difference was found for the first test, it is of
interest to find its source, albeit with an alternate test. For this purpose, a Tamhane test was
performed over this same data, with the same confidence interval. Its results, shown in Table
6.7-2 indicate that the differences come from between the NP-FP and PP-FP pairs.

No evidence of difference in means was found for the NP-PP pair through this test.

Table 6.7-12 Alternate Tamhane pairwise comparisons for the Adequate Responsibility Allocation attribute

(I) process (J) process Mean Difference (I-J) Std. Error Sig. 95% Confidence Interval
Lower Bound Upper Bound

NP
PP .00000 .47140 1.000 -1.8576 1.8576
FP -2.66667* .33333 .045 -5.1941 -.1392

PP
NP .00000 .47140 1.000 -1.8576 1.8576
FP -2.66667* .33333 .045 -5.1941 -.1392

FP
NP 2.66667* .33333 .045 .1392 5.1941

PP 2.66667* .33333 .045 .1392 5.1941
*. The mean difference is significant at the 0.05 level.

6.7.3 Perceived complexity data analysis
The next section presents an analysis for the perceived complexity data for the entire project
development, followed by an analysis for the development time data over the individual
project phases: analysis, design, implementation and testing.

233

6.7.3.1 Global Analysis
Subjects were asked to rank each functional usability feature in terms of complexity during
design and implementation (see section 6.4.3). Figure 6.7-17 presents the average values
obtained in these questionnaires.

0

1.00

2.00

3.00

4.00

5.00

NP PP FP

Figure 6.7-17 Average perceived complexity of all functional usability features as reported by subjects

The subjects who used NP found all features, in average, more complex to design and
implement than those who used a PP, who, in turn found them more complex than their
counterparts who used a FP.

A Kruskal Wallis test was performed to determine if the means differ across the three groups
significantly. Figure 6.7-18 illustrates these results.

Figure 6.7-18 KW test results for comparison of means across groups for over-all perceived complexity

Once there is proof of difference in means for the group, it must be determined which groups
were different from each other. A pairwise KW test was performed, showing that the
differences in means are statistically significant only for NP vs. FP and PP vs. FP, as well as
for the PP-NP pair. These results are shown in Figure 6.7-19.

234

Figure 6.7-19 Pairwise comparisons of Kruskal Wallis test for over-all perceived complexity

Additionally, a Tamhane test applied over this same data also shows statistically significant
differences between all three pairs, as shown in Table 6.7-3.

Table 6.7-13 Tamhane test results for pairwise comparison of means for total development
(I) process (J) process Mean Difference (I-J) Std. Error Sig. 95% Confidence Interval

Lower Bound Upper Bound

NP
PP .69697* .18819 .001 .2417 1.1522

FP 1.60606* .17525 .000 1.1821 2.0301

PP
NP -.69697* .18819 .001 -1.1522 -.2417
FP .90909* .17698 .000 .4809 1.3373

FP
NP -1.60606* .17525 .000 -2.0301 -1.1821

PP -.90909* .17698 .000 -1.3373 -.4809

*. The mean difference is significant at the 0.05 level.

6.7.3.2 Analysis per development phase
The next step in the analysis is to determine if such differences in terms of perceived
complexity exist not only over-all, but also within each project phase, namely analysis,
design, implementation and testing.

Figure 6.7-20 shows the perceived complexity initially shown in Figure 6.7-17, only in this
case it’s discriminated by phase.

0

1.00

2.00

3.00

4.00

5.00

Design Implementation

Figure 6.7-20 Average perceived complexity of all functional usability features, per phase

235

Users of the FP perceived the guideline as less complex than those using NP or the PP, during
both the design and implementation phases.

Two KW tests was performed on these averages, one for each group, confirming that that
these differences in average perception of complexity are indeed statistically different, as
shown by the p-values presented in Table 6.7-14.

Table 6.7-14 p-values for KW test performed over the perceived confidence means of all groups
 Design Implementation
p-value 0.000* 0.000*

To determine which groups are different among the three in both cases, the KW test was
executed for pairwise comparisons.

For both the design and implementation questions, Figure 6.7-21 and Figure 6.7-22 show
respectively that the groups that are different are FP vs. PP and FP vs. NP. Furthermore, no
statistically significant difference in means was found for PP vs. NP.

Figure 6.7-21 Results of the pairwise KW test. Difference in means for perceived complexity during design.

236

Figure 6.7-22 Results of the pairwise KW test. Difference in means for perceived complexity during implementation

Additionally, a Tamhane test was performed over these same data and confirms the results of
the KW test, as shown in Table 6.7-15. Furthermore, the Tamhane test further shows a
statistically significant difference between the PP and NP pair, which had scored only slightly
above the confidence threshold for the KW test.

Table 6.7-15 Tamhane test results for perceived complexity during design and implementation
Design

(I) process (J) process Mean Difference (I-J) Std. Error Sig. 95% Confidence Interval

Lower Bound Upper Bound

NP
PP .66667* .26591 .044 .0147 1.3186

FP 1.60606* .24977 .000 .9934 2.2187

PP
NP -.66667* .26591 .044 -1.3186 -.0147
FP .93939* .24977 .001 .3267 1.5521

FP
NP -1.60606* .24977 .000 -2.2187 -.9934

PP -.93939* .24977 .001 -1.5521 -.3267
Implementation

(I) guideline (J) guideline Mean Difference (I-J) Std. Error Sig. 95% Confidence Interval

Lower Bound Upper Bound

NP
PP .72727* .27040 .027 .0643 1.3903

FP 1.60606* .24977 .000 .9934 2.2187

PP
NP -.72727* .27040 .027 -1.3903 -.0643
FP .87879* .25455 .003 .2542 1.5034

FP
NP -1.60606* .24977 .000 -2.2187 -.9934
PP -.87879* .25455 .003 -1.5034 -.2542

*. The mean difference is significant at the 0.05 level.

 The following two sections present the analysis of this perceived complexity data for both
design and implementation, broken down by functional usability feature.

237

6.7.3.2.1 Design phase by feature
Figure 6.7-23 presents the averages of responses to the question “How would you rank this
feature in terms of the complexity you encountered during the design phase?”, by type of
process that was applied.

0

1.00

2.00

3.00

4.00

5.00

Abort Undo Comm Prog Status Warn Help Fav POS Pref SbS

Figure 6.7-23 Average perceived complexity of each functional usability feature for the design phase

There is a significant difference in perception of the complexity to design these features
between subjects using NP and those using the FP, for all but the Undo Status feature. The
same holds true when comparing the average perception of those using the PP versus those
using the FP. To determine if these differences are statistically significant, KW tests were
performed on the means for each feature individually (3 data points per average). The results
are as shown in Table 6.7-16.

Table 6.7-16 p-values for KW test over the perceived complexity means during design of each feature for all groups
 Abort Undo Comm Prog Status Warn Help Fav POS Pref SbS
pvalue 0.207 0.670 0.072†10 0.113 0.953 0.464 0.543 0.127 0.032* 0.048* 0.029*

The tests provide evidence that the Personal Object Space, Preferences and Step-by-Step
features were perceived as more complex to design by subjects using NP than by those using
the FP. No evidence is provided by the pairwise KW test regarding difference between the
PP-FP nor PP-NP groups. These results are shown in Table 6.7-17.

Table 6.7-17 p-values of KW test comparing the mean perceived complexity to design the features
 Abort Undo Comm Prog Status Warn Help Fav POS Pref SbS
FP-NP 0.039* 0.029* 0.053*11 0.026*
FP-PP 0.227 0.297 0.236 1.000
PP-NP 0.957 1.000 1.000 0.283

6.7.3.2.2 Implementation phase by feature
Figure 6.7-23 presents the average responses to the question “How would you rank this
feature in terms of the complexity you encountered during the implementation phase?”, by
type of process that was applied.

10 A Tamhane test was performed as a means to corroborate this borderline result still acceptable at 90% confidence (†), and again confirmed
pairwise differences for this feature.
11 Adjustment for the pairwise comparison sends the value below 95%, though still indicating that FP-NP is the source of the difference.

238

0

1.00

2.00

3.00

4.00

5.00

Abort Undo Comm Prog Status Warn Help Fav POS Pref SbS

Figure 6.7-24 Average perceived complexity of each functional usability feature for the implementation phase

In line with the results of the KW test performed over the implementation phase as a whole,
every functional usability feature shows a significant difference in perception of the
complexity to implement when using NP versus those using the FP. Furthermore, save for the
Status and Help features, the same holds true for PP vs. FP.

Individual KW tests were performed over these data to determine if these differences are
statistically significant (3 data points per average) for the implementation phase. Table 6.7-18
shows the p-values obtained from performing these tests.

Table 6.7-18 KW test p-values for average perceived complexity during implementation of each feature for all groups
 Abort Undo Comm Prog Status Warn Help Fav POS Pref SbS
pvalue 0.048* 0.801 0.072† 0.176 0.772 0.360 0.102 0.127 0.030* 0.045* 0.032*

The differences in means are proven to be significant for the Abort, Commands Aggregation,
Personal Object Space, Preferences and Step by Step features.

Further pairwise testing also confirms that all the features were perceived as more complex to
implement by subjects using NP than by those using the FP. No evidence of difference in
means was found between the PP and FP groups.

Table 6.7-19 pairwise KW test p-values for average perceived complexity during implementation of each feature
 Abort Undo Comm Prog Status Warn Help Fav POS Pref SbS
FP-NP 0.060†12 0.039* 0.025* 0.049* 0.029*
FP-PP 0.189 0.227 0.834 0.224 1.000
PP-NP 1.000 0.957 0.363 1.000 0.297

6.8 Results and Findings
The hypothesis for this work pertains to how using the full usability-oriented software
development process helps reduce development time, improves quality of designs and reduces
perceived complexity of usability features, as described in section 6.2.

In regards to time, the analysis performed on the data showed that, over all, test subjects who
applied the full process developed the usability-related parts of their projects more quickly
than their counterparts who didn’t apply it or applied it partially, leading us to reject our first
two null hypotheses, namely H0_1 and H0_2, respectively.

When broken down into the four project phases that were studied, it became clear that this
reduction in time was coming from the design, implementation and testing phases. No
discernible difference resulted from the analysis phase. This can be attributed to the fact that

12 Adjustments during the pairwise comparison sends this value over the threshold yet it’s still valuable for determining the source of the
differences

239

when subjects applied the proposed process, whether partial or full, they had to invest time in
understanding it and training in how to apply it, as well as the guidelines they had to use. This
time was measured as part of their time invested in analysis, so, for them, the total time they
spent actually analyzing would be the total minus this training time, resulting in a smaller
analysis time than that of their counterparts who didn’t apply the proposed process, and spent
no time in this type of training yet took just as long in average to perform analysis on their
projects. Furthermore, it could be hypothesized that when subjects who applied the proposed
process develop subsequent projects, this training time is reduced and so will their total time
invested in the analysis phase of their projects.

When analyzing on a feature-by-feature basis it became evident that, applying the full process
saves time in all three remaining phases. Furthermore, a larger amount of this time was saved
during design than during implementation, and even a more significant difference was
encountered during testing.

Subjects who applied the full process created their designs more quickly than those who
applied a partial version or none at all, in spite of the fact that they had to spend extra time
understanding the design artifacts of the guideline before they could start designing. This
leads us to believe that applying the proposed process helped them have a clearer idea about
what their designs would look like more quickly than those who were unaware of it, who
approached the design of their systems from scratch and had to iterate more over their designs
before they were found to be implementable.

During the implementation phase the gap in time spent is less noticeable, as subjects set out to
implement when they had designed in the previous phase. But when the differences are
remarkable are during the testing phase, where subjects who applied the full process had a
clear lead over the other two groups. This can be explained by the higher quality of the
designs, which produced better code with fewer errors, and thus took less time to test. Users
not applying the full process, who perhaps devised designs with unnecessary intricacy, took
longer to weed out the errors than their counterparts who did apply the process in full.

Furthermore, all subjects measured any necessary re-work done to the code during testing into
their testing times, further expanding the time they needed to get their applications to run
error-free and also compensating for the smaller gap in the implementation phase (i.e. buggier
code might take less time to implement, but it will take longer to test and fix).

In regards to quality of the resulting designs, the analysis performed on the data shows that,
over-all, subjects who applied the full process produced better-quality designs than those who
applied it partially and also those who did not apply it, leading us to reject our third and
fourth null hypotheses respectively, H0_2 and H0_3.

When looking at the studied quality factors individually, however, we discovered that one of
them was stronger than the other two in this regard. Subjects who applied the full process
produced designs which scored significantly higher in average for adequate responsibility
allocation than the other two groups. This means that the design artifacts of the guideline used
in the full process, which already follow good practices in regards to object responsibility
allocation, raise the over-all score of this attribute for the resulting designs of these subjects.

As for design readability and correct use of notation, even though in almost every case the
designs created by subjects who applied the full process performed better in both attributes,
the differences in means do not satisfy the pre-set confidence intervals of the tests that were
conducted on the data.

240

Lastly, in regards to how complex the usability features were perceived to be by the test
subjects, those who applied the full process perceived them as less complex in average than
those who applied it partially and those who didn’t apply it, leading us to reject our fifth and
sixth null hypotheses, namely H0_5 and H0_6.

Breaking down the analysis into the two phases that were studied, the subjects who applied
the full process found the usability features less complex both to design and implement than
those who didn’t. More specifically, they found them to be less complex than their partial-
process counterparts, but even more so than their no-process peers. Even though no difference
was demonstrated as existing between the no-process vs. partial-process pair, it is an
indication that applying the process partially does help perception albeit slightly, though not
to the degree achieved when applied in full.

Table 6.8-1 shows a synthesized view of the individual test result tables presented across this
chapter for all tests. This table helps to categorize the guidelines according to their impact on
development as explained below, judging by their p-values. A !95 sign denotes a significant
p-value at the original table with over 95% confidence, while a !90 denotes that the
confidence was 90%. In all cases the significant differences are found between the FP and NP
pairs, except for design time in Preferences and Step by Step, where the differences are
between the PP and NP pairs. Original tables are referenced in every row of Table 6.8-1.

When analyzing the usability features individually, Commands Aggregation, Personal Object
Space, Preferences and Step by Step were found to be guidelines with the highest impact
across all variables. They are represented in dark gray in Table 6.8-1. Subjects perceived
these guidelines as having low complexity to design and test (hence dubbed the “easy”
guidelines), while also saving significant time during both the design and testing phases.

Table 6.8-1 Summary of p-values for time and design complexity variables. “!” represents a significant p-value
 Abort Undo Comm Prog Status Warn Help Fav POS Pref SbS
Time. Analysis (Table 6.7-4)
Time. Design (Table 6.7-5) !95 !95 !90 !90 !90
Time. Testing (Table 6.7-8) !95 !95 !95 !90 !95 !90 !95 !95 !95 !95
Design Complexity (Table 6.7-16) !95 !95 !95 !95
Impl. Complexity (Table 6.7-18) !95 !95 !95 !95 !95

The Abort feature follows, shown in medium gray in Table 6.8-1. FP subjects found the Abort
feature as having low complexity during the implementation phase and was also determined
to save time during testing when compared to the results obtained by PP and NP subjects.

The Undo, Progress, Warning, Help and Favorites guidelines are next. Shown in light gray in
Table 6.8-1, FP subjects didn’t find these guidelines to have significantly low complexity to
either design or implement over PP or NP, and as such were dubbed the “hard” guidelines, yet
they were proven to save time during the testing phase (in the case of Undo, also during
design).

Finally, the Status guideline shown in white in Table 6.8-1, appears to have had the lowest
impact, as it wasn’t perceived as having low complexity and also didn’t save statistically
significant amounts of time during development.

It’s worth noting that the above categorization only considers the results of the statistical
tests, even though observation alone of the figures that illustrate the source data for these tests
may sometimes yield less restrictive results. For example, the Status feature, which scored
below the confidence level for all tests and was categorized as having lowest impact, is shown
in Figure 6.7-11 to have saved time during testing when used in full (FP), even though it did
not pass the statistical tests.

241

6.9 Threats to validity
It is worth noting that while these results are highly encouraging, there is a limitation to the
exactitude in which subjects were able to compartmentalize the features when measuring
things like time and complexity. As the software functionalities that they truly are, usability
features are woven into the software requirements specification of each project, often
overlapping with other domain-specific functionality and, in some cases, with one another.

Another important factor that may be a threat to the validity of these results include the fact
that the test subjects were students developing academic projects, as opposed to industry
subjects working on real-life applications. The results may also not be fully generalizable due
to the nature of these academic projects. Since they are mostly developed over the course of
university courses, the three projects that were assigned to the students had to be of a
reasonable size for them to be completed in the available time frame of the courses; around a
couple of hundred function points per project. Furthermore, the problem domain for each
project could potentially represent an interfering factor, yet this was mitigated by providing
the students with projects that were similar yet of different domains.

Lastly, tests like Kruskal Wallis and Tamhane perform significantly better when applied over
a large set of data points, but may result overly restrictive when using fewer data. Such is the
case of the p-values obtained in the per-feature analyses, where each average was made up of
only three data points, making the total pool of values nine points when applying the tests.

242

!"#$%&'()* !+,!-./0+,/(#,1(2.%.'&(
3+'4(

7.1 Introduction
This chapter presents the final conclusions we have reached after crafting, applying and
validating our proposed approximation to a solution, followed by the lines of research it
leaves open for future work.

7.2 Conclusions
In this doctoral thesis we propose an approximation towards solving the open research
problem of providing developers with structured, tangible guidance for including
usability features with proven impact on software design into their applications.

The inclusion of this type of usability features in to software is a complex task. The Human
Computer Interaction community has proposed many recommendations, often termed
Usability Patterns, detailing what needs to be present in the graphical user interface of an
application for it to be usable. Useful and comprehensive as they are, these recommendations
are expressed in a way that is too abstract for software engineers to actually implement

Over the past two decades, the Software Engineering community has made many attempts to
bridge the gap between these HCI recommendations and their actual implementation into
software. Most of these approximations have been in the form of software architectural
patterns and recommendations, describing how an application should be structured internally
to conform to these usability recommendations. However, software developers still face
major difficulties when attempting to incorporate them into software, due in part to the fact
that these recommendations are still too far removed from their actual implementation.
Furthermore, the proposed solutions isolate the software design process, divorcing it entirely
from many software analysis activities, when it’s been shown that usability needs to be
addressed throughout multiple phases of the development process.

In this work we propose an approximation to a solution to this problem by proposing a
Usability-oriented Software Development Process, supported by our proposed Software
Usability Guidelines for Software Development.

243

• The Usability-oriented Software Development Process guides software developers,
throughout several analysis and design activities in incorporating specific usability
features with impact on design into their software applications. It proposes activities to
be carried out during the analysis and design phases of a project, regardless of the
specific life cycle or development method being used. It enables software development
teams to consistently and comprehensively include these specific usability features into
their analysis documentation (requirements specifications, use cases, interface
prototypes, story boards, etc.) and into their software design (object models, interaction
diagrams, etc.).

• The Usability Guidelines for Software Development are used throughout the proposed
process, and each of them details a possible solution for every one of the eleven usability
features covered in this work. Every guideline is made up of artifacts aimed at
supporting specific tasks carried out throughout the proposed process. Its most critical
artifacts specify the responsibilities that the system and its parts must fulfill in order to
conform to these usability features, expressed both textually and in the form of UML
meta-models that are directly implementable by projects based on the MVC architecture.

The chosen usability features with impact on design are proposed by Juristo, Moreno and
Sanchez-Segura in [31], where they are proven to have a considerable impact on the software
logic (in terms of additional classes, methods and relationships that must be implemented)
when they are included in an application. They are termed Functional Usability Features by
the authors, and are grounded on solid HCI principles as shown in [32]. While there are other
usability features not considered in this work that could potentially impact software
functionality, our proposed approximation to a solution provides an important contribution in
both the Software Engineering and HCI fields.

The main hypothesis for this work, which proposes that applying this proposed process with
the use of the guidelines helps reduce development time, facilitate software design and
improve its quality, was empirically validated. These validation results proved highly
encouraging, enabling us to reject the corresponding null hypothesis in full.

This hypothesis was validated by having nine test subjects apply the proposed process over
three university projects. Specific variables were measured for each project, including
development time, design quality, and perception of complexity of the proposed guidelines.

Validation results showed that a significant amount of time was saved mostly during the
design, implementation and testing phases. During analysis, the subjects had to invest
additional time in understanding the proposed process and guidelines first and training in how
to apply them. It could be argued, however, that when these subjects develop future projects,
this training time is reduced as will their total time invested in analysis. Also, subjects who
applied the proposed process created their designs more quickly as it helped them have a
clearer idea about what their designs would look like more quickly than those who didn’t
and approached their designs from scratch, having to iterate more over them before they
could implement them. Furthermore, applying the process helped developers reduce
testing time remarkably as well as re-work over previous phases at the end of their
projects.

In regards to quality, applying the proposed process helped developers produce designs with
better responsibility allocation among objects, a key factor in software modifiability and
maintainability [37].

Finally, the proposed process and guidelines helped developers perceive many of the
functional usability features as not being overly complex. The perception of the complexity of

244

usability features is crucial as it could potentially affect a developer’s disposition to embrace
them within their projects.

A software tool is proposed to automate the application of the proposed usability-oriented
software development process. The purpose of this tool is to make the application of the
process even more efficient than when using paper versions of the Usability Guidelines for
Software Development.

This work was funded by a four-year grant (FPI, BES-2007-15110) from the Spanish
Ministry of Science and Innovation (MICINN), through the project titled “Tratamiento de
Mecanismos de Usabilidad en las Etapas de Requistios Y Diseño De Software” (TIN2005-
00176) at the School of Computer Science of the Universidad Politecnica de Madrid.

Preliminary results from this doctoral thesis have produced three research publications in the
proceedings of the following international conferences:

• 2009: ESEC/FSE Doctoral Symposium [12]

• 2010: IADIS International Conference on Interfaces and Human Computer Interaction [13]

• 2011: Jornadas de Ingenieria del Software y Bases de Datos. A Coruña [14]

7.3 Future Work
Future lines of research that stem from the work presented in this doctoral thesis include:

• Contrasting automated vs. manual use of the proposed process: The automation tool
for applying the proposed usability-oriented software development process is intended to
make its application, and the use of the guidelines, more efficient. It would be of great
interest to compare the results of applying the process manually, as it has been done for
this work, with its automated application. Specifically, the variable of development time,
as measured in this work, could be observed to determine if indeed the automated tool
helps developers perform their tasks faster.

• Validating in industry projects: The next desirable step in the validation of the
approximation to the solution proposed in this work would be to test it in an industry
setting. The Usability-oriented Software Development Process could be applied in
several large-size real-life projects to test its impact in such a setting.

• Incorporating functional usability features specific to mobile devices: With the
recent advances in mobile technologies, the once all-dominating personal computer now
lives side-by-side with devices such as smartphones and tablet computers. These newer
devices compete eagerly to helping users perform tasks that they once performed only
on traditional computers. As these newer devices have vastly different user interaction
paradigms, it would be of interest to asses the applicability of the proposed Usability
Guidelines for Software Development for the chosen usability features under these
newer conditions. For example the guideline Multi-level Help feature proposed in this
work, which for certain cases provides textual help information when the user “hovers”
the pointer over a specific interface item, would need to be redesigned for the fully
tactile devices where “hovering” is not an option

• Providing implementations of the designs in multiple programming languages:
Implementation artifacts such as software plug-ins are not provided as part of the
proposed Usability Guidelines for Software Development. Doing so would have resulted
in a solution approximation whose end result as of very limited applicability, as it would
have been relevant only by developers who used the same language in which the plug-
ins would have been written. However, it could be argued that if produced for enough of

245

the widely used long-standing languages dominating the software development sector
today, they could prove to be an advantageous addition to our proposed guidelines.

• Providing a design solution for other architectures: The design portions of our
approximation to the solution are based on an MVC architecture. While MVC is a
popular architecture, and MVC-based designs are of use to development teams using this
architecture but also others to which MVC designs can be translated (i.e. PAC), further
work could be conducted in transforming the proposed designs for other architectures,
such as SOA, three-tier, distributed, etc.

• Estimating the effort required to include each Functional Usability Feature:
Including each of the Functional Usability Features discussed in this work by applying
the proposed process represents a quantifiable effort on the part of the development
team. It would be of great interest to this line of research to measure this effort for each
one of the features through experimentation. This would provide developers not only
with a solution approximation to help them include the features into their software, but
also with an estimation of the actual cost that such an inclusion would represent, as an
effort measurement can be ultimately translated into economic costs.

246

!"#$%&'()* '&+&'&,!&-(

[1] Alexander, C., Ishikawa, S., and Silvernstein, 1997 M. A Pattern Language, Oxford University Press, New York.

[2] Ambler, S. 2005. The elements of UML 2.0 style. Cambridge University Press.

[3] Bass, L. and John, B. E., 2002. Linking Usability to Software Architecture Patterns Through General Scenarios. Journal of
Systems and Software, Volume 66, Issue 3, pp 188-197.

[4] Bass, L. and John, B. E, Kates, J. Achieving Usability Through Software Architecture. Technical Report. CMU/SEI-2001-
TR- 005, March 2001.

[5] Bass, L. et al. Unravelling the Myths of Developing Usable Software. Unpublished work.

[6] John, B., Bass, L., Golden, E., Stoll, P. 2009. A Responsibility-Based Pattern Language for Usability-Supporting
Architectural Patterns. Proceedings of the 1st ACM SIGCHI symposium on Engineering interactive computing systems

[7] Battey, J. 1999. IBM’s redesign results in a kinder, simpler web site. Retrieved from Infoworld:
http://www.infoworld.com/cgi-bin/displayStat.pl?/pageone/opinions/hotsites/hotextr990419.htm

[8] Benson, C., Elman, A., Nickell, S. and Robertson, C. 2007. GNOME Human, “Interface Guidelines,”
http://developer.gnome.org/ projects/gup/hig/1.0/index.html

[9] Bevan, N. (2008). UX , Usability and ISO Standards. CHI 2008 Workshop on User Experience Evaluation Methods in
Product Development, 1-5. Retrieved from http://www.cs.tut.fi/ihte/CHI08_workshop/slides/Bevan_UXEM_slides.pdf

[10] Bias, R. M. 2005. Cost-Justifying Usability. An Update for the Internet Age. Elsevier.

[11] Black, J. 2002. Usability is next to profitability. Retrieved 04 10, 2009. BusinessWeek Online:
http://www.businessweek.com/ technology/content/dec2002/tc2002124_2181.htm

[12] Brighton, 1998. Usability Pattern Collection. http://www.cmis.brighton.ac.uk/research/patterns/home.html

[13] Carvajal, L. 2009. Usability-enabling guidelines: a design pattern and software plug-in solution. Proceedings of the
doctoral symposium for ESEC/FSE on Doctoral symposium. ACM, New York, NY, USA, 9-12.

[14] Carvajal, L., Moreno, A. 2010. USABILITY-ENABLING SOFTWARE DESIGN GUIDELINES. Proceedings of the IADIS
International Conference on Interfaces and Human Computer Interaction. Freiburg, Germany 26-30 July 2010.

[15] Carvajal, L., Moreno, A. 2011. Software Design Guidelines for Usability. Jornadas de Ingenieria del Software y Bases de
Datos. A Coruña, Spain. 5-7 September 2011

[16] Cochrane Collaboration. 2003. Cochrane Reviewers’ Handbook. Version 4.2.1.

[17] Constantine, L. and Lockwood, L., 1999. Software for Use: A Practical Guide to the Models and Methods of Usage-
Centered Design. Addison-Wesley. New York, USA.

[18] Coram, T. and Lee, L. 1996 “Experiences: A Pattern Language for User Interface Design,”,
http://www.maplefish.com/todd/ papers/experiences/Experiences.html.

[19] Donahue, G. 2001. Usability and the bottom line. IEEE Software, 16 1, 31-37.

248

!"#$%&'()* #$$&+,-.&/(

9.1 Example application of the proposed Usability-Oriented Software
Development Process

This appendix shows how the proposed would be applied over an example project. This
project is a modified version of the Home Automation System shown in Appendix 9.4.

Section 9.1.1 describes the process for this example over the Requirements elicitation and
analysis activities for usability, and section 9.2 describes it for the OO software design
activities for usability.

9.1.1 Requirements elicitation and analysis for usability
During elicitation of this example project, the analyst(s) gather a list of functional
requirements. The following requirement is among them:

Req(3) The system must control the window blinds. Window blind panels
can rotate from 15 to 165 degrees. The position with greater sunlight is 90
degrees. The execution of this process normally lasts approximately
1/10th of a second per degree of rotation

The next three sections describe the results of applying the three tasks in this sub-process

9.1.2 Functional usability requirements elicitation
After performing this first task, the SRS is enhanced to include usability. In the case of the
example requirement shown in the previous section, it now looks as follows:

Req(3) The system must control the window blinds. Window blind panels
can rotate from 15 to 165 degrees. The position with greater sunlight is 90
degrees. The execution of this process normally lasts approximately
1/10th of a second per degree of rotation, during which the system must
show a progress bar indicating and continuously updating the
percentage of execution.

247

[20] Ferre, X., et al, 2003. A software architectural view of usability patterns. Proceedings of INTERACT 2003. Zurich,
Switzerland. n.p.

[21] Folmer, E. van Gurp, J. and Bosch, J., 2005. Software Architecture Analysis of Usability. Lecture Notes in Computer
Science, Volume 3425, pp 38-58.

[22] Fowler, M. 1999. UML Distilled: A Brief Guide to the Standard Object Modeling Language (3rd Edition). Addison-Wesley
Professional.

[23] Freeman, E., Bates, B. and Sierra, K. 2004. Head-first design patterns. O'Reilly & Associates, Inc.

[24] Gri!th, J. 2002. Online transactions rise after bank redesigns for usability. Retrieved from The Business Journal: http://
www.bizjournals.com/twincities/stories/2002/12/09/focus3.html

[25] Heckel, P., 1991. The Elements of Friendly Software Design, second ed. Sybex Inc, CA.

[26] Hix, D., Hartson, H.R., 1993. Developing User Interfaces: Ensuring Usability Through Product and Process. John. Wiley &
Sons, New York.

[27] IEEE. 1998. Standard for a Software Quality Metrics Methodology. IEEE Std 1061.

[28] ISO. 2000. Part 1: Quality Model. ISO 9126 Software Engineering. Product Quality.

[29] ISO. 1998. Part 11: Guidance on Usability. ISO 9241 Ergonomic requirements for office work with visual display terminals.

[30] ISO/IEC 25062:2006 "Common Industry Format (CIF) for usability test reports

[31] John, B., Bass, L. and Sanchez-Segura, M., 2005. Bringing Usability Concerns to the Design of Software Architecture.
Lecture Notes in Computer Science, Volume 3425, pp 1-19.

[32] Juristo, N., Moreno, A. and Sanchez-Segura, M., 2007. Analysing the impact of usability on software design. Journal of
Systems and Software, Volume 80, Issue 9, pp 1507-1516.

[33] Juristo, N., Moreno, A. and Sanchez-Segura, M.I., 2007. Guidelines for eliciting usability functionalities. IEEE
Transactions on Software Engineering, Volume 33, Issue 11, pp 744-758.

[34] Juristo, N., et al., 2007. Glass Box Design: Making the Impact of Usability on Software Development, Proceedings of
INTERACT 2007, Rio de Janeiro, Brazil. n.p.

[35] Kitchenham, B. 2007. Guidelines for performing Systematic Literature Reviews in Software Engineering. EBSE Technical
Report EBSE-2007-01. Department of Computer Science University of Durham Durham, UK

[36] Kumar, S. et. al. / International Journal of Engineering Science and Technology Vol. 2(9), 2010, 4723-4729

[37] Laasko, S.A., 2003. User Interface Designing Patterns. <http://www.cs.helsinki.fi/u/salaakso/patterns/index_tree.html>
Visited October 2004.

[38] Larman, C. 2004 Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative
Development (3rd Edition). Prentice Hall.

[39] Nielsen, J., 1993. Usability engineering. Morgan Kaufmann Publishers, Boston, USA.

[40] Seffah, A. et al, 2008. Reconciling usability and interactive system architecture using patterns. Journal of Systems and
Software, Volume 81, Issue 11, pp 1845-1852.

[41] Se!ah, A. M., 2004. The obstacles and myths of usability and software engineering. Communications of the ACM,
Volume 47, Issue 12, pp 71-76.

[42] Se!ah, A. M., 2006. Usability measurement and metrics: A consolidated model Ahmed Seffah, Mohammad Donyaee,
Rex B. Kline and Harkirat K. Padda

[43] Tidwell, J., 2005. Designing Interfaces. Patterns for Effective Interaction

[44] Design. O’Reilliy, USA.

[45] Trenner, L. 1998. The Politics of Usability. London,UK:Springer

[46] Shneiderman, B., 1998. Designing the User Interface: Strategies for Effective Human–Computer Interaction, third ed.
Addison Wesley, Menlo Park, CA.

[47] SIGCHI Curricula for Human-Computer Interaction. ACM. http://old.sigchi.org/cdg/cdg2.html#2_1

[48] Stevens, S. S. (19-16). On the theory of scales of measurement. Science. 103, 67 t-680.

[49] Stoll, P., et al., 2009. Supporting Usability in Product Line Architectures. Proceedings of the 13th International Software
Product Line Conference. San Francisco, CA, August 24-28, 2009

[50] van Welie, M., 2008. The Amsterdam Collection of Patterns in User Interface Design. [Online] Available at:
http://www.welie.com.

[51] Business Process Management Initiative. Object Management Group. Business Process Model Notation.
http://www.bpmn.org/

249

9.1.3 Usability use case modeling
If modeling use cases, the system’s use case model, which may look like Figure 9.1-1 when
not including usability,

Figure 9.1-1 Example use case model not including usability

is enhanced with usability by applying the relevant parts of the Usability use case meta
models for the Progress functional usability feature, shown in Figure 9.1-2.

Figure 9.1-2 Usability use case meta-models for the Progress functional usability feature

and ends up looking like Figure 9.1-3, enhanced to include the required usability.

250

Figure 9.1-3 Example use case model including usability

9.1.4 Identification of system responsibilities
In this example, where the only usability requirement is to show a progress bar when
operating the window blinds, the system analysts would only consider the relevant System
Responsibilities for the Progress feature, ignoring the rest, shown in gray in Table 9.1-1,

Table 9.1-1 System Responsibilities for Progress functional usability feature
System Responsibilities List for Progress Feedback

Determine which tasks will require progress
The system must know which system actions might take long to execute
Calculate and provide progress information
The system must provide progress information for each action by using all available information
Provide cancel option
The system must allow users to cancel on-going actions
Provide textual information
The system must provide information about the task during progress display
Provide indeterminate progress information
The system must provide indeterminate progress info for tasks requiring it or when no other alternative is available

9.2 OO software design activities for usability
Once the System Responsibilities are determined, the process continues with the last three
tasks, as described in the next three sections

9.2.1 Identification of High-level design component responsibilities for usability
If producing this intermediate output, the software designers consider only the relevant High-
level design component responsibilities for usability, based on the System Responsibilities
that were considered in the previous task, ignoring the rest, shown in gray in Table 9.2-1.

Table 9.2-1 High-level design component responsibilities for Progress functional usability feature
System Responsibility High-level design component responsibilities for usability

Determine which tasks
will require progress inf.

The UI Component is responsible for knowing (from a pre-established list) whether an invoked action is among
those that could potentially be ‘long’ (>2s)

Calculate and provide
progress information

The UI Component is responsible for listening for calls to invoke these long actions and for ordering their...
If the action is among the potentially ‘long’, the UI must call unto an alternate Monitoring Component …

Provide cancel option The component responsible for displaying the progress (be it the UI or an alternate Progress Component) must
provide a cancel option for the actions it knows to require one

Provide textual info The component responsible for displaying progress must also know of and display any needed textual info…
Provide indeterminate
progress information

When the UI component (or alternate Progress Component) first displays the progress, it must do ...

251

9.2.2 Identification of Low-level design component responsibilities for usability
If producing this intermediate output, the software designers consider only the relevant Low-
level design component responsibilities for usability, based on the System Responsibilities
that were considered in the previous task, ignoring the rest, shown in gray in Table 9.2-2.

Table 9.2-2 Low-level design component responsibilities for Progress functional usability feature
System

Responsibility
Objects Fig

View ProgressIndicator Monitor Controller DomainClass
Determine which
tasks will require
progress
information

1. The View must listen for
invocation of actions and must
determine (from a preexisting
list) if the action being called
could be potentially long.

Calculate and
provide progress
information

1. Notify the Controller when a
long action hss been invoked.
2. Ask the Monitor class to wait
a specified amount of time (2s)
…

6. The ProgressIndicator
subscribes to the
corresponding
DomainClass for …

3a. The Monitor
class starts up a
clock and notifies
the view after the
time (2s) has….

3b. The
Controller
invokes the
action, calling
the ….

4. The
DomainClass
starts executing
the invoked action
…

3,
4

Provide cancel
option

1. When the View creates the
ProgressIndicator it …

2. ProgressIndicator will
enable a ‘cancel’ button.

 3,
4

Provide textual
information

1. When the View creates the
ProgressIndicator it must …

2. The ProgressIndicator
holds this text …

 3,
4

Provide
indeterminate
progress info

1. Whenever a
ProgressIndicator (that is not
undetermined) is created …

 3,
4

9.2.3 Object Oriented software design for usability
The OO class diagram being produced, which may look like Figure 9.2-1 when not yet
including usability,

Figure 9.2-1 Example use case model not including usability

is enhanced with usability by applying the relevant parts of the OO software design meta
models for usability for the Progress feature, whose class diagram is shown in Figure 9.2-2.

Figure 9.2-2 Usability OO software design meta models for usability. Class Diagram.

and ends up looking like Figure 9.2-3, enhanced to include the required usability.

252

Figure 9.2-3 Example class diagram including usability

Similarly, in the case of the sequence diagram, when applying the relevant parts of the OO
software design meta models for usability for the Progress feature, whose sequence diagram
is shown in Figure 9.2-4.

Figure 9.2-4 Usability OO software design meta models for usability. Class Diagram.

ends up looking like Figure 9.2-5, enhanced to include the required usability.

253

Figure 9.2-5 Example sequence diagram including usability

254

9.3 Full results of systematic literature review
This appendix presents the full results of the systematic literature review for this doctoral
thesis, for all the proposed key phrases that turned up relevant (and non repeated) results:
Software architecture usability, Usability patterns software design and Architectural patterns
usability. Initially selected studies appear highlighted. Pages from which no results were
selected (or which only contained repeated results from previous key phrases) are omitted.
The key phrase for each Google scholar search result page appears on the top-left corner.

Web Images Videos Maps Books Translate Gmail more ! laura.carvajal@gmail.com | Scholar Preferences | My Account | Sign out

software architecture usability Search Advanced Scholar Search

Scholar Articles excluding patents anytime include citations Create email alertResults 1 - 100 of about

L Bass… - Journal of Systems and Software, 2003 - Elsevier
Usability is an important quality attribute to be considered during software architecture
design. Up to this point, usability has been served only by separating a system's user interface
from its functionality to support iterative design. However, this has the effect of pushing ...
Cited by 92 - Related articles - All 10 versions - Import into RefWorks

Linking usability to software architecture patterns through general scenarios [PDF] from psu.edu

E Folmer, J Van Gurp… - Bridging the Gaps Between Software …, 2003 - Citeseer
Scenario-based Assessment of Software Architecture Usability Eelke Folmer, Jilles van
Gurp, Jan Bosch Department of Mathematics and Computing Science University of
Groningen, PO Box 800, 9700 AV the Netherlands mail@ eelke. com, Jilles@ cs. rug. nl, ...
Cited by 22 - Related articles - View as HTML - All 18 versions - Import into RefWorks

[PDF] Scenario-based assessment of software architecture usability [PDF] from psu.edu

F Buschmann, R Meunier, H Rohnert, P Sommerlad… - 2008 - Wiley-India
Cited by 4090 - Related articles - All 13 versions - Import into RefWorks

[CITATION] Pattern-oriented software architecture: a system of patterns [PDF] from ispras.ru

, … -MELLON UNIV PITTSBURGH PA SOFTWARE … - 2001 - Citeseer
... The goal of this work is to achieve better system usability through design decisions embodied in
the software architecture. ... Hence, understanding the relationship between software architecture
and usability is important to ensure that the system ultimately achieves it. ...
Cited by 81 - Related articles - View as HTML - BL Direct - All 25 versions - Import into RefWorks

[BOOK] Achieving usability through software architecture [PDF] from psu.edu

L Bass… - Computer, 2001 - ieeexplore.ieee.org
ARCHITECTURAL PATTERNS An architectural pattern expresses some fundamental relationships
among software elements. It provides a set of required com- ponents, specifics of their
relationships, and the responsibilities necessary to implement the relationships. Software ...
Cited by 36 - Related articles - BL Direct - All 8 versions - Import into RefWorks

Supporting usability through software architecture

MA Babar, L Zhu… - Software Engineering Conference …, 2004 - ieeexplore.ieee.org
... maintainability, reliability, usability, performance, flexibility etc.) of large software systems are
largely constrained by the systems' SA [3]. Since SA plays a significant role in achieving system
wide quality attributes, it is very important to evaluate a system's architecture with regard ...
Cited by 99 - Related articles - All 12 versions - Import into RefWorks

A framework for classifying and comparing software architecture evaluation methods [PDF] from psu.edu

E Folmer, J Van Gurp… - Software Process: …, 2003 - Wiley Online Library
Usability is increasingly recognized as an essential factor that determines the success of software
systems. Practice shows that for current software systems, most usability issues are detected
during testing and deployment. Fixing usability issues during this late stage of the ...
Cited by 39 - Related articles - BL Direct - All 12 versions - Import into RefWorks

A framework for capturing the relationship between usability and software architecture [PDF] from psu.edu

E Folmer, J van Gurp… - Engineering Human Computer …, 2005 - Springer
Abstract. Studies of software engineering projects show that a large number of usability related
change requests are made after its deployment. Fixing usability problems during the later stages
of development often proves to be costly, since many of the necessary changes require ...
Cited by 34 - Related articles - BL Direct - All 27 versions - Import into RefWorks

Software architecture analysis of usability [PDF] from psu.edu

E Golden, BE John… - … international conference on Software …, 2005 - portal.acm.org
... Keywords Controlled experiment, usability, software architecture, design pattern, modification. ...
[9] John, BE and L. Bass., “Avoiding 'We can't change THAT!': Software Architecture and Usability”,
tutorial materials presented at CHI 2003, Ft. Lauderdale, FL, April 5-10, 2003. ...
Cited by 25 - Related articles - BL Direct - All 11 versions - Import into RefWorks

The value of a usability-supporting architectural pattern in software architecture design: a
controlled experiment

[PDF] from psu.edu

R Kazman, G Abowd, L Bass… - Software, IEEE, 1996 - ieeexplore.ieee.org
... portability. To address this problem, we have developed the Software Architecture
Analysis Method, an approach that uses scenarios to gain information about a system's
ability to meet desired quality attributes. Scenarios-brief ...
Cited by 391 - Related articles - BL Direct - All 32 versions - Import into RefWorks

Scenario-based analysis of software architecture [PDF] from psu.edu

software architecture usability - Google Scholar http://scholar.google.es/scholar?q=software+architecture+usab...

1 of 10 3/16/11 2:44 PM

BE John, L Bass, MI Sanchez-Segura… - … Computer Interaction and …, 2005 - Springer
R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 1-19, 2005.
© IFIP International Federation for Information Processing 2005 ... Bringing Usability Concerns
to the Design of Software ... Bonnie E. John1, Len Bass2, Maria-Isabel ...
Cited by 28 - Related articles - BL Direct - All 13 versions - Import into RefWorks

Bringing usability concerns to the design of software architecture [PDF] from psu.edu

J Aldrich, C Chambers… - Software Engineering, 2002. …, 2002 - ieeexplore.ieee.org
Page 1. Arch Java: Connecting Software Architecture to Implementation Jonathan Aldrich Craig
Chambers David Notkin ... Abstract Software architecture describes the structure of a system,
enabling more effective design, program understanding, and formal analysis. ...
Cited by 406 - Related articles - BL Direct - All 31 versions - Import into RefWorks

ArchJava: connecting software architecture to implementation [PDF] from psu.edu

L Dobrica… - IEEE Transactions on software Engineering, 2002 - computer.org
... According to this, there are six categories of characteristics (functionality, reliability, usability,
efficiency, maintainability, and portability), which are divided into subcharacteristics. ... 2.2
Software Architecture Definition and Description. Definition. ...
Cited by 289 - Related articles - BL Direct - All 22 versions - Import into RefWorks

A survey on software architecture analysis methods [PDF] from psu.edu

BE John… - Behaviour and Information Technology, 2001 - ingentaconnect.com
The role of software architecture with respect to usability has evolved over the past 20 years.
The architectures of the 1980s and early 1990s assumed that usability was primarily a property
of the presentation of information. Therefore, simply separating the presentation from the ...
Cited by 18 - Related articles - BL Direct - All 6 versions - Import into RefWorks

Usability and software architecture

CD Locke - Real-Time Systems, 1992 - Springer
... Manufactured in The Netherlands. Software Architecture for Hard Real-Time Applications: Cyclic
Executives vs. ... We begin by defining the principal application design objective which most directly
deter- mines the software architecture to be used for a given application: ...
Cited by 247 - Related articles - All 4 versions - Import into RefWorks

Software architecture for hard real-time applications: cyclic executives vs. fixed priority executives [PDF] from douglocke.com

J Bosch… - … the 25th International Conference on Software …, 2003 - portal.acm.org
... modifiability. We should, therefore, design software architectures for usability as we
design for other quality attributes [2]. This requires techniques to assess for usability
and to improve the support for usability in software architecture. ...
Cited by 16 - Related articles - BL Direct - All 5 versions - Import into RefWorks

Designing software architectures for usability

E Folmer… - Human-computer interaction: theory and …, 2003 - books.google.com
Usability Patterns in Software Architecture Eelke Folmer and Jan Bosch Department of Mathematics
and Computing Science University of Groningen, PO Box 800, 9700 AV the Netherlands
mail@ eelke. com, Jan. Bosch@ cs. rug. nl Abstract Over the years the software ...
Cited by 15 - Related articles - All 10 versions - Import into RefWorks

Usability patterns in software architecture [PDF] from psu.edu

G Calvary, J Coutaz… - … of the SIGCHI conference on Human …, 1997 - portal.acm.org
... fxets to provide help or to log signifhnt events to perform usability testing from obsemwd behavior
[24]. ... Having pnxmted the background of software architecture modelling and its contribution to
the sofhwue design (f single-user systems, we need now to analyse its impact on WV ...
Cited by 129 - Related articles - BL Direct - All 11 versions - Import into RefWorks

From single-user architectural design to PAC*: a generic software architecture model for CSCW [PDF] from psu.edu

A Van Lamsweerde - Formal Methods for Software Architectures, 2003 - Springer
... quality-of-service goals capture application-specific concerns about safety, security, usability,
performance, interoperability, accuracy of software information with respect to what it represents
in the environment, etc.; Page 4. ... From System Goals to Software Architecture 29 goal. ...
Cited by 97 - Related articles - BL Direct - All 13 versions - Import into RefWorks

From system goals to software architecture [PDF] from psu.edu

, … -MELLON UNIV PITTSBURGH PA SOFTWARE … - 1996 - Citeseer
... perspective that is driven by the need to design a system that addresses needs such as
concurrency, portability, evolvability, usability, security, etc. ... What to glean from this discussion
is that a precise definition of software architecture is not nearly as important as the concept and ...
Cited by 142 - Related articles - View as HTML - All 34 versions - Import into RefWorks

[BOOK] Software architecture: An executive overview [PDF] from psu.edu

E Folmer… - Journal of systems and software, 2004 - Elsevier
... Our survey shows that there are no design techniques or assessment tools that allow for design
for usability at the architectural level. Author Keywords: Software architecture; Usability; Design
for quality attributes. ... 1.3. Software architecture restricts usability. ...

Architecting for usability: a survey [PDF] from psu.edu

software architecture usability - Google Scholar http://scholar.google.es/scholar?q=software+architecture+usab...

2 of 10 3/16/11 2:44 PM

Cited by 138 - Related articles - All 12 versions - Import into RefWorks

L Hohmann - 2003 - portal.acm.org
... the business ramifications of portability, usability, configuration, upgrade and release management,
security, and other architectural choices can not only lead to project failures, but ultimately to
nasty lawsuits from disappointed customers. Beyond Software Architecture is a must ...
Cited by 64 - Related articles - All 6 versions - Import into RefWorks

[BOOK] Beyond software architecture: creating and sustaining winning solutions

PO Bengtsson… - Software Reuse, 1998. Proceedings. …, 1998 - ieeexplore.ieee.org
... To the best of our knowledge, few architecture reengi- neering methods have been defined. ... They
spend much less effort on the software quality requirements that are to be fulfilled by the system. ...
usability but, generally, no assessment of the achieved result is done. ...
Cited by 83 - Related articles - All 26 versions - Import into RefWorks

Scenario-based software architecture reengineering [PDF] from psu.edu

N Juristo, M Lopez, AM Moreno… - … Gaps Between Software …, 2003 - Citeseer
... On the other hand, the usability patterns in our work relate the mechanisms to be considered
in a software architecture, addressing usability aspects in the early stages of the development
process. ... Achieving Usability Through Software Architecture. Technical Report. ...
Cited by 31 - Related articles - View as HTML - All 11 versions - Import into RefWorks

[PDF] Improving software usability through architectural patterns [PDF] from psu.edu

J Coutaz, L Nigay, D Salber… - Proceedings of …, 1995 - danielsalber.com
... between user preferences and system properties to show how the CARE properties interact with
user modelling to predict usability during the design of ... for the user but may require extra processing
resources from the system side or imply a specific software architecture (Nigay & ...
Cited by 189 - Related articles - View as HTML - All 9 versions - Import into RefWorks

[PDF] Four easy pieces for assessing the usability of multimodal interaction: the CARE properties [PDF] from danielsalber.com

L Balme, A Demeure, N Barralon, J Coutaz… - Ambient …, 2004 - Springer
... CAMELEON-RT: A Software Architecture Reference Model 293 ... Applied to HCI, plasticity is the
capacity of an interactive system to adapt to changes of the interactive space while preserving
usability [2]. Usability is defined as a set of properties {p1,…, pi, …, pn} (eg, observability ...
Cited by 59 - Related articles - BL Direct - All 11 versions - Import into RefWorks

Cameleon-rt: A software architecture reference model for distributed, migratable, and plastic user
interfaces

[PDF] from psu.edu

P Zhang, H Muccini… - Journal of Systems and Software, 2010 - Elsevier
... Goal 1 – model checking software architecture: the translation 4.3.1. From SA inputs to MC inputs:
translation and automation 4.4. Goal 1 – summary 4.5. Goal 2 – model checking software
architecture: usability 4.5.1. Understandability 4.5.1.1. Explicit configuration 4.5.1.2. ...
Cited by 27 - Related articles - All 3 versions - Import into RefWorks

A classification and comparison of model checking software architecture techniques

MA Babar… - 2004 - computer.org
... For example, assessment methods for non-traditional quality attributes (usability, stability etc.)
are being developed. ... The Software Architecture Analysis Method (SAAM) first time appeared
in 1993 [7]. The goals of SAAM are mainly geared to evaluate SA against the desired ...
Cited by 72 - Related articles - All 11 versions - Import into RefWorks

Comparison of scenario-based software architecture evaluation methods [PDF] from psu.edu

F Losavio, L Chirinos, N Lévy… - Journal of Object …, 2003 - Citeseer
... Characteristic Usability • Sub-characteristic ... product to enable the user to learn its application •
Sub-characteristic Operability: the capability of the software product to ... At the architectural level,
they are independent from the architecture, which is transparent to the users, so they ...
Cited by 47 - Related articles - View as HTML - All 7 versions - Import into RefWorks

[PDF] Quality characteristics for software architecture [PDF] from psu.edu

G Blair, L Blair, V Issarny, P Tuma… - Middleware 2000, 2000 - Springer
... Although work is still needed for improving the environment's usability (eg. ... eases the construction
of middleware, contributes to software robustness, and fosters software and design ... extends to
accommodate the seamless nature of the Open-ORB reflective architecture, ie the ...
Cited by 73 - Related articles - All 31 versions - Import into RefWorks

The role of software architecture in constraining adaptation in component-based middleware
platforms

[PDF] from psu.edu

X Franch… - … of the 9th international workshop on Software …, 1998 - portal.acm.org
... Among the most widely accepted [3, 4, 13, 14, 17] we can mention: time and space efficiency,
reusability, maintainability, reliability and usability. In our approach, we allow arbitrary identification
and definition of NF-attributes. ... Page 2. 2. A Model for Software Architecture ...
Cited by 48 - Related articles - All 10 versions - Import into RefWorks

Putting non-functional requirements into software architecture [PDF] from psu.edu

The obstacles and myths of usability and software engineering

software architecture usability - Google Scholar http://scholar.google.es/scholar?q=software+architecture+usab...

3 of 10 3/16/11 2:44 PM

A Seffah… - Communications of the ACM, 2004 - portal.acm.org
... languages, software architecture, component-based engineering techniques, and database
integration skills are among the techniques that must be considered with HCI Web design patterns,
guidelines, and methods. back to top Developing Computer-Assisted Usability ...
Cited by 87 - Related articles - BL Direct - All 5 versions - Import into RefWorks

L Chung… - Conceptual Modeling: Foundations and …, 2009 - Springer
... Colloquially speaking, NFRs have been referred to as “-ilities” (eg, usability) or “-ities” (eg, integrity),
ie, words ending with the string “-ility ... More details on the NFR Framework will be described further
in Section 4. In the area of Software Architecture, one frequently encountered ...
Cited by 1440 - Related articles - BL Direct - All 8 versions - Import into RefWorks

On non-functional requirements in software engineering

RL Krikhaar - 1999 - Citeseer
Page 1. René L. Krikhaar Softw are Architecture Reconstruction René L. Krikhaar 1999 Software
Architecture Reconstruction Afhankelijk van rugdikte Page 2. Software Architecture Reconstruction
Page 3. ... 172 Page 27. Page 28. Chapter 1 Software Architecture ...
Cited by 72 - Related articles - View as HTML - All 14 versions - Import into RefWorks

[BOOK] Software architecture reconstruction [PDF] from psu.edu

P Clements - wpdrts, 1997 - computer.org
... For instance, a simulator could be used to analyze for usability by let ... to by UniCon; automatic
generation of wrappers for standard distrib- uted software component communication ... theorem-
proving verification, such as provided by Modechart Communicating an architecture to a ...
Cited by 52 - Related articles - All 15 versions - Import into RefWorks

Coming attractions in software architecture [PDF] from psu.edu

C Gacek, A Abd-Allah, B Clark… - … on Architectures for Software …, 1995 - profinit.eu
... The user will be interested at the architecting stage in the impact of the software structure on per-
formance, usability, and compliance with other system attribute requirements. As with architectures
of buildings, users also need to relate the architecture to their usage scenarios. ...
Cited by 69 - Related articles - View as HTML - All 9 versions - Import into RefWorks

[PDF] On the definition of software system architecture [PDF] from profinit.eu

H Cunningham - 2000 - Citeseer
Page 1. Software Architecture for Language Engineering Hamish Cunningham ... Abstract This thesis
defines the boundaries of Software Architecture for Language Engineering (SALE), an area formed
by the intersection of human language computation and software engineering. ...
Cited by 77 - Related articles - View as HTML - All 12 versions - Import into RefWorks

[BOOK] Software architecture for language engineering [PDF] from psu.edu

R Kazman, L Bass, M Klein, T Lattanze… - Software Quality …, 2005 - Springer
... attribute research communities, we have created standard characterizations for performance,
availability, usability, testability, se ... Software fault is refined in the utility tree of figure 1 into “Unlock ...
for an analyst or architect to precisely analyze whether the architecture satisfies the ...
Cited by 38 - Related articles - BL Direct - All 10 versions - Import into RefWorks

A basis for analyzing software architecture analysis methods

J Hill - 2000 - Citeseer
Page 1. A Software Architecture Supporting Networked Sensors by Jason Hill Research Project ...
Date Kristofer Pister, Second Reader Date Fall 2000 Page 2. A Software Architecture Supporting
Networked Sensors Copyright Fall 2000 by Jason Hill Page 3. iii Acknowledgements ...
Cited by 69 - Related articles - View as HTML - All 15 versions - Import into RefWorks

[PDF] A software architecture supporting networked sensors [PDF] from psu.edu

RJ Adams, L Bass… - … : Frameworks for HCI/HCD and Software …, 2005 - Citeseer
Abstract: Architecturally-sensitive usability scenarios are important usability concerns that require
early consideration in software design so that architectural support can render them easy and
cost-effective to implement. Examples include providing the ability to cancel a command, ...
Cited by 8 - Related articles - View as HTML - All 3 versions - Import into RefWorks

[PDF] Applying general usability scenarios to the design of the software architecture of a
collaborative workspace

[PDF] from psu.edu

I Gorton… - 2006 - bib.tiera.ru
Page 1. Essential Software Architecture Page 2. Ian Gorton Essential Software Architecture ... In
the years that I have known Ian, he has been an inspirational educa- tor, a pragmatic and decisive
software architect, and an idealistic software architecture researcher. ...
Cited by 71 - Related articles - View as HTML - All 8 versions - Import into RefWorks

[BOOK] Essential software architecture [PDF] from tiera.ru

N Juristo, AM Moreno… - … of Systems and Software, 2007 - Elsevier
... time. Keywords: Software usability; Software design. Article Outline. 1. Introduction ... 1.
Introduction. Software usability is a quality attribute listed in a number of classifications
([IEEE, 1998], [ISO/IEC, 1991] and [Boehm, 1978]). Although it is ...

Analysing the impact of usability on software design

software architecture usability - Google Scholar http://scholar.google.es/scholar?q=software+architecture+usab...

4 of 10 3/16/11 2:44 PM

Cited by 30 - Related articles - All 2 versions - Import into RefWorks

A Navasa, MA Pérez, JM Murillo… - Workshop on Early Aspects …, 2002 - Citeseer
... development process. These include: increase in productivity, re-usability and adaptability.
Thus ... applications [Gru00]. It seems reasonable to observe software architecture from
the aspect-oriented point of view due to several reasons. On ...
Cited by 37 - Related articles - View as HTML - All 8 versions - Import into RefWorks

[PDF] Aspect oriented software architecture: a structural perspective [PDF] from psu.edu

J Grudin - Interacting with computers, 1992 - Elsevier
... Isolating aspects of usability promotes flexibility - interface code and text that are distinct from
other software are more easily ... The question underlying these considerations addresses the
software architecture, the product of development: 'If software is designed to separate form ...
Cited by 91 - Related articles - Import into RefWorks

Utility and usability: research issues and development contexts

B Westfechtel… - Software Configuration Management, 2003 - Springer
... While some of these may be organized according to the software architecture (eg mod- ule ...
languages strive for a high semantic level which allows one to analyze software architectures
for ... To provide for re-usability, SCM systems abstract from the contents of software objects ...
Cited by 35 - Related articles - BL Direct - All 17 versions - Import into RefWorks

Software architecture and software configuration management [PDF] from psu.edu

DS Greenberg, R Brightwell, LA Fisk, A McCabe… - 1997 - computer.org
... system software. At Sandia National Laboratories we have developed, with our vendors, a new
system architecture for high- end computing. Highest performance is achieved by providing
applications with a light-weight interface to a collection of processing nodes. Usability is ...
Cited by 52 - Related articles - All 10 versions - Import into RefWorks

A System Software Architecture for High End Computing [PDF] from psu.edu

F Echtler… - Proceedings of the 5th Nordic conference on …, 2008 - portal.acm.org
... their requirements, we are re- fining the key components of the architecture, especially the ... As
the usability and success of any such framework depend on usage and feedback by ... 5.
DISCUSSION In terms of interoperability with other software, special consider- ations apply with ...
Cited by 33 - Related articles - All 7 versions - Import into RefWorks

A multitouch software architecture [PDF] from psu.edu

J Gutleber… - Cluster Computing, 2002 - Springer
... Peer-to-peer measurements are, how- ever, not sufficient to demonstrate a toolkits
usability. There ... Event based processing allows us to Page 9. SOFTWARE
ARCHITECTURE FOR PROCESSING CLUSTERS BASED ON I2O 63 build ...
Cited by 49 - Related articles - BL Direct - All 4 versions - Import into RefWorks

Software architecture for processing clusters based on I2O

M Svahnberg… - Empirical Software Engineering, 2005 - Springer
... METHOD FOR IDENTIFYING A SOFTWARE ARCHITECTURE CANDIDATE 165 ... of groups of
agreeing people and the sizes of these groups for each architecture candidate and ... For example,
for Model-View-Controller and Usability five of the participants were in agreement, two ...
Cited by 25 - Related articles - All 16 versions - Import into RefWorks

An investigation of a method for identifying a software architecture candidate with respect to
quality attributes

[PDF] from ksu.edu.sa

LL Constantine… - 1999 - portal.acm.org
... architecture. In this book, they present the models and methods of a revolutionary approach to
software that will help programmers deliver more usable software--software that will enable users
to accomplish their tasks with greater ease and efficiency. Recognizing usability as ...
Cited by 580 - Related articles - All 6 versions - Import into RefWorks

[BOOK] Software for use: a practical guide to the models and methods of usage-centered design

K Wallnau, J Stafford, S Hissam… - ECOOP'2001 WCOP …, 2001 - Citeseer
... At present, five quality attributes (security, performance, usability, modifiability, availability) have
been character- ized in this way. ... contrast to the previous illustration, the metatypes we now define
are not grounded in component technology, but in software architecture technology ...
Cited by 38 - Related articles - View as HTML - All 9 versions - Import into RefWorks

[PDF] On the relationship of software architecture to software component technology [PDF] from psu.edu

HR Hartson, JC Castillo, J Kelso… - Proceedings of the …, 1996 - portal.acm.org
... First, to simulate clicking of the software "Report CF' button, user subjects pushed the space bar
on ... screen detail and their effect on the ability to discern useful information about usability problems ...
are using an expert system for landscape architecture as part of a very large scale ...
Cited by 145 - Related articles - All 3 versions - Import into RefWorks

Remote evaluation: the network as an extension of the usability laboratory

A Maccari - Software Engineering, 2002. ICSE 2002. …, 2002 - ieeexplore.ieee.org
Experiences in assessing product family software architecture for evolution [PDF] from ua.ac.be

software architecture usability - Google Scholar http://scholar.google.es/scholar?q=software+architecture+usab...

5 of 10 3/16/11 2:44 PM

... choices done by the manufacturer, usually for the sake of simpler design, higher usability or better ...
When we started the assessment, most of the system software had not yet been written ... context,
the fit goal of the assessment was to improve the quality of the existing architecture. ...
Cited by 41 - Related articles - BL Direct - All 9 versions - Import into RefWorks

JE Robbins - 1999 - argouml.tigris.org
... 30 Table 2-5: Usability guidelines from Shneiderman (1998) 30 ... no. 6. June 1996. pp. 390-406.
A significant revision and extension of the ICSE'95 paper. Extending Design Environments to
Software Architecture Design. Jason E. Robbins, David M. Hilbert, David F. Redmiles. ...
Cited by 32 - Related articles - View as HTML - All 4 versions - Import into RefWorks

[PDF] Cognitive support features for software development tools [PDF] from tigris.org

EJ Whitehead Jr, JE Robbins, N Medvidovic… - … for Software Systems, 1995 - Citeseer
... has multiple sales models, ranging from single sale, single-user (PC software model), to ... Also,
an architecture should ideally provide sup- port for differing sales models, for example ... Unlike
traditional usability of a product interface where the only significant interface is between ...
Cited by 28 - Related articles - View as HTML - All 18 versions - Import into RefWorks

[PDF] Software Architecture: Foundation of a Software Component Marketplace [PDF] from psu.edu

E Golden, BE John… - … Symposium on Empirical Software …, 2005 - computer.org
... In this paper, first we justify the importance of usability as it relates to software architecture, and
briefly discuss Usability-Supporting Architecture Patterns (USAPs), which address the handling
of specific usability concerns in the software architecture design process. ...
Cited by 7 - Related articles - All 10 versions - Import into RefWorks

Quality vs. quantity: Comparing evaluation methods in a usability-focused software architecture
modification task

[PDF] from psu.edu

MM Kandé - 2003 - infoscience.epfl.ch
... A CONCERN-ORIENTED APPROACH TO SOFTWARE ARCHITECTURE ... This dissertation
presents a new approach to software architecture that is suitable for supporting concern-oriented
development and documentation of architectures for software- intensive systems. ...
Cited by 50 - Related articles - All 11 versions - Import into RefWorks

[PDF] A concern-oriented approach to software architecture [PDF] from epfl.ch

SA Schneider, VW Chen… - … Journal of Robotics …, 1998 - ijr.sagepub.com
... The International Journal of Robotics Research Stanley A. Schneider, Vincent W. Chen, Gerardo
Pardo-Castellote and Howard H. Wang ControlShell: A Software Architecture for Complex
Electromechanical Systems Published by: ... Software Architecture for Complex ...
Cited by 45 - Related articles - BL Direct - Import into RefWorks

Controlshell: A software architecture for complex electromechanical systems

T Rafla, PN Robillard… - Software Quality Journal, 2007 - Springer
... 2.2 Software architecture that supports usability (STATUS) project ... Once the usability
requirements have been identified, the next step is to find mechanisms that might be
incorporated into the software architecture to improve the usability of the system (Fig. ...
Cited by 19 - Related articles - BL Direct - All 4 versions - Import into RefWorks

A method to elicit architecturally sensitive usability requirements: its integration into a software
development process

LL Constantine - Information Age, 2002 - informatix.ida.liu.se
... True usability testing requires repeated testing with numbers of users under controlled settings ...
refinement in small increments is the absence of any comprehensive overview of the entire
architecture. For internal elements of the software, this shortcoming is not fatal, because the ...
Cited by 55 - Related articles - All 10 versions - Import into RefWorks

[PDF] Process agility and software usability: Toward lightweight usage-centered design [PDF] from liu.se

MT Ionita, DK Hammer… - ICSE/SARA, 2002 - Citeseer
... as to provide a basis for an informed decision process with regards to architecture. ... attributes,
which need to be considered among the tradeoffs when a software system is ... with respect to
architectural quality attributes like modifiability, performance, availability, usability, and so on ...
Cited by 35 - Related articles - View as HTML - All 6 versions - Import into RefWorks

[PDF] Scenario-based software architecture evaluation methods: An overview [PDF] from psu.edu

MA Babar, B Kitchenham, L Zhu, I Gorton… - … of Systems and Software, 2006 - Elsevier
... requires expertise and knowledge of different quality attribute experts such as performance
engineers and usability specialists ... Based on these previous results, we are developing the concept
of groupware supported distributed software architecture evaluation processes, which ...
Cited by 41 - Related articles - All 5 versions - Import into RefWorks

An empirical study of groupware support for distributed software architecture evaluation process [PDF] from ntnu.no

P Kruchten - 2nd Groningen Workshop on Software Variability, 2004 - Citeseer
... Example: “Use GIS Mapinfo” Categories: politics, usability, safety, COTS 4.7. Cost ... 9. References
Bosch, J. (2004, May). Software Architecture: the Next Step. Paper presented at the First European
Workshop on Software Architecture (EWSA 2004), St Andrews, Scotland. ...

[PDF] An ontology of architectural design decisions in software intensive systems [PDF] from psu.edu

software architecture usability - Google Scholar http://scholar.google.es/scholar?q=software+architecture+usab...

6 of 10 3/16/11 2:44 PM

Cited by 108 - Related articles - View as HTML - All 5 versions - Import into RefWorks

T Brinck, D Gergle, SD Wood… - 2002 - lavoisier.fr
... task analysis chapter. information architecture mockups and prototypes chapter. page layout
chapter. envisioning design production chapter. writing for the web chapter. design elements
chapter. usability in software development launch chapter. ...
Cited by 151 - Related articles - Cached - All 7 versions - Import into RefWorks

[BOOK] Usability for the Web: designing Web sites that work

E Folmer, J Gurp… - Software process improvement and practice, Wiley, 2003
Cited by 7 - Related articles - Import into RefWorks

[CITATION] Investigating the Relationship between Usability and Software Architecture

MF Bertoa, JM Troya… - Journal of Systems and Software, 2006 - Elsevier
... Permissions & Reprints. Measuring the usability of software components. ... At least three measurable
concepts are closely related to software component Usability: the Quality of the Documentation,
the Complexity of the Problem and the Complexity of the Solution (or Design). ...
Cited by 33 - Related articles - All 9 versions - Import into RefWorks

Measuring the usability of software components [PDF] from psu.edu

MJ Mahemoff… - ozchi, 1998 - computer.org
... has elements that can be iterated. Patterns of software architecture, such as Gamma
et al.'s patterns, could be used in this way to support functions or user-interface fea-
tures which are proposed by usability-oriented patterns. ...
Cited by 52 - Related articles - All 14 versions - Import into RefWorks

Principles for a usability-oriented pattern language [PDF] from psu.edu

L Zhu, MA Babar… - 2004 - computer.org
... 1], and has recently emerged as an important quality assurance technique known as software
architecture (SA) evaluation. It has been shown that SA constrains the achievement of various
quality attributes (such as performance, security, maintainability and usability) in a ...
Cited by 26 - Related articles - All 9 versions - Import into RefWorks

Mining patterns to support software architecture evaluation [PDF] from psu.edu

C Kapoor… - COURSES AND LECTURES-INTERNATIONAL …, 1998 - Citeseer
... Chetan Kapoor 1996 Page 2. A Reusable Operational Software Architecture for Advanced
Robotics by Chetan Kapoor, MS Dissertation ... December, 1996 Page 3. A Reusable Operational
Software Architecture for Advanced Robotics Approved by Dissertation Committee: Page 4. ...
Cited by 43 - Related articles - View as HTML - BL Direct - All 7 versions - Import into RefWorks

[PDF] A reusable operational software architecture for advanced robotics [PDF] from psu.edu

L Xu, H Ziv, D Richardson… - Early Aspects, 2005 - Citeseer
... NFRs to software architectures the same or different? Are techniques for analysis and testing
of architectures against FRs and NFRs the same or different? and so on. In particular, analyzing
the architecture against a number of critical NFRs, such as security, usability, integrity ...
Cited by 21 - Related articles - View as HTML - All 7 versions - Import into RefWorks

[PDF] Towards modeling non-functional requirements in software architecture [PDF] from psu.edu

N Medvidovic, NR Mehta… - … on Software Architecture: …, 2002 - Citeseer
Page 1. A Family of Software Architecture Implementation Frameworks Nenad
Medvidovic Nikunj Mehta Marija Mikic-Rakic Computer Science Department Henry
Salvatori Computer Science Center 300 University of Southern ...
Cited by 34 - Related articles - View as HTML - All 9 versions - Import into RefWorks

[PDF] A family of software architecture implementation frameworks [PDF] from psu.edu

J Coutaz - Wiley Online Library
... Where scenarios are used to illustrate aspects of usability along with their corresponding
architectural patterns. In summary, software designers must consider multiple perspectives on
architectural design. As a result, there is no such thing as “the software architecture of a ...
Cited by 26 - Related articles - All 12 versions - Import into RefWorks

Software architecture modeling for user interfaces [PDF] from psu.edu

M Oussalah, A Smeda… - 2004 - computer.org
... In section 3 we present an overview of a multi-paradigm approach to describe complex systems
called Component-Object based Software Architecture (COSA). ... Hard to use: the usability of
connectors (in the form of properties of components) is proved to be difficult. ...
Cited by 29 - Related articles - All 5 versions - Import into RefWorks

An explicit definition of connectors for component-based software architecture

J Garland… - 2003 - books.google.com
Page 1. Large-Scale Software Architecture A Practical Guide using UML Jeff Garland
CrystalClear Software Inc. Richard Anthony Object Computing Inc. Page 2. Page
3. Large-Scale Software Architecture Page 4. Page 5. ...
Cited by 41 - Related articles - All 8 versions - Import into RefWorks

[BOOK] Large-scale software architecture: a practical guide using UML

software architecture usability - Google Scholar http://scholar.google.es/scholar?q=software+architecture+usab...

7 of 10 3/16/11 2:44 PM

K Ng, J Kramer… - Automated Software Engineering, 1996 - Springer
... the Architect's Assistant supports a compositional approach to program development in which
the software architecture plays a central role throughout the software life-cycle ... Conscious effort
has been made to maximise usability and efficiency, primarily by enhancing the level ...
Cited by 28 - Related articles - All 4 versions - Import into RefWorks

A CASE tool for software architecture design

KA Butler - interactions, 1996 - portal.acm.org
... Usability is a Quality of Software The user interface is critically important for the success of an
interactive computer system. ... It can also be used to improve the software process itself because
usability measurements indicate how well a user interface design process is working. ...
Cited by 70 - Related articles - BL Direct - All 2 versions - Import into RefWorks

Usability engineering turns 10

DH Cunningham, DD Maynard, DK Bontcheva… - 2002 - eprints.aktors.org
... In addition, it promotes robustness, re-usability, and scalability as important principles that help
with the construction of practicalNLP systems. 8 Conclusions ... H. Cunningham. 2000. Software
Architecture for Language Engineering. Ph.D. thesis, University of Sheffield. ...
Cited by 1060 - Related articles - All 3 versions - Import into RefWorks

GATE: A framework and graphical development environment for robust NLP tools and applications [PDF] from aktors.org

J Grundy, Y Cai… - ase, 2001 - computer.org
... Proceedings of the 16th Annual International Conference on Automated Software Engineering
(ASE 2001 ... Song, W., Tan, CJ Distributed and scalable XML document processing architecture
for E ... 7. Green, TRG and Petre, M, Usability analysis of visual programming environments ...
Cited by 30 - Related articles - All 20 versions - Import into RefWorks

Generation of distributed system test-beds from high-level software architecture descriptions [PDF] from auckland.ac.nz

A Alonso, B Álvarez, JA Pastor… - 4th IFAC Workshop on …, 1997 - dit.upm.es
... Usability: The system will be used by operators with no background in computing. Hence it must
be easy to use and adapted to the skills and common practices in their domain. ... Local Area
Network Tools Software architecture for a robot teleoperation system ...
Cited by 23 - Related articles - View as HTML - Import into RefWorks

[PS] Software architecture for a robot teleoperation system [PS] from upm.es

GE Pfaff - 1985 - portal.acm.org
... software application architecture, Proceedings of the 12th international conference on Software
engineering, p.212-220, March 26-30, 1990, Nice, France. Tamer Rafla , Pierre N. Robillard ,
Michel Desmarais, A method to elicit architecturally sensitive usability requirements: its ...
Cited by 391 - Related articles - Import into RefWorks

[BOOK] User interface management systems

L Nigay… - Proceedings of the INTERACT'93 and CHI'93 …, 1993 - portal.acm.org
... Given that the command language barrier is surpassed, usability can be further tested by
establishing whether particular modalities are adequate for expressing a given command.
For instance, if a command has a ... SOFTWARE ARCHITECTURE FOR ...
Cited by 266 - Related articles - All 12 versions - Import into RefWorks

A design space for multimodal systems: concurrent processing and data fusion [PDF] from psu.edu

N Juristo, A Moreno… - … Transactions on Software …, 2007 - computer.org
... 44]. Bass et al. [2], [3] have used a bottom-up approach based on fieldwork
observation to describe a set of scenarios representing usability issues that have
an effect on the software architecture. We 1 have decomposed ...
Cited by 55 - Related articles - BL Direct - All 5 versions - Import into RefWorks

Guidelines for eliciting usability functionalities

BJ Williams… - Information and Software Technology, 2010 - Elsevier
... Permissions & Reprints. Characterizing software architecture changes: A systematic review. ...
Abstract. With today's ever increasing demands on software, software developers must produce
software that can be changed without the risk of degrading the software architecture. ...
Cited by 36 - Related articles - All 8 versions - Import into RefWorks

Characterizing software architecture changes: A systematic review [PDF] from msstate.edu

I Crnkovic - Software Focus, 2001 - Wiley Online Library
... This applies to both functional and non-functional requirements. 4 Conflict between usability
and reusability. ... Discussion of these is beyond the scope of this article and the relation between
software architecture and CBD is discussed in the following. ...
Cited by 99 - Related articles - BL Direct - All 6 versions - Import into RefWorks

Component‐based software engineering—new challenges in software development [PDF] from psu.edu

T Rafla, R Oketokoun, A Wiklik… - … on Software …, 2004 - actapress.com
... This assumption is now challenged since usability is strongly related to the internal components
of the system and it must be considered when designing the rest of the system [3]. Decisions
in software architecture can severely compromise the usability of the final system. ...

Accommodating usability driven changes in existing software architecture [PDF] from tripod.com

software architecture usability - Google Scholar http://scholar.google.es/scholar?q=software+architecture+usab...

8 of 10 3/16/11 2:44 PM

Cited by 5 - Related articles - All 6 versions - Import into RefWorks

PC Clements - … of the 8th international workshop on software …, 1996 - portal.acm.org
... Architecture analysis support: What support is pro- vided by the ADL for analyzing
architecture-level in- formation in order to predict ... Analyzing for portability: hardware indepen-
dence, software independence ... Analyzing for usability: understandability, ease of learning, ...
Cited by 287 - Related articles - All 22 versions - Import into RefWorks

A survey of architecture description languages [PDF] from javeriana.edu.co

BEJL Bass, BE John, N Juristo… - Behaviour & Information …, 2001
Cited by 6 - Related articles - Import into RefWorks

[CITATION] Usability and software architecture

MA Babar, II Gorton… - 2005 - computer.org
... 2000. [40] John, BE, et al., "Bringing Usability Concerns to the Design of Software Architecture,"
Proc. of the 9th IFIP Working Conference on Engineering for Human-Computer Interaction. 2004.
[41] "Hipergate - Open Source CRM and Groupware", http://www.hipergate.com. ...
Cited by 22 - Related articles - All 3 versions - Import into RefWorks

Capturing and using software architecture knowledge for architecture-based software
development

C Stoermer, L O'Brien… - 2003 - computer.org
... For example performance models can be fairly formal (queuing models) while usability models
try to model user satisfaction, which ... The architecture tactics are not free to select. In the design
process the software architect has to select the appropriate tactic to satisfy the required ...
Cited by 26 - Related articles - All 6 versions - Import into RefWorks

Moving towards quality attribute driven software architecture reconstruction [PDF] from vu.nl

B Boehm… - Software, IEEE, 1996 - ieeexplore.ieee.org
... Rcquiremeiits big., T Press, T,o\ -\lannit(iu, C;alif., 1 9Oj, IEEE SOFTWARE Page 6. Attribute ...
MARCH 1996 Page 7. Primary Architecture Attribute Strategy Asurance Input checlung ...
Reinforcement Conflicts Comments Interoperabillty, usability Cosdschedule performance ...
Cited by 262 - Related articles - BL Direct - All 16 versions - Import into RefWorks

Identifying quality-requirement conflicts [PDF] from unp.edu.ar

N Juristo… - … Sixteenth International Conference on Software …, 2004 - Citeseer
This paper examines in a problem posed recently concerning the relationship between software
system usability and architecture. Here, we try to empirically clarify this relationship, focusing
on the concept of architecture-sensitive usability mechanism. This concept represents ...
Cited by 4 - Related articles - Cached - All 2 versions - Import into RefWorks

Clarifying the relationship between software architecture and usability

J Anderson, F Fleak, K Garrity… - Software, IEEE, 2001 - ieeexplore.ieee.org
... The software development process we developed might seem a generic solution. ... model as closely
as possible within the constraints of the information and technical architecture. The usability
evaluator has primary re- sponsibility for testing the product design, analyzing and ...
Cited by 45 - Related articles - BL Direct - All 9 versions - Import into RefWorks

Integrating usability techniques into software development [PDF] from aau.dk

, … -MELLON UNIV PITTSBURGH PA SOFTWARE … - 2003 - Citeseer
... quality attrib- ute. A collection of tactics for a variety of quality attributes, such as
modifiability, perform- ance, usability, testability, and availability, are presented in
the book Software Architecture in Practice [Bass 03]. The set of ...
Cited by 25 - Related articles - All 17 versions - Import into RefWorks

[BOOK] SACAM: The software architecture comparison analysis method [PDF] from psu.edu

L Lundberg, J Bosch, D Häggander… - … Conference on Software …, 1999 - Citeseer
... As part of our future work, we intend to incorporate other attributes, eg reusability, usability
and availability. ... However, in ATAM there are no guidelines on how to modify the software
architecture. Figure 7: Outline of the architectural design method ...
Cited by 26 - Related articles - View as HTML - All 11 versions - Import into RefWorks

[PDF] Quality attributes in software architecture design [PDF] from psu.edu

, … -MELLON UNIV PITTSBURGH PA SOFTWARE … - 2002 - Citeseer
... One of the key principles that direct our work is that the quality-attribute requirements
(such as performance, security, modifiability, reli- ability, and usability) exert a
dominant influence on the “shape” of a software architecture. ...
Cited by 32 - Related articles - View as HTML - All 11 versions - Import into RefWorks

[BOOK] Illuminating the fundamental contributors to Software Architecture Quality [PDF] from psu.edu

A Seffah, T Mohamed, H Habieb-Mammar… - … of Systems and Software, 2008 - Elsevier
Traditional interactive system architectures such as MVC [Goldberg, A., 1984. Smaltalk-80: The
Interactive Programming Environment, Addison-Wesley Publ.] and PAC [Coutaz, J., 1987.
PAC, an implementation model for dialog design. In: Interact'87, Sttutgart, September ...

Reconciling usability and interactive system architecture using patterns

software architecture usability - Google Scholar http://scholar.google.es/scholar?q=software+architecture+usab...

9 of 10 3/16/11 2:44 PM

 Create email alert

Result Page: 1 2 3 4 5 6 7 8 9 10 Next

software architecture usability Search

Go to Google Home - About Google - About Google Scholar

©2011 Google

Cited by 12 - Related articles - All 2 versions - Import into RefWorks

DM Nichols, M Twidale… - 2002 - Citeseer
... Although there are few formal studies of open source usability there are several suggestions
that open source software usability is a significant issue (Behlendorf, 1999; Raymond, 1999;
Manes, 2002; Nichols et al., 2001; Thomas 2002; Frishberg et al., 2002): If this [desktop and ...
Cited by 146 - Related articles - View as HTML - All 38 versions - Import into RefWorks

[BOOK] Usability and open source software [PDF] from psu.edu

E Golden - Proceedings of the 1st ACM SIGCHI symposium on …, 2009 - portal.acm.org
... the architectural ramifications of usability requirements, then Usability-Supporting Architectural
Patterns (USAPs) will help to bridge the gap between UI designers and software engineers to
produce software architecture solutions that successfully address usability requirements ...
Cited by 6 - Related articles - Import into RefWorks

Helping software architects design for usability

K Grimm - 2003 - computer.org
... This sub-process aims at the seamless integration of all usability aspects into the entire software
development process [1]. Major elements of ... As the software architecture in a vehicle also depends
on the mechanical and the electrical architecture there is also a mutual ...
Cited by 85 - Related articles - BL Direct - All 6 versions - Import into RefWorks

Software technology in an automotive company-major challenges

D Richardson… - ACM SIGSOFT Software Engineering …, 1999 - portal.acm.org
... This paper outlines some ways in which architectural description languages need to be designed
to increase their usability, acceptability, and ... Software architecture description languages provide
a means to formally describe software systems at a high level of abstraction. ...
Cited by 25 - Related articles - Import into RefWorks

ROSATEA: International workshop on the role of software architecture in analysis e (and) testing

software architecture usability - Google Scholar http://scholar.google.es/scholar?q=software+architecture+usab...

10 of 10 3/16/11 2:44 PM

N Juristo, A Moreno… - … Transactions on Software …, 2007 - computer.org
... These details are important as they have an impact on this mechanism's design. ... Evidently,
the use of usability patterns and any other artifact for improving software system usability calls
for a lot of user involvement throughout the development process. ...
Cited by 55 - Related articles - BL Direct - All 5 versions - Import into RefWorks

Guidelines for eliciting usability functionalities

BE John, L Bass, MI Sanchez-Segura… - … Computer Interaction and …, 2005 - Springer
... We then discuss why we are focusing on forces and why the forces that come from prior design
decisions play a special role in software creation. In section 4, we describe our template for these
patterns and illustrate it with one of the usability scenarios previously identified by ...
Cited by 28 - Related articles - BL Direct - All 13 versions - Import into RefWorks

Bringing usability concerns to the design of software architecture [PDF] from psu.edu

E Folmer, J Van Gurp… - Bridging the Gaps Between Software …, 2003 - Citeseer
... Usability patterns The term usability pattern refers to a technique or mechanism that can be applied
to the design of the architecture of a software system in order to address a need identified by
a usability property at the requirements Figure 2: Usability framework 63 Page 64. ...
Cited by 22 - Related articles - View as HTML - All 18 versions - Import into RefWorks

[PDF] Scenario-based assessment of software architecture usability [PDF] from psu.edu

A Seffah… - … International conference on Software …, 2003 - portal.acm.org
... transferring, by means of software development tools, the design knowledge of human factors
and user interface designers to software engineers unfamiliar with usability engineering. Within
our approach, we have been using three different categories of patterns: HCI (Human ...
Cited by 19 - Related articles - BL Direct - All 6 versions - Import into RefWorks

Empowering software engineers in human-centered design [PDF] from javeriana.edu.co

DJ Mayhew - 1999 - books.google.com
... According to Karat and Dayton (1995), "In most cases of the design and development of
commercial software, usability is not dealt with at the same level as other aspects of software
engineering (eg, clear usabil- ity objectives are not set, resources for appropriate activities are ...
Cited by 544 - Related articles - BL Direct - All 4 versions - Import into RefWorks

[BOOK] The usability engineering lifecycle: a practitioner's handbook for user interface design

MB Dwyer, GS Avrunin… - 1999 - computer.org
... Thus a pattern system for proper- ties should mirror this view to enhance usability. ... In fact, the
frequencies of the patterns, 416 Proceedings of the 21st International Conference on Software
Engineering (ICSE'99) 0270-5257/99 $ 10.00 © 1999 ACM Page 7. ...
Cited by 698 - Related articles - BL Direct - All 19 versions - Import into RefWorks

Patterns in property specifications for finite-state verification [PDF] from umd.edu

J Tidwell - 2005 - portal.acm.org
... Being in web design, I know that the mobile world is really taking off, so using design patterns
from mobile devices and ... on various devices, and this book really illuminates those areas if you
haven't had much experience with software development or mobile usability testing. ...
Cited by 215 - Related articles - All 9 versions - Import into RefWorks

[BOOK] Designing interfaces

RT Fielding - 2000 - Citeseer
... Architectural Styles and the Design of Network-based Software Architectures DISSERTATION ...
with the categorization of software designs and the development of design methodologies, but
has rarely been able to objectively evaluate the impact of various design choices on ...
Cited by 1699 - Related articles - View as HTML - All 76 versions - Import into RefWorks

[PDF] Architectural styles and the design of network-based software architectures [PDF] from psu.edu

MJ Mahemoff… - ozchi, 1998 - computer.org
... Furthermore, a vocabulary of patterns which con- sider both interaction and software design would
be a boon to projects of an interdisciplinary nature. To identify pat- terns which promote usability,
it is necessary to understand exactly what we mean by usability. ...
Cited by 52 - Related articles - All 14 versions - Import into RefWorks

Principles for a usability-oriented pattern language [PDF] from psu.edu

T Lethbridge… - 2001 - sutlib2.sut.ac.th
... to employ additional design patterns 246 6.15 Difficulties and risks when using design patterns
250 6.16 ... users 256 7.3 The basics of user interface design 258 7.4 Usability principles 262 ...
Summary 307 8.7 For more information 307 9 Architecting and designing software 309 9.1 ...
Cited by 122 - Related articles - All 5 versions - Import into RefWorks

[PDF] Object-oriented software engineering [PDF] from sut.ac.th

X Ferre, N Jusisto, AM Moreno… - Proceedings of INTERACT …, 2003 - Citeseer
... so on), that are needed for the software product being developed, and providing software
developers with design solutions that address such usability properties. The design solutions
proposed are shaped in the form of patterns, which express common usability heuristics of the ...
Cited by 9 - Related articles - View as HTML - All 9 versions - Import into RefWorks

[PDF] A software architectural view of usability patterns [PDF] from psu.edu

usability patterns software design - Google Scholar http://scholar.google.es/scholar?hl=en&q=usability+patterns+...

3 of 10 3/16/11 2:45 PM

, … of Technology. Graphics, Visualization and Usability … - 1993 - Citeseer
... if all operations were exercised equally, with no preference suggested by the usability of the ... on
log file analysis can result from identifying high-level actions and viewing software usage in ... The
technique described in this paper has proven useful in describing patterns in student ...
Cited by 25 - Related articles - View as HTML - All 12 versions - Import into RefWorks

[BOOK] Deriving software usage patterns from log files [PDF] from psu.edu

E Golden, BE John… - … international conference on Software …, 2005 - portal.acm.org
... ABSTRACT Design patterns have been claimed to facilitate modification and improve
understanding in software design. A controlled experiment was performed to assess the
usefulness of portions of a Usability-Supporting Architectural Pattern (USAP) in modifying the ...
Cited by 25 - Related articles - BL Direct - All 11 versions - Import into RefWorks

The value of a usability-supporting architectural pattern in software architecture design: a
controlled experiment

[PDF] from psu.edu

P Astrom, S Johansson… - System Synthesis, 2001. …, 2001 - ieeexplore.ieee.org
... All software patterns cannot be used in hardware design, however they can provide insight into
how ... We have shown by an example applying the described patterns that a C++ design is ... Several
important properties of a library like usability, reusability, ease of use and structure ...
Cited by 15 - Related articles - All 9 versions - Import into RefWorks

Application of Software design patterns to DSP library design [PDF] from psu.edu

J Coplien - Enterprise Information Systems VI, 2006 - Springer
... Does success depend on usability of the software? Or does your company base success on sales? ...
Organizational patterns are a guide to shaping the organizational structures that bode for success.
The software architecture echoes that same structure by Conway's Law. ...
Cited by 181 - Related articles - All 6 versions - Import into RefWorks

Organizational Patterns [PDF] from tuc.gr

E Folmer, J van Gurp… - Engineering Human Computer …, 2005 - Springer
... 2.3 Architecture Sensitive Usability Patterns A number of usability patterns have
been identified that should be applied during the design of a system's software
architecture, rather than during the detailed design stage. This set ...
Cited by 34 - Related articles - BL Direct - All 27 versions - Import into RefWorks

Software architecture analysis of usability [PDF] from psu.edu

J Bosch… - … the 25th International Conference on Software …, 2003 - portal.acm.org
... o use-case map based assessment o integrated usability assessment Improving
Software Architectures for Usability o usability patterns o selecting design solutions •
Case studies: examples and experiences • Concluding remarks ...
Cited by 16 - Related articles - BL Direct - All 5 versions - Import into RefWorks

Designing software architectures for usability

MB Dwyer, GS Avrunin… - … on Formal methods in software …, 1998 - portal.acm.org
... sis and modeling information [16], software process and organizational structures [5], and curricula
for educat- ing software developers [22]. ... patterns constrain the order of states/events [eg, the ... Thus
a pattern system for properties should mirror this view to enhance usability. ...
Cited by 283 - Related articles - All 13 versions - Import into RefWorks

Property specification patterns for finite-state verification [PDF] from umass.edu

D Gross… - Requirements Engineering, 2001 - Springer
... functional requirements, also called quality attributes (eg [1,2]). These are requirements such
as reliability, usability, maintainability, cost ... 6] to support architectural design [7,8] and to deal with
change [9]. In the software design area, the concept of design patterns has been ...
Cited by 131 - Related articles - BL Direct - All 40 versions - Import into RefWorks

From non-functional requirements to design through patterns [PDF] from psu.edu

S Henninger… - at 18th Int. Conf. on Software Engineering …, 2006 - Citeseer
... LNCS 2254, Springer, 2001, pp. 141-155. [14] S. Henninger, P. Ashokkumar, "An
Ontology-Based Infrastructure for Usability Design Patterns," Proc. Semantic Web Enabled
Software Engineering (SWESE), Galway, Ireland, pp. 41-55, 2005. ...
Cited by 13 - Related articles - View as HTML - All 10 versions - Import into RefWorks

[PDF] An Ontology-Based Metamodel for Software Patterns [PDF] from psu.edu

E Folmer, J Van Gurp… - Software Process: …, 2003 - Wiley Online Library
... However, we want to have this direct relationship between usability and software architecture
to be able to describe and categorize our usability patterns in such a way that they can
be used as requirements that can support architectural design. ...
Cited by 39 - Related articles - BL Direct - All 12 versions - Import into RefWorks

A framework for capturing the relationship between usability and software architecture [PDF] from psu.edu

J Lin… - Proceeding of the twenty-sixth annual SIGCHI …, 2008 - portal.acm.org
... in SUEDE, would be more suitable for more extensive usability tests. ... The patterns are stored in
external files in an XML-based format called the Pattern Language Markup Language ... Damask's
architecture is based on the model-view- controller (MVC) software design pattern. ...

Employing patterns and layers for early-stage design and prototyping of cross-device user
interfaces

[PDF] from psu.edu

usability patterns software design - Google Scholar http://scholar.google.es/scholar?hl=en&q=usability+patterns+...

4 of 10 3/16/11 2:45 PM

Cited by 42 - Related articles - BL Direct - All 7 versions - Import into RefWorks

RK Keller… - … 20th international conference on Software …, 1998 - portal.acm.org
... The criteria that .lead to a certain design include functionality, reliability, usability, efficiency,
main- tainability, and portability [15]. ... In this pa- per, we introduced an approach in which
design patterns constitute the foundation of software development. ...
Cited by 114 - Related articles - BL Direct - All 9 versions - Import into RefWorks

Design components: toward software composition at the design level [PDF] from psu.edu

K Perzel… - PloP'99, 1999 - hillside.net
... For example the concept of design to a graphic artist is very different than the concept of design
to a software engineer. Usability is a critical success factor for successful web applications.
Patterns can provide a language for communicating usability concerns among these ...
Cited by 33 - Related articles - View as HTML - All 9 versions - Import into RefWorks

[PDF] Usability Patterns for Applications on the world wide web [PDF] from hillside.net

A Seffah, J Gulliksen… - 2005 - 2006.cusec.net
... engineered? Peanut Butter Theory of Usability Training Resources [Seffah-93] User ... Interface
Process Orientation Guidelines and Patterns [Seffah-01] Page 16. Moving to Human-Centered
Software Development Human-centered development User-driven Solution focus ...
Cited by 20 - Related articles - View as HTML - All 5 versions - Import into RefWorks

[BOOK] Human-centered software engineering [PDF] from cusec.net

J Lakos - Reading, MA, 1996 - books.google.com
... Page 144. 124 LARGE-SCALE C++ SOFTWARE DESIGN Figure 5. A large program |
MAIN" C] Figure 6. A large system. tern architecture. Reduced testability, reduced usability,
and reduced modifia- bility are important primary causes. ...
Cited by 235 - Related articles - All 13 versions - Import into RefWorks

Large-scale C++ software design [PDF] from brown.edu

A Seffah… - … Systems: Design, Specification, and Verification, 2002 - Springer
... Patterns should not be considered just as an alternative design tool to guide- lines ... For instance,
CASE tools have long been available to assist software developers to integrate the ... in- tegrated
with existing development tools in order to maximize the benefits of usability patterns. ...
Cited by 25 - Related articles - BL Direct - All 5 versions - Import into RefWorks

Multiple user interfaces: Towards a task-driven and patterns-oriented design model

JL Bennett - Visual display terminals, 1984
Cited by 69 - Related articles - All 2 versions - Import into RefWorks

[CITATION] Managing to meet usability requirements: establishing and meeting software development
goals

E Folmer, M Welie… - Information and Software Technology, 2006 - Elsevier
... can assess what it means in their context and can decide whether they need to modify the software
architecture to support these patterns. ... by adaptive maintenance activities once the system has
been implemented and leads to architectures with better support for usability. ...
Cited by 46 - Related articles - All 6 versions - Import into RefWorks

Bridging patterns: An approach to bridge gaps between SE and HCI [PDF] from rug.nl

S Henninger, M Keshk… - … and Perspectives on HCI Patterns, 2003 - Citeseer
... detail. First, given current software development and usability processes, efforts
to apply patterns fall short of the goal to put the accumulated knowledge of
user-centered design at the fingertips of software developers. Just as ...
Cited by 6 - Related articles - View as HTML - All 9 versions - Import into RefWorks

[PDF] Capturing and disseminating usability patterns with semantic web technology [PDF] from psu.edu

, … -MELLON UNIV PITTSBURGH PA SOFTWARE … - 2001 - Citeseer
... The architecture patterns we provide will enable usability specialists to evaluate the impact of ...
give these specialists the tools necessary to decide which aspects of usability should be ... We also
hope to give software engineers the tools necessary to understand particular aspects ...
Cited by 81 - Related articles - View as HTML - BL Direct - All 25 versions - Import into RefWorks

[BOOK] Achieving usability through software architecture [PDF] from psu.edu

D Kane - 2003 - computer.org
... This example illustrates the competing forces that drive user interface design decisions. Just
as design patterns capture the tradeoffs of software design decisions, user interface patterns
can help developers make better choices about tradeoffs that affect usability. ...
Cited by 17 - Related articles - All 10 versions - Import into RefWorks

Finding a place for discount usability engineering in agile development: throwing down the gauntlet [PDF] from agilealliance.org

AC Robinson, J Chen, EJ Lengerich… - Cartography and …, 2005 - ncbi.nlm.nih.gov
... 1999;19(6):51–9. Haklay M, Tobon C. Usability evaluation and PPGIS: Towards a user ... Patterns
of colorectal cancer incidence, risk factors, and screening in Kentucky. ... Jacquez GM, Estberg L.
BioMedware, Inc.; Clusterseer 2.0: Software for the detection and analysis of spatial ...
Cited by 39 - Related articles - All 15 versions - Import into RefWorks

[HTML] Combining usability techniques to design geovisualization tools for epidemiology [HTML] from nih.gov

usability patterns software design - Google Scholar http://scholar.google.es/scholar?hl=en&q=usability+patterns+...

5 of 10 3/16/11 2:45 PM

DM Nichols, M Twidale… - 2002 - Citeseer
... These approaches are not necessarily restricted to OSS; several can be applied to
proprietary software. Indeed the ideas derived from discount usability engineering and
participatory design originated in developing better proprietary software. ...
Cited by 146 - Related articles - View as HTML - All 38 versions - Import into RefWorks

[BOOK] Usability and open source software [PDF] from psu.edu

S Henninger… - Proc. Semantic Web Enabled Software …, 2005 - Citeseer
Abstract. Usability patterns represent knowledge about known ways to design graphical user
interfaces that are usable and meet the needs and expectations of users. There is currently a
plethora of usability patterns published in books, private repositories and the World-Wide ...
Cited by 11 - Related articles - View as HTML - All 5 versions - Import into RefWorks

[PDF] An Ontology-Based Infrastructure for Usability Design Patterns [PDF] from psu.edu

H Albin-Amiot, P Cointe, YG Guéhéneuc… - ase, 2001 - computer.org
... We are currently assessing the usability and suit- ability of our tools on several frameworks: Java ...
pat- terns, to automate, or to assist, in designing, under- standing, and re-engineering software. ...
we hope to see other approaches to this problem, based on the patterns we have ...
Cited by 88 - Related articles - All 20 versions - Import into RefWorks

Instantiating and detecting design patterns: Putting bits and pieces together [PDF] from psu.edu

T Hede… - Untangling the web: Establishing learning links. …, 2002 - ascilite.org.au
... to standardise software interface design as much as possible. Creating interfaces that conform
to user expectations can reduce the overhead and learning demand of the software itself and
allow learner focus on the material being presented. Usability patterns can provide the ...
Cited by 23 - Related articles - Cached - All 3 versions - Import into RefWorks

[HTML] Multimedia effects on learning: Design implications of an integrated model [HTML] from ascilite.org.au

M Van Welie… - Proceedings of interact, 2003 - welie.com
... Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995), Design Patterns: Elements of
Reusable Object- Oriented Software, Addison-Wesley, Reading, Mass. Graham, I. (2003),
A pattern language for Web Usability, Addison-Wesley, Boston, US. ...
Cited by 107 - Related articles - View as HTML - All 8 versions - Import into RefWorks

[PDF] Pattern languages in interaction design: Structure and organization [PDF] from welie.com

A Cooper - 1995 - portal.acm.org
... Applicable to multimedia and Web sites as well as application software, About Face is an
invaluable resource for design professionals. top of page AUTHORS. Alan Cooper No contact
information provided yet. Bibliometrics: publication history Publication years, 1995-2007. ...
Cited by 304 - Related articles - All 2 versions - Import into RefWorks

[BOOK] About face: The essentials of user interface design

H Kampffmeyer… - Model Driven Engineering Languages and …, 2007 - Springer
... This reduces the usability of ontologies to domain experts only. ... It allows design problems to be
described visually and suggests a set of matching design patterns for a given design problem. ...
It shows the applicability of ontologies for tool support in the area of software design. ...
Cited by 17 - Related articles - BL Direct - All 10 versions - Import into RefWorks

Finding the pattern you need: The design pattern intent ontology [PDF] from psu.edu

J Nielsen - COMPUTER,, 1992 - computer.org
... To ensure the usability of interactive computer products, we must actively include usability
concerns in the software development process. Of course, nobody deliberately sets out to design
an unusable interface, but only a systematic usability effort using established methods ...
Cited by 226 - Related articles - All 6 versions - Import into RefWorks

The usability engineering life cycle

G Casaday - CHI'97 extended abstracts on Human factors in …, 1997 - portal.acm.org
... 10. IEEE. Special Issue on Object Methods, Patterns, and Architectures. IEEE Software,
(January/February 1996). ... University of Chicago Press, 1970. 12. Jakob Nielsen, Usability
Engineering, Morgan Kaufmann Publishers Inc., San Francisco, CA, 1993. ...
Cited by 24 - Related articles - All 2 versions - Import into RefWorks

Notes on a pattern language for interactive usability

PW Fach - IEEE Software,, 2001 - computer.org
... Thus, changes for pure usability reasons have little chance of implementation in the later ... design
process of frameworks, help develop suitable metaphors for design patterns, and above ... for
specially trained HCI consultants but also for highly experienced software architects who ...
Cited by 19 - Related articles - BL Direct - All 11 versions - Import into RefWorks

Design reuse through frameworks and patterns [PDF] from psu.edu

L Bass, BE John, N Juristo… - 2004 - computer.org
... In this sense, our usability-supporting architectural patterns differ from other architectural patterns
in that most other patterns are presented as if they ... Our long term goal is to develop a handbook
of USAPs that has utility to both software developers and usability engineers. ...
Cited by 7 - Related articles - BL Direct - All 11 versions - Import into RefWorks

Usability-supporting architectural patterns

usability patterns software design - Google Scholar http://scholar.google.es/scholar?hl=en&q=usability+patterns+...

6 of 10 3/16/11 2:45 PM

Web Images Videos Maps Books Translate Gmail more ! laura.carvajal@gmail.com | Scholar Preferences | My Account | Sign out

architectural patterns usability Search Advanced Scholar Search

Scholar Articles excluding patents anytime include citations Create email alertResults 1 - 100 of about

N Juristo, M Lopez, AM Moreno… - Bridging the Gaps Between …, 2003 - Citeseer
Improving software usability through architectural patterns Natalia Juristo School of
Computing-Universidad Politécnica de Madrid, Spain Marta Lopez School of Computing-Universidad
Complutense de Madrid, Spain Ana M. Moreno School of Computing-Universidad ...
Cited by 31 - Related articles - View as HTML - All 11 versions - Import into RefWorks

[PDF] Improving software usability through architectural patterns [PDF] from psu.edu

L Bass… - Journal of Systems and Software, 2003 - Elsevier
... Although many of the general scenarios presented here will be applicable to other paradigms,
these environments are likely to introduce their own additional usability requirements.
Understanding the effect on other attributes of usability architectural patterns. ...
Cited by 92 - Related articles - All 10 versions - Import into RefWorks

Linking usability to software architecture patterns through general scenarios [PDF] from psu.edu

J Yoder… - Urbana, 1998 - Citeseer
Page 1. Architectural Patterns for Enabling Application Security Joseph Yoder
Department of Computer Science University of Illinois at Urbana-Champaign Urbana,
IL 61801 j-yoder@uiuc.edu Jeffrey Barcalow Reuters Information ...
Cited by 210 - Related articles - View as HTML - All 35 versions - Import into RefWorks

[PDF] Architectural patterns for enabling application security [PDF] from psu.edu

L Bass… - Computer, 2001 - ieeexplore.ieee.org
... However, separation-based architectural patterns are independent of these mech- anisms and
alone are insufficient to pro- vide the ability to support a cancel command. USABILITY FACETS
At the SEI, we have isolated 26 usabil- ity facets that require software architec- tural ...
Cited by 36 - Related articles - BL Direct - All 8 versions - Import into RefWorks

Supporting usability through software architecture

E Folmer… - Journal of systems and software, 2004 - Elsevier
... often requires the use of certain design patterns or styles. For instance, to improve portability
and modifiability it may be beneficial to use a layered architecture style. It is our conjecture that
a large number of issues associated to usability may also require architectural support in ...
Cited by 138 - Related articles - All 12 versions - Import into RefWorks

Architecting for usability: a survey [PDF] from psu.edu

P Avgeriou, U Zdun - 2005 - eprints.cs.univie.ac.at
Page 1. Architectural Patterns Revisited – A Pattern Language Paris Avgeriou Uwe
Zdun CONCERT ... Regrettably, finding and applying the appropriate architectural patterns
in practice still remains largely ad-hoc and unsystematic. This ...
Cited by 74 - Related articles - View as HTML - All 4 versions - Import into RefWorks

[PDF] Architectural patterns revisited—A pattern language [PDF] from univie.ac.at

I Ozkaya, R Kazman… - … on The Economics of Software and …, 2007 - portal.acm.org
... Many architectural decisions regarding usability are captured at the architectural level as a series
of modularization decisions, such as the use of the model-view-controller pattern. However, many
architecturally significant usability decisions require other patterns [14] as well ...
Cited by 17 - Related articles - All 18 versions - Import into RefWorks

Quality-Attribute Based Economic Valuation of Architectural Patterns [PDF] from psu.edu

L Bass, BE John, N Juristo… - 2004 - computer.org
Page 1. Usability-supporting Architectural Patterns 1 Len Bass Carnegie ... application. In
this tutorial, we present usability-supporting architectural patterns. Each pattern describes
a usability concern that is not supported by separation alone. ...
Cited by 7 - Related articles - BL Direct - All 11 versions - Import into RefWorks

Usability-supporting architectural patterns

T Lethbridge… - 2001 - sutlib2.sut.ac.th
... centered design 254 7.2 Characteristics of users 256 7.3 The basics of user interface design
258 7.4 Usability principles 262 ... Techniques for making good design decisions 336 9.4 Model
Driven Development 340 9.5 Software architecture 342 9.6 Architectural patterns 347 The ...
Cited by 122 - Related articles - All 5 versions - Import into RefWorks

[PDF] Object-oriented software engineering [PDF] from sut.ac.th

X Ferre, N Jusisto, AM Moreno… - Proceedings of INTERACT …, 2003 - Citeseer
... 3 Architectural Usability Patterns The most widely used concept of pattern in software
development is the design pattern, and it is used particularly in the object-oriented paradigm. ...
Page 5. 3.1 Procedure for outputting architectural patterns for usability ...

[PDF] A software architectural view of usability patterns [PDF] from psu.edu

architectural patterns usability - Google Scholar http://scholar.google.es/scholar?hl=en&q=architectural+patte...

1 of 10 3/16/11 2:45 PM

Cited by 9 - Related articles - View as HTML - All 9 versions - Import into RefWorks

M Mahemoff - 2006 - portal.acm.org
... Functionality and usability: Describes the types of user interfaces you'll come across
in Ajax applications, as well as the new types of functionality that Ajax makes possible. ...
The book also covers some architectural patterns too. ...
Cited by 88 - Related articles - All 5 versions - Import into RefWorks

[BOOK] Ajax design patterns

BE John, L Bass, MI Sanchez-Segura… - … Computer Interaction and …, 2005 - Springer
... In this paper, we introduce usability- supporting architectural patterns. ... A specific solution in this
form does not provide good guidance for architects who will come to the usability supporting
architectural patterns after having made a number of overarching design decisions. ...
Cited by 28 - Related articles - BL Direct - All 13 versions - Import into RefWorks

Bringing usability concerns to the design of software architecture [PDF] from psu.edu

E Folmer, J van Gurp… - Engineering Human Computer …, 2005 - Springer
... Actions for multiple objects may be implemented by the composite pattern [9] or the visitor pattern
[9]. (Positive) relationships have been defined between the elements of the framework that link
architectural sensitive usability patterns to usability properties and attributes. ...
Cited by 34 - Related articles - BL Direct - All 27 versions - Import into RefWorks

Software architecture analysis of usability [PDF] from psu.edu

E Folmer, J Van Gurp… - … Process: Improvement and …, 2003 - Wiley Online Library
... Fixing usability issues during this late stage of the development proves to be very costly. Some
usability-improving modifications such as usability patterns may have architectural implications.
We believe that the software architecture may restrict usability. ...
Cited by 39 - Related articles - BL Direct - All 12 versions - Import into RefWorks

A framework for capturing the relationship between usability and software architecture [PDF] from psu.edu

F Buschmann, R Meunier, H Rohnert, P Sommerlad… - 2008 - Wiley-India
Cited by 4090 - Related articles - All 13 versions - Import into RefWorks

[CITATION] Pattern-oriented software architecture: a system of patterns [PDF] from ispras.ru

NB Harrison, P Avgeriou… - IEEE software, 2007 - doi.ieeecomputersociety.org
... Using patterns: Practical considerations. Back to Top. Architectural design is an especially
challenging decision-making process because it involves frequent ... For example, deciding to
implement a certain security approach might impact the system's performance and usability. ...
Cited by 33 - Related articles - BL Direct - All 11 versions - Import into RefWorks

Using patterns to capture architectural decisions [HTML] from univie.ac.at

P Avgeriou… - … journal of computer applications in technology, 2006 - Inderscience
... Architectural patterns for collaborative applications ... This paper seeks to provide design reuse
in the form of architectural patterns that focus on low-level horizontal issues: distribution, message
exchange, functional decomposition, sharing data, concurrency and synchronisation. ...
Cited by 19 - Related articles - BL Direct - All 11 versions - Import into RefWorks

Architectural patterns for collaborative applications [PDF] from rug.nl

P Stoll, BE John, L Bass… - … Workshop on Interplay between Usability - Citeseer
Preparing Usability Supporting Architectural Patterns for Industrial Use Pia Stoll Bonnie E.
John, Len Bass, Elspeth Golden ABB Corporate Research Forskargränd 6 SE 72178
Västerås, Sweden Tel:+ 46 21 32 30 00 Carnegie Mellon University 5000 Forbes Ave. ...
Cited by 4 - Related articles - View as HTML - All 14 versions - Import into RefWorks

[PDF] Preparing Usability Supporting Architectural Patterns for Industrial Use [PDF] from psu.edu

T Rafla, PN Robillard… - Software Quality Journal, 2007 - Springer
... Bass and John (2003) and Folmer et al. (2003a) are among the early researchers who investigated
these issues and spelled out the potential links that remain between usability requirements and
architectural patterns. ... 2.1 Usability-driven software architectural patterns ...
Cited by 19 - Related articles - BL Direct - All 4 versions - Import into RefWorks

A method to elicit architecturally sensitive usability requirements: its integration into a software
development process

E Folmer… - Human-computer interaction: theory and …, 2003 - books.google.com
... system. Our research has identified several usability patterns that require architectural
support. We ... framework. Future research should focus on verifying the architectural
sensitiveness of the usability patterns that have been identified. For ...
Cited by 15 - Related articles - All 10 versions - Import into RefWorks

Usability patterns in software architecture [PDF] from psu.edu

E Folmer, M Welie… - Information and Software Technology, 2006 - Elsevier
... for UI patterns. Bass et al. [4] identified scenarios that illustrate particular aspects
of usability that are architecture-sensitive and suggest architectural patterns for
implementing these scenarios. A framework, which expresses ...

Bridging patterns: An approach to bridge gaps between SE and HCI [PDF] from rug.nl

architectural patterns usability - Google Scholar http://scholar.google.es/scholar?hl=en&q=architectural+patte...

2 of 10 3/16/11 2:45 PM

Cited by 46 - Related articles - All 6 versions - Import into RefWorks

E Folmer, J Van Gurp… - Bridging the Gaps Between Software …, 2003 - Citeseer
... The framework is used for extracting information regarding the architectural information related
to usability required for the assessment. The framework consists of the following concepts: •
Usability attributes. • Usability properties. • Usability patterns. ...
Cited by 22 - Related articles - View as HTML - All 18 versions - Import into RefWorks

[PDF] Scenario-based assessment of software architecture usability [PDF] from psu.edu

E Golden, BE John… - … of the 27th international conference on …, 2005 - portal.acm.org
... ABSTRACT Design patterns have been claimed to facilitate modification and improve
understanding in software design. A controlled experiment was performed to assess the
usefulness of portions of a Usability-Supporting Architectural Pattern (USAP) in modifying the ...
Cited by 25 - Related articles - BL Direct - All 11 versions - Import into RefWorks

The value of a usability-supporting architectural pattern in software architecture design: a
controlled experiment

[PDF] from psu.edu

S Barrass - Proceedings of the 2003 International Conference on … - icad.org
... Although Design Patterns were originally architectural, Patterns have gained prominence as
a method for designing computer software [Gamma ... of Programming (PLoP) holds regular
workshops on writing Patterns and there are now Patterns for Usability, Interaction Design ...
Cited by 26 - Related articles - View as HTML - All 4 versions - Import into RefWorks

[PDF] Sonification design patterns [PDF] from icad.org

M Fayad, DC Schmidt… - 1999 - John Wiley & Sons Inc
Cited by 455 - Related articles - All 2 versions - Import into RefWorks

[CITATION] Building application frameworks: object-oriented foundations of framework design

K Sousa, E Furtado… - Proceedings of the 2005 Latin …, 2005 - portal.acm.org
... including usability patterns in it. They propose an extension of the Model-View-
Controller (MVC) design pattern [MVC, 2000] by defining four modules to specify
usability architectural patterns. These modules are: active modules ...
Cited by 16 - Related articles - All 7 versions - Import into RefWorks

UPi: a software development process aiming at usability, productivity and integration [PDF] from ucl.ac.be

BE John, L Bass, E Golden… - Proceedings of the 1st ACM …, 2009 - portal.acm.org
Bonnie E. John HCI Institute Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA, 15217
+1-412-268-7182 bej@cs.cmu.edu ... Len Bass Software Engineering Institute Carnegie Mellon
University 4500 Fifth Ave. Pittsburgh, PA, 15217 +1-412-268-6763 ljb@sei.cmu.edu
Cited by 3 - Related articles - All 6 versions - Import into RefWorks

A responsibility-based pattern language for usability-supporting architectural patterns [PDF] from diva-portal.org

N Harrison… - Software Architecture, 2007 - Springer
... used the ISO quality model [14], which contains functionality, reliability, usability, efficiency,
maintainability ... While the book gives several variants of the patterns, we limited this analysis ... pattern,
it was designated as “key.” This differentiation supports architectural reasoning: used ...
Cited by 13 - Related articles - BL Direct - All 9 versions - Import into RefWorks

Leveraging architecture patterns to satisfy quality attributes [PDF] from rug.nl

AW Kamal… - Proceedings of the 2010 ACM Symposium …, 2010 - portal.acm.org
... specialized pattern participating. We be- lieve that we can cover more architectural
patterns in the near future, which will provide a better re-usability support to the architects
for systematically expressing architectural patterns variants. ...
Cited by 8 - Related articles - All 3 versions - Import into RefWorks

Modeling the variability of architectural patterns [PDF] from rug.nl

RT Fielding - 2000 - Citeseer
Page 1. UNIVERSITY OF CALIFORNIA, IRVINE Architectural Styles and the Design of
Network-based Software Architectures DISSERTATION ... The Web's architectural style was
developed iteratively over a six year period, but primarily during the first six months of 1995. ...
Cited by 1699 - Related articles - View as HTML - All 76 versions - Import into RefWorks

[PDF] Architectural styles and the design of network-based software architectures [PDF] from psu.edu

JO Borchers - Workshop, The Hague, 2000 - Citeseer
... the application do- main to enhance communication in interdisciplinary design teams, and outline
how those pattern languages fit into the usability engineering lifecycle. ... The medium that
architectural patterns use to sensitize the reader to the subject of a pattern is a photograph. ...
Cited by 17 - Related articles - View as HTML - All 17 versions - Import into RefWorks

[PDF] Interaction design patterns: twelve theses [PDF] from psu.edu

K Sousa… - Proceedings of the 4th international workshop …, 2005 - portal.acm.org
... 2004. 6. Juristo, N.; Lopez, M.; Moreno, A.; Sánchez, M. Improving Software Usability through
Architectural Patterns. In: Workshop Bridging the Gaps between SE and HCI - International
Conference on Software Engineering (ICSE), 2003, USA. 2003, pp. 12-19. ...

From usability tasks to usable user interfaces [PDF] from ucl.ac.be

architectural patterns usability - Google Scholar http://scholar.google.es/scholar?hl=en&q=architectural+patte...

3 of 10 3/16/11 2:45 PM

Cited by 11 - Related articles - All 7 versions - Import into RefWorks

A Kamal… - Software Architecture, 2008 - Springer
... We believe that in different architectural views, more primitives will be discovered
in the near future, which will provide a better re-usability support to the architects
for systematically expressing architectural patterns. References ...
Cited by 7 - Related articles - All 5 versions - Import into RefWorks

Modeling architectural patterns' behavior using architectural primitives [PDF] from rug.nl

MA Babar - 2004 - computer.org
... Software architecture (SA) of a product family constrains the achievement of various quality
attributes (such as reusability, performance, security, maintainability and usability) [1]. A number
of ... These approaches heavily depend on architectural styles and patterns to design ...
Cited by 9 - Related articles - All 5 versions - Import into RefWorks

Scenarios, quality attributes, and patterns: Capturing and using their synergistic relationships for
product line architectures

GE Krasner… - Journal of Object-oriented programming, 1988 - portal.acm.org
... Atsuto Kubo , Hironori Washizaki , Yoshiaki Fukazawa, A metric for measuring the abstraction
level of design patterns, Proceedings of the ... Leszek A. Maciaszek, "Roundtrip architectural
modeling", Proceedings of the 2nd Asia-Pacific conference on Conceptual modelling, p.17 ...
Cited by 1418 - Related articles - All 4 versions - Import into RefWorks

A cookbook for using the model-view controller user interface paradigm in Smalltalk-80

A Seffah, T Mohamed, H Habieb-Mammar… - Journal of Systems and …, 2008 - Elsevier
... 4. Illustrate, as part of the pattern documentation, how these patterns can be applied within existing
architectural models such as MVC. 3. Identifying and categorizing typical scenarios. The first
step in our approach for achieving usability via software architecture and patterns is to ...
Cited by 12 - Related articles - All 2 versions - Import into RefWorks

Reconciling usability and interactive system architecture using patterns

G Larsen - Communications of the ACM, 1999 - portal.acm.org
... Architectural patterns or frameworks provide descriptions of the software architecture. ... for the
engineers who will be using your framework to insure consistency, quality, and usability. ... the
process of using the UML to design a component-based framework using existing patterns. ...
Cited by 56 - Related articles - BL Direct - All 3 versions - Import into RefWorks

Designing component-based frameworks using patterns in the UML

L Zhu, MA Babar… - 2004 - computer.org
... are an important source of quality attribute sensitive scenarios and other architectural information. ...
a number of pieces of architecturally vital information from well know software patterns. ... requirement
of a software system, eg, reliability, modifiability, performance, usability and so ...
Cited by 26 - Related articles - All 9 versions - Import into RefWorks

Mining patterns to support software architecture evaluation [PDF] from psu.edu

E Golden - Proceedings of the 1st ACM SIGCHI symposium on …, 2009 - portal.acm.org
... 13. Juristo, N., Lopez, M., Moreno, A. and Sanchez-Segura, M.-I. Improving software usability
through architectural patterns, in ICSE 2003 Workshop on Bridging the Gaps Between Software
Engineering and Human-Computer Interaction (Portland, OR, 2003). 14. ...
Cited by 6 - Related articles - Import into RefWorks

Helping software architects design for usability

G Rossi, D Schwabe… - Computer Networks, 1999 - Elsevier
... They are part of a catalogue of around twenty architectural, navigational and user interface
patterns (see [3, 11, 12]). ... 2.1.4. Related patterns. ... The latter approach is clearly not desirable
because the site's usability is greatly reduced and it may become unmanageable as it grows. ...
Cited by 68 - Related articles - All 8 versions - Import into RefWorks

Improving Web information systems with navigational patterns [HTML] from www8.org

M Kolp, P Giorgini… - Intelligent Agents VIII, 2002 - Springer
... Integrity Usability Order Processor Confiden- tiality ... The alliance revolution : the new shape of
business rivalry, Harvard University Press, 1996. [10] S. Hayden, C. Carrick, and Q. Yang.
“Architectural Design Patterns for Multiagent Coordination”. In Proc. of the 3rd Int. ...
Cited by 115 - Related articles - BL Direct - All 11 versions - Import into RefWorks

A goal-based organizational perspective on multi-agent architectures

L Bass, M Klein… - Software Product-Family Engineering, 2002 - Springer
... The software architecture community generally believes that quality attributes (such as
performance, usability, security, reliability and modifiability) of a ... We have embarked on an effort
to identify and codify architectural patterns that are primitive with respect to the achievement of ...
Cited by 97 - Related articles - BL Direct - All 17 versions - Import into RefWorks

Quality attribute design primitives and the attribute driven design method [PDF] from psu.edu

H Schmidt… - Software Architecture, 2006 - Springer
Preserving software quality characteristics from requirements analysis to architectural design [PDF] from uni-due.de

architectural patterns usability - Google Scholar http://scholar.google.es/scholar?hl=en&q=architectural+patte...

4 of 10 3/16/11 2:45 PM

265

9.4 System Requirement Specifications
The following sections present the SRS documents for the three projects used in the
validation of the proposed solution. These are the original SRS document, written in Spanish,
the main language spoken by the selected test subjects.

9.4.1 Online task manager (Gestor de Tareas Online)
El Gestor de Tareas Online es un sistema web que permite al usuario manejar listas de tareas
pendientes de manera interactiva. Provee al usuario la capacidad de organizar tareas en
múltiples listas, así como planificarlas en el tiempo y visualizarlas bajo múltiples
perspectivas. Mantiene al usuario informado sobre el estado de sus tareas y permite que sean
compartidas con otros usuarios del sistema. Este sistema se basa parcialmente en los servicios
provistos por Remember the Milk.

9.4.1.1 Software Requirements
(R-01) Permitir al usuario autenticarse (login) introduciendo su username y password. Si el
proceso de autenticación tarda más de dos segundos, el sistema deberá mostrar al usuario un
spinning wheel y un mensaje temporal que diga “autenticando, por favor espere"

(R-02) Permitir al usuario salir del sistema (logout) en un único paso, i.e. haciendo clic en
un link de salida. Si el proceso de salir del sistema tarda más de dos segundos, el sistema
deberá mostrar al usuario un spinning wheel y un mensaje temporal que diga “saliendo, por
favor espere"

(R-03) Permitir la creación de tareas. Para crear una tarea, el usuario debe seleccionar
primero la Lista de Tareas (“Lista Principal” estará seleccionada por defecto) a la cual desea
agregar la tarea. Deberá seleccionar la Lista de un combo-box que le ofrece el sistema para
este fin, el cual contiene los nombres de todas las Listas de Tareas existentes en el sistema
para este usuario. Luego de seleccionada una Lista de Tareas, el usuario elige la opción de
“crear tarea” e introduce el nombre de la tarea a crear en un único campo de texto que le
presenta el sistema. Al hacer clic en la tecla enter, la tarea se crea y se presentan al usuario
opciones de modificación especificadas en (R-04). Cada tarea creada aparecerá
automáticamente en el combo-box la próxima vez que éste sea consultado.

(R-04) Al hacer clic sobre una tarea de cualquier lista o justo después de la creación de una
nueva tarea, el sistema debe mostrar al usuario opciones de modificación. Estas opciones se
mostrarán dentro de la misma ventana, en el espacio de la pantalla reservado para tal fin. Para
cada tarea se podrá modificar:

• su fecha límite, que representa la fecha para la cual deberá haberse completado la tarea.
Se presentarán tres campos de dos dígitos cada uno en los que el usuario introducirá el
día, el mes y el año. El valor por defecto de una tarea nueva o de una que nunca ha sido
modificada será “0” en las tres casillas, lo que indica que la misma no tiene fecha límite.

• el tiempo estimado para completarla. Los valores a introducir deberán tener venir
expresados en número de días. Se presentará al usuario un campo de tres dígitos seguido
de la palabra “días”. El valor por defecto de una tarea nueva o de una que nunca ha sido
modificada será “0 días”, lo que indica que la misma no tiene tiempo estimado.

Una vez editada la información necesaria debe guardar los cambios, para lo que el usuario
hará clic en el botón de “Guardar”. Inmediatamente después, el botón deberá permanecer
deshabilitado hasta que se haya guardado la tarea completamente. Una vez guardada la tarea,
el botón debe volver a su estado normal.

266

Simultáneamente, y solo si el proceso de guardar dura más de 2 segundos, se mostrará un
spinning wheel para indicar el progreso hasta que se haya guardado la tarea.

La acción de “guardar” deberá poderse deshacer. Una vez ejecutada la opción de guardar se
debe mostrar un mensaje al usuario en la parte superior de la aplicación que le pregunte si
desea deshacer esta última operación. Este mensaje debe desaparecer después de 10 segundos.

(R-05) Para borrar una (o varias) tarea(s), el usuario podrá elegirla(s) de la lista de tareas
correspondiente y elegir la opción de borrar. Esta acción deberá poderse deshacer. Una vez
ejecutada la opción de borrar se muestra un mensaje al usuario en la parte superior de la
aplicación que le pregunte si desea deshacer esta última operación. Este mensaje debe
desaparecer después de 10 segundos.

(R-06) El sistema debe permitir al usuario la opción de trabajar en modo offline, lo que
implica que se desactiven todas las opciones de comunicación con otros sistemas y usuarios.
Para este fin, el usuario elegirá la opción “Go offline” y el sistema quedará desconectado,
mostrando en el área de estado de la aplicación (no del navegador) el símbolo de offline (i.e.
círculo rojo) en lugar del de online (i.e. círculo verde) que se muestra en cualquier otro caso.
Siempre que el usuario esté offline, la opción de “Go Offline” desaparecerá y aparecerá la
opción de “Go Online” en su lugar. Para volver al modo online, el usuario hará clic en “Go
online” y se habilitarán nuevamente las opciones de comunicación y el área de estado de la
aplicación mostrará nuevamente el símbolo de online.

(R-07) El sistema debe permitir al usuario la opción de exportar su(s) lista(s) a un archivo
de texto. Para esto elegirá la(s) lista(s) que desea exportar del combo-box correspondiente y
hará clic en “exportar”. Si este proceso dura más de 10 segundos, se deberá mostrar una barra
de progreso que indique el porcentaje de información real exportada de manera continua hasta
que culmine el proceso. Se deberá también proveer la opción de cancelar el proceso, lo cual
resultaría en datos parcialmente exportados.

(R-08) Permitir al usuario registrarse por primera vez. Le presentará un formulario en varios
pasos. El primer paso le pedirá sus datos personales: nombre, apellido, email, país, ciudad. El
segundo y último paso le pedirá que introduzca un nombre de usuario, una contraseña, la
confirmación de la contraseña y una pregunta y respuesta de seguridad.

Durante este proceso el usuario deberá poder ir al paso anterior/siguiente mediante los
botones “<” y “>” respectivamente, sin perder la información ya introducida. También podrá
navegar entre pasos mediante los breadcrumbs qué deberán estar siempre visibles durante el
proceso de registro (cada elemento del breadcrumbs será un link al paso correspondiente).

(R-09) Cada vez que el usuario coloque el cursor sobre una tarea de cualquier lista, el
sistema deberá mostrarle un tooltip con la fecha de culminación de la tarea.

(R-10) El sistema debe permitir al usuario crear nuevas Listas de Tareas. Para ello introduce
el nombre de la tarea a crear en un único campo de texto que le presenta el sistema. Al hacer
clic en la tecla “enter”, la Lista de Tareas (vacía) se crea y está disponible para ser usada
como se especifica en (R-03) y en (R-10)

(R-11) El sistema debe permitir al usuario eliminar una Lista de Tareas. Para ello, elige la
Lista que desea eliminar del combo-box de Listas de Tareas y selecciona la opción de
“Eliminar”. Al hacerlo, el sistema muestra al usuario una advertencia, preguntándole si
realmente quiere eliminar esta Lista de Tareas, advirtiéndole que al hacerlo estará eliminando
todas las tareas contenidas en ella. La advertencia tiene dos opciones: OK y Cancelar. OK
permite que continúe la eliminación de la tarea y Cancelar la ignora.

267

(R-12) El sistema debe presentar al usuario una sección donde pueda definir sus
preferencias. Estas pueden ser las siguientes:

• Número máximo de tareas a mostrar por página para cada lista (por defecto serán 10)
• Número máximo de tareas a mostrar por cada lista en el Mapa de Listas (R-13). (Valor

por defecto: 3. Valor máximo permitido: 10)
• Lista de Tareas que debe mostrar el sistema justo después de que el usuario se

autentifique (por defecto será la Lista Principal)

Una vez establecidas las preferencias el sistema deberá permitir al usuario guardarlas.
También permitirá restablecer los valores por defecto en cualquier momento.

(R-13) El sistema debe permitir al usuario ver sus Listas de Tareas de manera gráfica. Al
entrar en la sección “Mapa de Listas” por primera vez el sistema muestra al usuario un
recuadro que contiene todas sus listas. Cada lista esta representada por un contenedor
rectangular que muestra el título de la lista y sus elementos (tareas) según las preferencias
especificadas en (R-12). El usuario debe poder colocar las listas como desee (por columnas)
dentro del recuadro principal así como crear nuevos mapas. Solo habrá un mapa activo en
cada momento, el resto se podrá acceder mediante pestañas, cuyas listas se cargaran
solamente cuando el mapa este activo. Para mover una lista a otro mapa, el usuario hará clic
en el botón derecho y elegirá el mapa al que desea moverla de un menú flotante que mostrará
el sistema. Este menú dinámico muestra los nombres de todos los mapas existentes en el
sistema en ese momento. El anexo 1 muestra un ejemplo gráfico de este requisito.

(R-14) El sistema debe permitir al usuario crear nuevos mapas. Para ello hace clic en el
botón Crear Mapa y e introduce el nombre deseado en un único campo de texto que le
presenta el sistema. Al hacer clic en la tecla “enter”, aparece el mapa como una pestaña
adicional como se muestra en el anexo 1.

(R-15) Para eliminar un mapa, el usuario hará clic en la pestaña correspondiente y elegirá la
opción eliminar del menú flotante que le muestra el sistema. Al eliminar un mapa, las listas
que contiene no se eliminan, sino pasan al mapa inmediatamente siguiente.

(R-16) El sistema debe permitir al usuario enviar un conjunto de tareas a otro usuario. Esta
funcionalidad de comunicación--no disponible en modo offline, como se especifica en el
requisito (R-06)—permite que el usuario seleccione una (o varias) tareas de cualquier lista y
mediante un clic en el botón enviar el sistema le pedirá que introduzca el username del
usuario al cual desea enviar estas tareas. Si el usuario destino se encuentra en modo online, le
aparecerá una ventana de diálogo preguntándole si desea aceptar las tareas enviadas,
incluyendo el nombre del usuario que las envía. En caso de aceptar, las tareas se agregan a la
Lista Principal, de lo contrario, las tareas son rechazadas. El usuario que envía las tareas
recibe una notificación en su correo electrónico indicándole el resultado de la operación.

(R-17) Permitir al usuario marcar cualquier tarea como “favorita” lo que la incluirá en una
lista especial dinámica llamada Favoritos. A esta lista no se podrán agregar manualmente
tareas, y mostrará únicamente aquellas que hayan sido marcadas como favoritas en otras
listas.

9.4.2 Home automation system (sistema de domótica del hogar)
Este proyecto consiste en el desarrollo del “front-end” de un sistema de control de domótica
que permita la configuración y monitorización remota del comportamiento de la red de
sensores y actuadores de un hogar. Deberá alertar al usuario en tiempo real sobre cualquier
alteración relevante de sensores determinados y permitirle manipularlos de manera individual
o grupal. Debido a la sensibilidad del tema de la domótica (que incluye, entre otras cosas,

268

activación de alarmas y cerraduras), es de suma importancia que el sistema resultante posea
ciertas características de usabilidad cruciales para garantizar su uso adecuado. Estas
características de usabilidad se detallan en la ERS inicial que se entregará al estudiante.

La aplicación podrá ser de escritorio o web, con la única restricción de que la comunicación
con el con el “back-end” sea a través de Internet para permitir su control de manera remota.

El “back-end” es el conjunto de controladores que manejan el funcionamiento de los sensores
y actuadores localmente. Su desarrollo es fuera del alcance de este proyecto, pero se requerirá
la creación de un “stub” de software que simule su comunicación con el “front-end”.

9.4.2.1 Front-End
El front-end es la consola de control en sí y puede ser desarrollado para web o escritorio.
Procesa todas las órdenes enviadas por el usuario y las envía al back-end, que es la parte del
sistema que se encargaría de ejecutarlas físicamente.

El front-end es un sistema completo e independiente, posee su propia base de datos local
(donde almacena los datos de la vivienda, los usuarios, etc) y todo su procesamiento ocurre de
manera local.

Las funcionalidades iniciales que deberá proveer al usuario son las siguientes:

9.4.2.1.1 Requisitos Control de Actuadores
Req(1). Encender y apagar todas las luces de la vivienda de manera individual. Tanto el

encendido como el apagado deberán poderse deshacer mediante una opción global
de Undo, como ctrl-z.

Req(2). Encender y apagar el aire acondicionado, así como controlar su temperatura, la
cual puede oscilar entre los 16 y los 30 grados. Igual que en el requisito 1, tanto el
encendido como el apagado deberán poderse deshacer .

Req(3). Controlar persianas verticales fijas, cuyos paneles pueden girar de 15 a 165
grados. La posición con mayor paso de luz son los 90 grados.

Durante la ejecución de este proceso, que dura aproximadamente 1/10 seg por
cada grado que se mueven las persianas, se deberá mostrar una barra de progreso
indicando el porcentaje que se ha ejecutado de la acción.

Si durante el proceso el usuario elige la opción de cancelar, las persianas deberán
cesar su movimiento.

Una vez terminada (o cancelada) la acción el usuario deberá poder deshacerla, lo
que devolvería las persianas a su posición anterior .

Req(4). Abrir y cerrar la puerta del garaje. Este proceso tarda unos 35 segundos en
completarse. Se deberá mostrar al usuario un indicador de progreso indeterminado
(i.e. spinning wheel, reloj, etc)

Se proveerá también la opción de cancelar y deshacer. Ambas opciones
devolverán a la puerta a su estado inmediato anterior a la ejecución.

Req(5). Activar la máquina de café. La máquina solo dispensará café si hay una taza
colocada correctamente. De lo contrario se mostrará una notificación al usuario
indicando que no se ha podido realizar la acción. Este proceso tarda unos 40
segundos y tiene varias etapas secuenciales: “calentando agua”(10s), “moliendo
café” (5s), “colando”(25s) y “listo”.

Para indicar el progreso de ejecución se mostrará al usuario una lista de
actividades y un “check” junto a cada actividad a medida que es completada .

269

Una vez culminada la ejecución se producirá una señal sonora para avisar al
usuario que el café está listo.

9.4.2.1.2 Macros
Req(6). Se deberá permitir al usuario crear secuencias de acciones para ser ejecutadas

posteriormente Por ejemplo, si el usuario desea una función para apagar todas las
luces, cerrar las persianas y activar la alarma (en lugar de ejecutar cada acción por
separado), deberá permitírsele crear una “macro acción” que ejecute cada
actividad en el orden solicitado, con un solo clic.

Req(7). El usuario también deberá poder “grabar” secuencias de acciones. Al activar la
opción de “grabar”, todas sus acciones subsiguientes quedarán registradas en una
macro acción. Al elegir la opción de “detener” culminará la grabación.

Req(8). En ambos casos (macros creadas y macros grabadas) se deberá permitir al usuario
darle un nombre a la macro y la posibilidad de poderla invocar posteriormente
tantas veces como desee

Req(9). Luego de ejecutado un macro, se debe permitir al usuario deshacer las acciones
realizadas, una a una (exceptuando aquellas que no provean opción de undo)

9.4.2.1.3 Alarmas y conexión con policía local
Req(10). Se deberá proveer al usuario una opción de activar y desactivar la alarma principal

de la vivienda. Cuando la alarma esta activada deberá mostrarse en el área de
estado un ícono indicativo de “activada” y un ícono opuesto cuando esté
desactivada.

Req(11). Si la alarma está activada y se detecta algún movimiento en la vivienda el status
anterior pasará a un tercer estado llamado “en alerta” para el cual se deberá
mostrar un tercer icono que indique el estado de emergencia, además se mostrará
un mensaje al usuario en el centro de la pantalla que le indique el estado de alerta.

Req(12). Se proveerá la opción de conectar y desconectar la comunicación con la policía.
Este estatus (conectado y desconectado) también deberá mostrarse con íconos
autoexplicativos en el área de estado.

El proceso de conectar con la policía tarda entre 10 y 40 segundos y deberá
mostrarse al usuario el progreso (marcando-conectando-conectado) de la misma
manera como se hizo en el requisito Req(5).

Req(13). Tanto para activar y desactivar la alarma como para conectar y desconectar la
comunicación con la policía el sistema mostrará al usuario una alerta, pidiéndole
que introduzca sus credenciales para continuar. En el caso de que no las introduzca
(i.e. que haga clic en el botón de cancel) o que introduzca credenciales erróneas, la
orden quedará sin efecto y el sistema permanecerá en su estado actual.

Req(14). El usuario deberá poder elegir el modo “ahorro de energía”, el cual apagará
aquellas luces cuyas estancias no presenten movimiento durante un minuto. Si este
modo está activado, deberá mostrarse un icono indicativo en el área de estado, de
lo contrario no se mostrará ningún ícono en relación a este estatus.

Req(15). Si la alarma está conectada y el usuario intenta ejecutar alguna de las acciones
listadas en los requisitos 3 a 5, el sistema deberá mostrar una alerta (con botones
OK para seguir y Cancel para abortar) avisándole que la ejecución de estas
acciones podría activar la alarma.

270

9.4.2.1.4 Mapa Vivienda
Req(16). El plano de la vivienda debe poderse representar de manera gráfica, permitiendo al

usuario seleccionar elementos como luces, persianas, etc. y ejecutar acciones sobre
ellos. Cuando el usuario selecciona un elemento (por ejemplo, un punto de luz) el
elemento deberá cambiar de color o enmarcarse en un contorno para dar seguridad
al usuario de qeu ha seleccionado correctamente.

Una vez seleccionado un objeto se presentará al usuario un pequeño menú que
liste las acciones que pueden ejecutarse sobre dicho objeto. El usuario debe poder
elegir cualquiera de las acciones presentadas y ejecutarla con un clic. En dicho
menú también debe presentarse la opción de Undo, si aplica, la cual desharía la
última acción ejecutada sobre este objeto en particular.

Req(17). Cada vez que el usuario coloque el cursor sobre algún elemento de la vivienda sin
hacer clic, deberá mostrarse un pop-up indicandole el nombre del elemento y su
estado, por ejemplo “Luz 3 salon: apagada”

9.4.2.2 Back-end
El back-end es la parte del sistema encargada de controlar físicamente los actuadores y
sensores de una vivienda. Para este proyecto, el back-end se simulará mediante un pequeño
módulo o “stub” que se comunicará con el front-end. Su implementación es libre pero se
requerirá que los mensajes con el front-end se envíen y reciban utilizando algún protocolo
independiente de la misma, como SOAP o similares. El back-end no requerirá UI y deberá
desempeñar las siguientes funciones:

Req(18). Enviar algún tipo de acknowledge simple al front-end cada vez que éste le ordene
ejecutar alguna acción sobre cualquiera de los actuadores (al encender una luz, al
terminar de cerrar la puerta del garaje, etc), para que el front-end tenga la
seguridad de que la operación que ha ordenado se ha realizado con éxito.

Req(19). Para los requisitos Req(3) a Req(5) y Req(12), simular también los tiempos de
respuesta y/o los mensajes intermedios durante la ejecución:

Por ejemplo, en el caso del Req(5), cuando el front-end envíe la orden de iniciar la
acción de preparado del café, el back-end deberá enviarle un primer mensaje de
“calentando agua”, luego esperará 10s (el tiempo pautado para esta actividad) y
enviará un segundo mensaje de “moliendo café”, y así hasta completar la actividad
en el tiempo pautado. Al finalizar, enviará un mensaje de acknoledge como se
indica en el Req(18)

Req(20). Para el Req(5), simular las respuestas del sensor de presencia de taza en la
máquina de café. El front-end preguntará si hay una taza colocada correctamente
antes de iniciar la ejecución. Simular tanto la respuesta afirmativa como la
negativa (idealmente 1 de cada 5 o 10 veces debería darse la respuesta negativa sin
necesidad de modificar el código del back-end)

Req(21). Para el Req(14), simular el apagado de luces en modo “ahorro de energía”

Req(22). Para el Req(15), si la alarma está conectada y el usuario realiza alguna de las
actividades listadas se deberá enviar un mensaje al front-end indicando que la
alarma está “en alerta” (sonando).

Req(23). Para el requisito Req(11) simular (de manera aleatoria) algún evento que active la
alarma. A discreción del desarrollador.

Req(24). Simular el comportamiento de los habitantes de la vivienda mediante el
funcionamiento de actuadores de manera aleatoria. Cualquier cambio deberá ser
notificado al front-end para que actualice el estado del actuador afectado.

271

9.4.3 Auction site
El proyecto "El juego de la subasta" consiste en la creación de un sistema informático que
permita realizar subastas de cualquier producto deseado a través de un portal de Internet. A
través del mismo, los usuarios internos podrán dar de alta productos en el sistema e indicar en
qué momento se inicia la subasta del mismo. Por otra parte los usuarios externos del sistema,
podrán buscar estos productos y pujar por el que deseen, y si no ganan dicha subasta podrán
acumular puntos por cada puja realizada los cuales podrán utilizar para comprar productos
que serán ofertados a través del sistema. A parte de estas funcionalidades, el usuario externo
podrá editar su perfil personal que los demás usuarios podrán visualizar.

9.4.3.1 Alta Usuario Externo
Requisito 1: la interfaz general del sistema mostrará en todo momento un enlace a la pantalla
de alta de usuario a todo aquel usuario anónimo. Este enlace se ubicará en la esquina superior
derecha de la pantalla facilitando su fácil ubicación. Este enlace no se mostrará en caso de
que el usuario esté ya identificado en el sistema. Al posicionar el ratón sobre el enlace
indicado previamente, aparecerá un “tooltip” que le mostrara al usuario un pequeño bloque
con las ventajas que conlleva estar dado de alta en el sistema (como son la posibilidad de
participar en pujas, adquirir productos por puntos acumulados y tener un perfil propio).

Requisito 2: el formulario a llenar para darse de alta en el sistema contendrá los campos
nombre, apellidos, dirección, código postal, ciudad, país, fecha de nacimiento, teléfono,
correo electrónico, contraseña y nombre de usuario. Se le pedirá al usuario comprobar el
correo electrónico y la contraseña con dos campos más en el formulario. Se le mostrará al
usuario las políticas y reglas del JDSL y este deberá marcar que está de acuerdo con las
mismas antes de poder continuar con el alta. Una vez completado el formulario de alta de
usuario y presionado el botón de continuar, se le informará, con un mensaje en el centro de la
pantalla de un color que resalte sobre los demás, que se le ha enviado un correo electrónico el
cual debe abrir y pinchar en el enlace de confirmación de su alta. Una vez pinchado el enlace
se le llevará a una pantalla donde se le pedirá introducir su correo electrónico y contraseña
nueva vez para terminar con el proceso de alta en el sistema.

Requisito 3: el sistema verificará que el correo electrónico sea una dirección válida (de la
forma abc@dominio.com). Se comprobará que el correo electrónico ya no esté siendo
utilizado por otro usuario. De ser así se le mostrará un mensaje al usuario, de un color que
resalte sobre el resto de la pantalla próximo a la entrada de texto, de que este está siendo
utilizado y no se puede continuar utilizando este (lo mismo ocurrirá con el nombre de
usuario). También próximo a este mensaje, se le mostrará una lista de sugerencias de nombres
de usuario que no están siendo utilizados en el sistema. Esta lista de sugerencias se construirá
a partir del nombre de usuario escrito previamente agregándole números o cambiándoles
caracteres para así hacerlo único.

Requisito 4: el sistema verificará que la contraseña cumpla con un mínimo de nivel de
seguridad. La misma deberá poseer por lo menos un número y un carácter especial y no tener
menos de 6 caracteres. En caso de que la contraseña escrita no cumpla con el mínimo de
seguridad se le mostrará un mensaje de error al usuario.

Requisito 5: se generará de forma automática un identificador único para cada uno de los
usuarios externos dados de alta en el sistema.

Requisito 6: luego de finalizada el alta del usuario se le indicará al mismo que puede editar
su perfil personal y se le mostrará un enlace a la pantalla de edición de perfil. Se le mostrarán
también enlaces a las secciones del sistema donde puede acceder así como también mensajes
informativos y de ayuda sobre qué puede hacer a continuación.

272

Requisito 7: al lado del botón de continuar/finalizar alta de usuario existirá otro botón que
permitirá cancelar el proceso de alta. Al hacer clic sobre el mismo el usuario será redirigido a
la pantalla donde se encontraba antes.

9.4.3.2 Identificación
Requisito 8: la interfaz general del sistema mostrará en todo momento un enlace a la pantalla
de identificación en el sistema (“login”). Este enlace se ubicará en la esquina superior derecha
de la pantalla facilitando su ubicación. Al dejar el ratón sobre el enlace aparecerá un “tooltip”
que le mostrará al usuario un pequeño bloque donde se detallará que se puede realizar al estar
identificado en el sistema. Este enlace se sustituirá, en caso de que el usuario ya esté
identificado en el sistema, por uno que cierre la sesión actual en el sistema (“logout”). Al
dejar el ratón sobre el enlace aparecerá un “tooltip” que indicará que al hacer clic sobre el
mismo se cerrará la sesión actual y ya no podrá acceder a todas las funcionalidades del
sistema.

Requisito 9: en la pantalla de identificación, el sistema le solicitará el correo electrónico y
contraseña de acceso. En caso de que los datos introducidos sean incorrectos se le indicará al
usuario que debe intentarlo de nuevo y se le ofrecerá la opción de recuperación de contraseña.
En caso de que los datos introducidos sean correctos se redirigirá el usuario a la pantalla
donde se encontraba antes de iniciar el proceso de identificación y se le habilitarán las
opciones correspondientes a su rol. En caso de intentar introducir un usuario y contraseña
incorrectos tres veces, la pantalla mostrará una imagen con una palabra que el usuario deberá
introducir en una nueva entrada de texto para confirmar que es un usuario humano y no un
“bot” el que intenta acceder el sistema y así evitar posibles ataques que busquen averiguar la
contraseña de un usuario.

Requisito 10: el sistema permitirá la recuperación de contraseña de usuario (req. 5) con un
enlace que se ubicará debajo de la entrada de texto de la misma. En esta pantalla el usuario
deberá especificar el correo electrónico para el cual quiere recuperar la contraseña. El sistema
enviará un correo electrónico a la dirección especificada donde el usuario tendrá que pinchar
en un enlace que lo llevará a una nueva pantalla donde deberá especificar la nueva contraseña
de acceso y confirmarla. Se le informará al usuario con una letra y fuente que resalten sobre
las demás de la pantalla de que ha sido enviado este correo y de los pasos a seguir para
finalizar con la recuperación de la contraseña.

Requisito 11: en la pantalla de identificación se mostrará un enlace a la pantalla de alta de
usuario. Este enlace desplegará el mismo “tooltip” que el descrito en el Requisito 1.

Requisito 12: al hacer clic en el botón de acceder se mostrara un “progress bar” en el centro
de la pantalla (se oscurecerá la ventana y el “progress” resaltará sobre los demás elementos de
la ventana) para indicarle al usuario de que esta operación puede tardar varios segundos

9.4.3.3 Edición de Perfil
Requisito 13: el sistema permitirá al usuario externo disponer de un perfil personal el cual
podrá ser visualizado por los demás usuarios del sistema. La pantalla de edición de perfil
permitirá modificar los siguientes campos: descripción personal, intereses, productos que le
gustaría adquirir y foto de perfil. Existirá un enlace próximo a la descripción personal que al
hacer clic sobre el mismo se levantará un “popup” donde se le explicará al usuario que podría
contener el perfil y que no debe y en caso de que el usuario violara estas normas su perfil no
sería aprobado (ej. malas palabras, pornografía, etc). La selección de intereses será una lista
previamente definida de posibles intereses en productos del sistema (ej. televisores, equipos
de sonido, ordenadores, etc.) de la cual el usuario podrá elegir tantas opciones como desee.
Esta lista puede ser utilizada en el futuro para enviarle anuncios al usuario y realizarle ofertas
sobre los productos relacionados. Al hacer clic en el botón de finalizar la edición del perfil, se

273

le mostrará una ventana emergente (“popup”) de confirmación al usuario donde podrá seguir
con la modificación o cancelar la misma si así lo desea.

Requisito 14: existirá una página principal del usuario que contendrá aquellos enlaces que
tienen que ver directamente con el usuario como son: cambio de contraseña, historial de
subastas y compras, edición de perfil, contacto con la administración de JDLS y ayuda.
También, la interfaz general del sistema mostrará en todo momento un enlace a esta pantalla
en la esquina superior derecha de la misma para facilitar su ubicación. Al dejar el ratón sobre
cualquier de los enlaces aparecerá un “tooltip” que le mostrará al usuario un pequeño bloque
con una breve descripción de la pantalla a la que redirige dicho enlace.

Requisito 15: en la pantalla especificada en el Requisito 14 también existirá un enlace a la
pantalla de configuración del sistema (opciones del sistema especificas para el usuario de
lugar). En esta pantalla se podrán activar o desactivar las notificaciones del sistema por correo
(mensajes del administrador, propaganda, etc.) como también las notificaciones de subastas
ganadas o perdidas. En esta pantalla también existirá la opción de habilitar o deshabilitar la
recepción de mensajes privados. Existirá un espacio reservado en la interfaz general del
sistema (al lado del nombre de usuario) donde se indicará que la recepción de mensajes
privados se encuentra desactivada.

9.4.3.4 Visualización de Perfil
Requisito 16: el sistema permitirá a todos los usuarios visualizar el perfil de un usuario
externo en cualquier momento. Siempre que aparezca el nombre de usuario de un individuo
en la pantalla (ej. usuario ganador de una subasta o usuario comprador de un producto en
subasta) este será un enlace que llevará directo al perfil del usuario en cuestión.

Requisito 17: la pantalla del perfil de usuario mostrará los campos descripción personal,
intereses, productos que le gustaría adquirir y foto de perfil. También permitirá ver el historial
de subastas en la que ha participado el usuario, que productos ha ganado y cuales ha
adquirido por puntos acumulados. Estos últimos dos puntos se visualizarán en forma de lista y
al pinchar en una de las entradas el usuario podrá ir directamente a la pantalla de esta subasta
o producto en oferta. Este perfil deberá estar actualizado en tiempo real, es decir que si un
usuario está participando en una subasta, su perfil se debe actualizar al momento en que este
realice alguna puja. En este momento, al usuario que esté visualizando el perfil del usuario
que ha realizado la puja, le aparecerá un mensaje en un color y fuente que resalte sobre los
demás elementos de la pantalla indicándole que este ha realizado una puja y en que subasta.

Requisito 18: en la pantalla del perfil del usuario existirá un enlace que permitirá a otro
usuario externo enviar un mensaje privado al usuario dueño del perfil en cuestión. Este enlace
debe estar deshabilitado si el usuario en cuestión no tiene la opción de recibir mensajes
privados activada. Al pinchar en el enlace se levantará una ventana emergente (popup) que
solicitará ingresar un asunto y cuerpo de mensaje el cual llegará al correo del usuario de
lugar. Este enlace solo aparecerá siempre y cuando el usuario tenga habilitada la opción de
permitir mensajes privados en su configuración personal y que el usuario que visualiza el
perfil se encuentre identificado en el sistema.

9.4.3.5 Búsqueda de Productos
Requisito 19: la interfaz general del sistema dispondrá de una entrada de texto donde
cualquier usuario del sistema podrá realizar una búsqueda general. Esta entrada estará ubicada
en la parte superior izquierda de la pantalla para su fácil ubicación. Al escribir un texto en
esta entrada y presionar la tecla “enter” o hacer clic en el botón próximo a la misma, el
usuario será redirigido a la pantalla de resultados de la búsqueda. Al ir introduciendo texto en
la entrada aparecerá una lista con productos sugerencia al término introducido (ej. si se

274

escribe Sams, la lista mostrará los productos que contengan Sams en su nombre o sean de una
marca que contenga Sams, como lo es Samsung).

Requisito 20: en la pantalla de búsqueda de productos se podrán realizar búsquedas
avanzadas de productos, tanto en subasta como en oferta. El primer paso para realizar una
búsqueda es escribir en una entrada de texto el nombre o parte del nombre de un producto a
buscar si así se desea. Al ir escribiendo en la entrada de texto aparecerá una sugerencia como
la descrita en el Requisito 17. El resultado de la búsqueda se podrá filtrar por categoría del
producto, por tipo (subasta u oferta), por tiempo restante de la subasta, por cantidad de puntos
máxima para obtener el producto en oferta, por cantidad de pujas en una subasta, por fecha de
creación de la subasta/oferta, y por todas aquellas características específicas de un producto
(ej. de la categoría televisores se podría filtrar el tamaño de pantalla, el contraste, el peso, la
tecnología, etc.).

Requisito 21: los resultados de la búsqueda se mostrarán en forma de tabla debajo del panel
de búsqueda y cada fila de la misma contendrá las columnas de nombre, descripción, imagen
principal, tiempo restante de la subasta o puntos necesario para adquirir el producto en oferta
y fecha de creación. Estos resultados podrán ordenarse haciendo clic en las cabeceras de cada
columna. Esta lista permitirá al usuario acceder a la subasta u oferta en cuestión haciendo clic
sobre el nombre del producto.

Requisito 22: el usuario deberá poder saber cuál es el filtro aplicado a la búsqueda actual y
cuál es el criterio de ordenación de los resultados en todo momento. Para ello se mostrará un
pequeño resumen con los filtros aplicados y al lado de la columna por la que se esté
ordenando en la tabla de resultados aparecerá una imagen indicando el orden de los registros
(flecha hacia arriba indicando orden ascendente o hacia abajo indicando orden descendente).

Requisito 23: en la visualización de un producto en subasta o en oferta existirá un botón
visible para todos los usuarios externos donde podrán agregar dicho producto a su lista de
“favoritos” (este botón estará ubicado próximo al nombre del producto). Esta lista podrá ser
visualizada en una pantalla cuyo enlace se encontrará en la pantalla especificada en el
Requisito 14 y desde la misma se podrá acceder directamente al producto correspondiente al
favorito seleccionado. Si una subasta o un producto en oferta se han eliminado del sistema
desaparecerán automáticamente de la lista de favoritos de los usuarios que lo tuviesen
agregado.

9.4.3.6 Puja en Subasta
Requisito 24: en la pantalla de un producto en subasta un usuario externo podrá pujar en
cualquier momento por dicho producto siempre y cuando el tiempo de la subasta no haya
finalizado y dicho usuario tenga puntos suficientes para realizar la puja. La puja se llevará a
cabo pinchando en un botón que estará ubicado en la parte superior derecha de la página del
producto (este botón deberá ser de tamaño considerable y de un color que lo haga resaltar
sobre los demás elementos de la pantalla) debajo del cronómetro de la subasta que marcará el
tiempo restante de la misma. Al pujar el usuario se verá reflejado como actual dueño del
producto y su nombre de usuario le aparecerá a todos los demás usuarios que estén
visualizando dicha subasta en tiempo real. El nombre de usuario del usuario que esté ganando
se mostrará debajo del botón de pujar en un color y fuente que resalte sobre los demás
elementos de la pantalla.

Requisito 25: si al momento de hacer clic en el botón de pujar por un producto en subasta el
usuario no cuenta con puntos suficientes para realizar la puja, se le mostrará un mensaje en
una ventana emergente indicándole de que debe recargar sus puntos antes de poder continuar
y se le mostrará un enlace para ir directamente a la pantalla de recarga de puntos.

275

Requisito 26: cada vez que un usuario puje en una subasta el tiempo de restante de la subasta
aumentará una cantidad de segundos a determinar. Una vez finalizada la subasta porque nadie
más ha pujado en la misma, a todo usuario que esté visualizando la página del producto
recibirá un mensaje mediante una ventana emergente de que la misma ha terminado e
indicándole quien ha sido el ganador. También se indicará cuantas pujas se realizaron por el
producto. El botón para pujar se bloqueará y donde antes salía el tiempo restante de la subasta
saldrá un mensaje indicando quien ha sido el ganador y con cuantas pujas.

Requisito 27: al realizar una puja al usuario se le restará un punto de los puntos para puja que
ha comprado previamente y se le sumará uno a la cantidad de puntos acumulados para canjear
por productos de los que dispone.

Requisito 28: existirá una sección de la pantalla en donde se mostrarán los puntos para puja
de los cuales dispone el usuario en todo momento y en caso de este realizar una puja esta
sección se actualizará automáticamente. También se mostrarán los puntos acumulados para
adquirir productos en oferta.

9.4.3.7 2.3.2.7 Compra de Producto en Oferta
Requisito 29: en la pantalla de un producto en oferta un usuario externo podrá adquirir el
producto si dispone de puntos acumulados suficientes y si el tiempo de la oferta no ha
terminado. Existirá un botón ubicado al lado derecho del nombre del producto y al pincharle
se le mostrará una ventana emergente al usuario donde confirmará la compra del producto. Si
el usuario dispone de puntos suficientes para realizar la compra se le redirigirá a la pantalla de
finalización de la misma de caso contrario en esta misma ventana se le indicará que no es
posible realizar la compra de este producto. Al confirmar la compra en esta pantalla al usuario
se le restarán los puntos necesarios automáticamente de su acumulado. El usuario también
tendrá la opción de cancelar la compra cuando lo desee.

Requisito 30: si al momento de hacer clic en el botón de comprar un producto en oferta el
usuario no cuenta con puntos acumulados suficientes para realizar la compra, se le mostrará
un mensaje en una ventana emergente indicándole de que debe seguir participando en
subastas para acumular más puntos y se le mostrará un enlace para ir directamente a la
pantalla de bienvenida del sistema.

Requisito 31: cuando un usuario externo adquiere un producto, a los demás usuarios que
estuvieran viendo la página del producto en cuestión se le notificará mediante un mensaje de
un color que resalte sobre el resto de la pantalla de que el producto ya ha sido adquirido por
otro usuario y se le deshabilitará el botón de compra.

