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Abstract

Three Essays on Misinformation, Mistrust and their Influence on Public

Health Policy

Eli Kochersperger

In the first chapter I identify the impact of fentanyl exposure misinformation- namely, the
erroneous belief that momentary, passive contact with the potent opioid fentanyl can be
seriously harmful- on first responder behavior during overdose events, and on overall opioid-
related mortality. I examine changes in opioid-related mortality following one particularly
well-covered episode involving an Ohio police officer in 2017, wherein the officer appeared
to experience an acute opioid overdose after touching what was believed to be fentanyl.
Employing a synthetic differences-in-differences identification strategy, I find areas with
greater media exposure to this misinformation exhibit marked increases in opioid overdose
deaths; as well as preliminary evidence to suggest that overdose interventions performed
by first responders were less effective and argue that this represents an increased hesitancy
to render aid due to the potential presence of fentanyl. These results point to the existence
of a heretofore unrecognized driving factor behind the current opioid epidemic, as well as
to the need for policy intervention to counteract further dissemination of such adverse
misinformation.

The second chapter builds on these initial findings from the preceding chapter and
principally examines the effects of misinformation on the actions of first responders in
responding to opioid overdoses in New York State. By utilizing data that distinguishes
naloxone administrations across law enforcement officers, emergency medical services,
and community opioid overdose programs groups, I examine the relative change in first
responder behavior by type following a well-covered media event credited with popularizing
the erroneous belief that momentary contact with the opioid fentanyl is lethal. I find
evidence to suggest that law enforcement officer resuscitations using naloxone following
this event decreased significantly in frequency, and argue that this represents an increased
hesitancy to render aid due to unfounded fears of fentanyl exposure. These results highlight
the potential adverse effects that misinformation pose to public health outcomes, and offer
an alternative perspective to understand previous empirical research which has shown
inconsistent results regarding the effectiveness of harm reduction policies.

In the third chapter I employ microdata from the Census Bureau’s experimental Household
Pulse Survey to examine Medicaid participation impacts on the COVID-19 vaccination
decision and find that program recipients exhibited lower proclivities to be vaccinated
relative to demographically-similar households insured through some alternative provider.
Additionally, I observe that administrative burden, measured by state-level easements in
the program enrollment process, is associated with significant declines in self-reported
vaccination hesitancy. These results suggest the psychic and time costs accompanying
the enrollment or benefits utilization processes may be negatively influencing other
health behaviors, and highlight the significant policy implications of loosening Medicaid
enrollment protocols on public health outcomes.
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1

1 Quantifying the Effects of Fentanyl Exposure Misinformation

on Opioid Mortality

By causing fear and panic among such key partners in responding to the overdose

crisis, we’re putting people’s lives at further risk and adding to the stigma around

drug use.
— Keith Brown, Katal Center for Health, Equity and Justice director,

quoted in the Times-Union in 2018.

1.1 Introduction

In 2021, life expectancy at birth in the United States declined by 1.16%, from 77.0 to

76.1 years (Arias, Tejada-Vera, Ahmad, & Kochanek, 2022). These stark changes are

overwhelmingly the result of excess COVID-19 deaths, but deviations from long-term

trends can be traced back, at least in part, to shifts that first presented in the years

preceding the pandemic. In the years 2015 and 2017, on the heels of a worsening opioid

epidemic, life expectancy reversed a 25-year trend of year-over-year gains to decline by 0.2

and 0.1 years (Devitt, 2018), respectively; and for as much attention as the COVID-19

pandemic has duly received, it is worth noting the sobering statistic that it was in 2021

wherein annual drug-involved overdose deaths exceeded 100,000 persons for the first time.

For perspective, of the 0.9 year decline in life expectancies in that year, approximately 16%

(compared to COVID-19’s 50%) can be directly attributed to changes in unintentional

injury deaths, of which accidental drug poisonings largely constitute. Within just the 18-45

age group these effects are even more pronounced, where accidental overdoses involving

synthetic narcotics (an estimated 90% of which are associated with the opioid fentanyl or

its analogs) were the leading single cause of death, exceeding even suicide, car accidents,

heart disease and cancer (Jones, 2023).

It is unsurprising in light of these statistics that many advocacy groups and policymakers

have taken to treating fentanyl as a singularly unique threat to public health. From a
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pharmacological perspective this appears warranted: Fentanyl can be 100 times more

potent than morphine, and 50 times more potent than heroin (Ramos-Matos, Bistas, &

Lopez-Ojeda, 2022). Considering the relative ease of access and low cost of the drug

in illicit markets, fentanyl is also commonly used as an adulterant which has further

exacerbated its lethality through the consumption by unwitting- and often opioid naive-

users. Only trace, bordering on imperceptible quantities (2 mg) of the raw substance are

needed to trigger fatal respiratory failure when used intravenously, which has prompted

some advocacy groups to claim that “if you can see it, it can kill you.”1 However, like other

synthetically produced opioids tramadol and carfentanil, fentanyl poses no significant

acute health risk to individuals when exposed to the substance incidentally. Dermal

contact and inhalation both require extremely prolonged exposure intervals to receive even

clinical dosages (Moss et al., 2018), which all but eliminates the possibility of overdose

from momentary contact. Nonetheless, sensational news stories detailing the supposedly-

instantaneous lethality of the opioid, perhaps due in part to the embellished exposure risks

promulgated by the DEA and other law enforcement agencies, have flourished (Beletsky

et al., 2020). So persistent a media phenomenon has this become in fact, that public

perceptions of fentanyl exposure hazards no longer align with the reality described by the

clinical toxicology literature; and mere speculation on the presence of the narcotic within

communities has elicited such outsized alarm as to be described as a form of moral panic

(Ciccarone MD, 2020).

The question this study addresses is how these erroneous beliefs on fentanyl exposure

hazards, in their near-ubiquity, have factored into the broader opioid epidemic and related

overdose mortality. Previous research has succeeded in establishing the direct effect that

fentanyl’s introduction to illicit drug markets has had on mortality within the context

of use behavior, but has largely neglected the potential influence of bystander and first

responder perceptions. This is relevant because opioid overdoses are unique among

accidental drug poisonings for their relative treatability with prompt medical intervention.

The opioid antagonist naloxone (also known by the brand name Narcan), can safely
1Quote pulled from Jackson County, Missouri’s Community Backed Anti-Crime Tax (COMBAT)

program website: https://www.jacksoncountycombat.com/818/Get-The-Fentanyl-Facts.

https://www.jacksoncountycombat.com/818/Get-The-Fentanyl-Facts
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resuscitate unresponsive victims, requires no specialty medical training to ensure its

correct administration, and is widely available without prescription at low or zero costs.

Critical however, is that these naloxone interventions require close proximity between

overdose victims and those rendering aid. If a first responder or bystander had the means

to save an overdose victim, but also incorrectly believed that they would be at personal

risk of injury in doing so, any ensuing hesitancy could easily translate to death.

Drawing on restricted-use mortality data from the National Vital Statistics System (NVSS)

for the years 2014-2019, this study examines the influence of misinformation shocks on

opioid-related mortality through the most common dissemination medium: Media reports

of claimed “near-death” experiences suffered by first responders involving fentanyl. In

particular, I focus on a 2017 incident involving an undercover narcotics officer in East

Liverpool, Ohio, who was hospitalized following brief exposure to what was believed to be

fentanyl powder. Prior media analyses (Beletsky et al., 2020) have suggested that this

was the seminal event in pressing the fentanyl exposure myth into the public imagination.

As such, I exploit the unexpected proliferation and spatial variation in media coverage of

this event to estimate the association between misinformation dissemination and county-

quarter opioid-related mortality rates. I find that within the media market local to East

Liverpool, opioid related mortality increased significantly following the 2017 event when

compared against bordering counties, and that these variations in mortality cannot be

attributed to other contemporaneous factors. Similar, though slightly attenuated effects

are observed within other media markets across the country that featured reporting on the

East Liverpool event. Moreover, I find evidence that regions with greater media coverage

of this event demonstrate marked shifts in recorded death locations- away from hospitals,

and towards other third locations- among opioid overdose victims, and argue that this is

the result of a reluctance to render aid based on fentanyl hazards perceptions.

The principal contribution of this paper is in providing the first credibly-causal estimates

for the economic consequences of the fentanyl hazards myth, as well as more generally

advancing the literature on the role of misinformation in public health policy efficacy.

Focusing on mortality specifically here is essential because it directly reveals the life-
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threatening impact of the epidemic and guides effective interventions to save lives.

Although there is a rich body of qualitative work examining the potential influence

of this misinformation on first responder behavior (Attaway, Smiley-McDonald, Davidson,

& Kral, 2021; Beletsky et al., 2020; Del Pozo et al., 2021; Herman et al., 2020), with the

exception of this study’s companion article (Kochersperger, 2023), no research to date has

examined the direct outcomes of such beliefs on public health outcomes. Understanding

the broader influence of misinformation- especially that spread through social media-

on public health outcomes has been of particular attention of late on the heels of a

growing anti-vaccination movement (Chou, Oh, & Klein, 2018; Wang, McKee, Torbica, &

Stuckler, 2019). Within just the economics literature, for instance, Carrieri et al. (2019)

employ a research design similar to that used here involving one significant media-driven

misinformation shock asserting a causal relationship between receipt of the MMR vaccine

and autism diagnoses to derive estimates for its effect on vaccination rates. This study

therefore bridges these two literatures and bolsters the descriptive results already generated

on fentanyl hazards myth phenomenon with the application of causal inference methods.

The remainder of the paper is organized as follows. In the next section I offer some context

on fentanyl hazards misinformation phenomena, including a summary of common first

responder overdose protocols and origins of the myth to get at possible mechanisms. In

Section 3 I describe my data and empirical strategy, and report my results in Section 4. I

conclude with a discussion of these results and policy ramifications in Section 6.

1.2 Background

1.2.1 Fentanyl, naloxone, and first responder overdose protocols

Fentanyl is a synthetic piperidine-based opioid drug, meaning that unlike natural or semi-

synthetic opioids such as morphine, heroin, or oxycodone, it is not derived from poppies.

It was first developed by Paul Janssen in 1959 as an effort to create what was then the

most potent analgesic, believing that to do so would improve safety (Stanley, 1992). The

drug first received US medical approval in 1968 and- in line with its considerable potency-
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has maintained a somewhat niche prescribing status when compared to other opioids.

Primarily used for managing major pain, most fentanyl is prescribed to patients following

surgery or during late-stage cancer. Among these patients it is particularly common to

prescribe transdermal patches, which are adhesive strips that cling to a person’s skin and

are specially formulated to allow fentanyl to enter the bloodstream over prolonged periods.

Beyond these intended therapeutic uses, fentanyl has a complicated and deadly legacy.

The fentanyl analogs carfentanil and remifentanil were implicated in the direct deaths of

125 hostages during the 2002 Nord-Ost siege, when Russian special forces piped aerosolized

forms of the opioids into the Dubrovka Theater in an attempt to subdue Chechen resistance

fighters (Riches, Read, Black, Cooper, & Timperley, 2012). Domestically, dozens of

poisoning deaths among children have been credited to transdermal patches for either their

mistakened application (when believed to be a band-aid), or accidental ingestion through

chewing (Stoecker, Madsen, Cole, & Woolsey, 2016). The most significant aspect to this

legacy by far however, has been fentanyl’s role in the illicit opioid epidemic. Between 2013

and 2020, the number of opioid-related deaths attributed to synthetic opioids increased

by a factor of 18, advancing to the point of accounting for 82% of all opioid-related

deaths in 2020 (Hedegaard, Miniño, Spencer, & Warner, 2021). While short-comings in

cause-of-death reporting keep the precise number of deaths resulting from specifically

fentanyl use difficult to determine, drug seizure data from the National Forensic Laboratory

Information System (NFLIS) suggest that 59% of all analgesics, and as much as 91%

of non-Buprenorphine synthetic opioids seized by law enforcement contain fentanyl, an

analog, or a chemical precursor used for its production (DEA, 2021). The reasons for this

extraordinary change is multi-fold, but from the supply-side it’s been largely driven by

economic factors: Fentanyl is cheap to produce and its high potency allows for both easier

cross-border movement, and cutting with other substances (Greenwood & Fashola, 2021).

Accompanying fentanyl’s growing prevalence within illicit drug markets has been an

increased interest among toxicologists in understanding the precise hazards the opioid

poses through passive exposure. In their review of the extant clinical literature, Moss

et al. (2018) find little evidence to corroborate the idea that momentary contact poses
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any significant health risk: The required duration of continued exposure to powderized

fentanyl to achieve a therapeutic- let alone, toxic- dosage through inhalation is on the

order of hours, not seconds. Moreover, dermal contact alone does not appear to be capable

of permitting the absorption of fentanyl to the bloodstream.2 In one recent noteworthy

event, a first responder was exposed to a large quantity of analytically-verified liquid

fentanyl when it was splashed over their skin, but exhibited no clinical effects of opioid

absorption (Feldman & Weston, 2022).

Numerous harm reduction policies have been advanced in an effort to combat the worsening

opioid epidemic, but few have received as much attention as increasing the availability of

naloxone. As an opioid antagonist, naloxone is capable of reversing respiratory depression

from acute opioid intoxication within minutes of administration. Because of its life-saving

capacity, it has been recognized as an ‘essential medicine’ by the World Health Organization.

Since auto-injector and intranasal naloxone devices received medical approval for emergency

use in 2014 and 2015, respectively, their use has expanded significantly and are now widely

issued to emergency medical services, law enforcement, fire departments, and community

health clinics.

Despite naloxone’s demonstrated life-saving capabilities, questions remain on its broader

efficacy in reducing opioid mortality. Empirical efforts at understanding the influence

of increased accessibility of naloxone as a policy response to the opioid epidemic have

mostly focused on changes to Naloxone Accessibility Laws (NAL). Rees et al. (2019)

look at changes to both NALs and Good Samaritan Laws (GSL) and find that NAL

adoption yields significantly negative effects on opioid mortality, but that these estimates

are almost entirely driven by early-adopters, suggesting these treatments were probably

endogenous responses. Conversely, Doleac and Mukherjee (2022) employ a similar research

2Moss et al. (2018) provide the following scenario to illustrate just how unlikely immediate reaction is:

If bilateral palmar surfaces were covered with fentanyl patches, it would take ∼14 min to
receive 100mcg of fentanyl . . . This extreme example illustrates that even a high dose of
fentanyl prepared for transdermal administration cannot rapidly deliver a high dose.

That is, even when the entire surfaces of both palms are covered with patches, it still takes more than 10
minutes to receive a therapeutic dose. They note that these figures are unrealistic however, as they are
“based on fentanyl patch data, which overestimates the potential exposure from drug in tablet or powder
form in several ways.”
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design and find evidence that naloxone access had no significant effect on opioid mortality.

Erfanian et al. (2019) attempt to account for spillover effects across borders in regards to

both opioid mortality and NALs by estimating a spatial Durbin model. They find NALs

have very mixed results, but generally do not appear to significantly decrease mortality

directly (though certain NALs yield positive and negative effects when examined in the

aggregate with spillovers to neighbors). This lack of consistent or clear estimates for these

potential effects highlights a common theme: Meta-analysis (Smart, Pardo, & Davis, 2021)

of multiple literatures find that NALs have mixed, if only slightly-positive impacts on

opioid mortality. The ambiguity here is often attributed, like other similar harm reduction

policies (Packham, 2019), to offsetting moral hazard behavior (Doleac & Mukherjee, 2022),

but my results here hint to the possibility of another attenuating factor. Simply making

naloxone more available may be insufficient as a lifesaving measure if people are reluctant

to use it.

To illustrate the role that naloxone plays in overdose situations, I describe a typical scenario

and the standard protocols employed by those rendering aid. Firstly, note that the first

responders to an overdose scene are often not emergency medical services (EMS), but

law enforcement officers (LEO). Officer surveys and analysis of bodycam footage suggest

that in the majority of cases LEO are first to the scene (Smiley-McDonald, Attaway,

Richardson, Davidson, & Kral, 2022; White, Watts, Orosco, Perrone, & Malm, 2022),

sometimes beating EMS by several minutes. While there is some heterogeneity with this

tendency in regards to urbanicity (Smiley-McDonald et al., 2022) (officers in rural regions

report arriving around the same time as EMS), even in areas where not commonly first

to the scene, LEOs are still more likely to administer naloxone than other responders

when they are first (Macmadu et al., 2022). Because opioid-induced respiratory failure

can cause death by brain hypoxia within a matter of minutes and responders are already

operating off a time delay when arriving to a scene, LEOs often immediately administer

naloxone then attempt CPR, so as to “buy time” before EMS arrives (Smiley-McDonald et

al., 2022). Depending on victim response, first responders may administer multiple doses

of naloxone; and if stabilized, they are typically either arrested, escorted to a hospital, or
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released at the scene.

Because of the likelihood of being in close proximity to narcotics, it has been recommended

that first responders to suspected fentanyl overdoses dawn nitrile gloves and- when believed

to be airborne- facemasks (Moss et al., 2018). While these recommendations do not differ

materially from those made for any other drug overdose,3 it has not stopped private

industry from marketing specialty fentanyl personal protective equipment (PPE). These

fentanyl-proof gloves, testing equipment, and hazmat suits have been adopted by some

police departments (Herman et al., 2020), but have also been panned by toxicology experts

as unnecessary (Lynch, Suyama, & Guyette, 2018). Considering that the margin of time

needed for an overdose to become lethal could be on the order of seconds, delaying needed

aid to a victim to put on superfluous PPE has prompted calls to reconsider these practices

and to relax even the standard recommendation for use of N95 respirators (Lynch et al.,

2018; Winograd, Phillips, et al., 2020; Herman et al., 2020; Attaway et al., 2021).

1.2.2 The fentanyl misinformation panic and its origins

The principle vector through which fentanyl misinformation appears to be disseminated

is media reporting on supposed exposure events, most typically those involving law

enforcement officers. So prevalent have these media pieces become in communities hardest

hit by the opioid epidemic that reported-on scenarios often follow a standard formula:

Following an attempted drug possession arrest, an officer comes into contact with a

powderized narcotic; through either the admission of the offender or just supposition,

said officer comes to believe that this substance is fentanyl; after a period of several

minutes the officer reports feelings of dizziness, shortness of breath, and may even faint;

in an attempt to resuscitate the exposure victim, other officers or first responders may

administer naloxone or escort them to a hospital to receive treatment. Affected first

responders, their peers, and accompanying media portrayals may attest these reactions

to acute opioid toxicity, but even if one were to disregard the extreme unlikelihood of

3The NIOSH recommendations are intended for when any illicit drugs are at an
emergency medical scene and offer no additional considerations for fentanyl specifically. See:
https://www.cdc.gov/niosh/topics/fentanyl/risk.html

https://www.cdc.gov/niosh/topics/fentanyl/risk.html
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passive fentanyl exposure eliciting such medical responses, there is virtually no evidence to

corroborate the veracity of these claims (Lynch et al., 2018; Herman et al., 2020; White et

al., 2022). Herman et al. (2020) combed through more than one thousand media reports

involving supposed first responder fentanyl exposure events between 2014-2018 and could

not find a single instance where either the affected parties reported a plausible poisoning

scenario or laboratory testing confirmed poisoning. Instead, they find that the most

commonly reported symptoms are consistent with stress-induced panic, and that these

reactions are probably psychosomatic in origin.

Although their underlying accuracy is disputed, the media presence first responder fentanyl

exposure events maintain is far from trivial. Estimates on the upper-bounds of cumulative

facebook user-views that these media reports have received between 2015 and 2019 is

approximately 70 million, while only 6.6% of these shares correspond to articles that

correctly refute the incidental exposure hazards (Beletsky et al., 2020). Accordingly,

surveys suggest that knowledge of these erroneous exposure hazards have permeated

aggressively through the first responder community, with as many as 80% of queried law

enforcement and emergency medical services members agreeing that momentary contact

with fentanyl can be deadly (Persaud & Jennings, 2020; Del Pozo et al., 2021; Attaway et

al., 2021; Berardi, Bucerius, Haggerty, & Krahn, 2021; Bucerius, Berardi, Haggerty, &

Krahn, 2022). Of those law enforcement officers who echoed these sentiments, many note

that they had learned of the phenomenon second-hand and not through formal police

channels, suggesting that media coverage may be a contributing factor for first responder

perceptions specifically (Attaway et al., 2021). Moreover, these beliefs also appear to

translate directly to first responder behavior, with some law enforcement admitting to an

unwillingness to render first aid to those they suspect of suffering from fentanyl poisoning

(Berardi et al., 2021; Bucerius et al., 2022).

The valid hazardous concerns of fentanyl as an accidental poisoning agent can be traced to

historical events with relative ease, yet the origins of the fentanyl exposure hazards myth

is somewhat more opaque: Urban legends of malefactors clandestinely dosing unsuspecting
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highway patrolmen date back to at least the 1970’s4; and parallels have been noted to

earlier, similarly specious medical panics regarding first responder exposure misinformation

during the HIV/AIDS epidemic5 and early waves of clandestine methamphetamine lab

raids the 1980’s and 90’s6 (Bucerius et al., 2022). What is known for certain is that

beginning in 2016, medical toxicologists began receiving inquiries concerning the veracity

claims made in the media that fentanyl could harm first responders on touch (Herman et

al., 2020). In that same year, the US Drug Enforcement Administration, published a press

release describing one exposure event involving law enforcement in New Jersey, the details

of which were shared further by the National Police Foundation (Del Pozo et al., 2021).

Beyond the influence of these agency press releases, social and news media analysis

performed by Beletsky et al. (2020) pinpoint one heavily-reported event as being the

primary culprit in cementing these ideas within the public consciousness. While attempting

to make an arrest in May 2017, an East Liverpool, OH police officer was exposed to what

was believed to be fentanyl. Within minutes he became lightheaded and naloxone was

administered several times, but his symptoms were severe enough to eventually require

hospitalization. Media coverage of the event was swift, with early news reports receiving

tens of thousands of facebook shares (Beletsky et al., 2020). As illustrated in Figure 1.1,

average search prevalence among Google queries for terms related to fentanyl exposure

increased by a factor of five immediately following this particular event. Similarly, in

Figure 1.2 I compare search prevalence for all queries involving the term “fentanyl” across

time within the Youngstown, OH Designated Market Area (DMA) (where East Liverpool

is located) against neighboring DMAs, as well as all other DMAs in the surrounding states

4See “LSD Given to Police Officer” at Snopes here: https://www.snopes.com/fact-check/jar-jar-drinks/
5One ambulance service director in New York State, who had worked as an EMT during the HIV/AIDs

crisis made this comparison more overt, saying (Bump, 2018):

It was a lot of hype ... We didn’t understand it, we didn’t know how it was transmitted,
and I think we’re seeing the same thing here. But the reality is, the initial scares about
exposure to this drug just have not panned out.

6In a similar fashion to specialized fentanyl PPE, beliefs about long term complications related to
meth lab exposure among retired law enforcement officers prompted the Utah state government to finance
a controversial therapy regimen in 2007. The sauna-based therapy (which was developed by L. Ron
Hubbard and delivered through a Church of Scientology-associated organization (Scientology Critical
Information Directory, 2009)) claimed to “sweat out” toxins, though this was criticized for having little to
no scientific basis (Bonisteel, 2015).

https://www.snopes.com/fact-check/jar-jar-drinks/
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of Pennsylvania, Ohio, and West Virginia7. One can observe that in the media market

local to East Liverpool, general interest in fentanyl peaks immediately following the 2017

event, before returning to similar search frequencies of the neighboring areas. This is

consistent with Beletsky et al. (2020)’s observation that media coverage of this event-

despite its relative popularity- varied substantially across space. Even as more events

such as these would unfold involving LEOs from all over the country, the East Liverpool

event remains unique in terms of both its timing, and ultimate breadth of coverage.

In 2018, the American College of Medical Toxicology (ACMT) and American Academy

of Clinical Toxicology (AACT) released a joint statement to counter the sensationalist

claims which had been made in the preceding two years (Moss et al., 2018), but this effort

appears to have largely fallen on deaf ears. Since then, hundreds more articles have been

published detailing claimed exposure events (Beletsky et al., 2020), with the phenomenon

being reported as recently as January 2024.8

1.3 Empirical Approach

1.3.1 Data

To observe the effects of fentanyl misinformation on opioid mortality, I utilize Nielsen’s

Designated Media Markets (DMA) to identify treated counties within the same media

market as East Liverpool, OH. As argued above, this May, 2017 event appears to be the

pivotal event in establishing public misconceptions on the hazards of passive fentanyl

exposure, so distinguishing between regions based on their exposure to misinformation

through the media would permit one to identify treatment effects. DMAs are very similar

to the Federal Communications Commission’s (FCC) Television Market Areas (TMA),

the legally-defined borders that determine broadcast rights and channel availability for

all over-air, satellite, and cable television. TMAs borders are usually larger than actual

media coverage areas (particularly in mountainous regions like Appalachia) however, so

7More detailed information and background on these DMAs is provided in the following section.
8See news article, Florida sheriff: Deputy exposed to fentanyl, saved by Narcan, here:

https://www.wmur.com/article/somersworth-police-fentanyl-heroin-013024/46587496

https://www.wmur.com/article/somersworth-police-fentanyl-heroin-013024/46587496
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Figure 1.1: Time series of Google search interest in the hazards of fentanyl exposure.
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Google search data was collected from Google Trends and represents the relative popularity of
search terms over the specified time frame; the time series was derived from querying the Google
trends for “fentanyl AND (touch* OR contact* OR absor* OR inhal* OR expos*)”. Solid black
line is the weekly average for the Google Trends Index, while the dashed blue line is the rolling
average of the 20 preceding weeks. The dashed vertical lines demonstrate the dates of the DEA
press release and the East Liverpool event.

Figure 1.2: Regional time series of Google search interest in fentanyl.
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Google search data was collected from Google Trends and represents the relative popularity of
search terms over the specified time frame. Time series were derived from querying the Google
trends for “fentanyl” for each Designated Market Area (DMA)-quarter over 2014-2019. The
Youngstown DMA contains East Liverpool, OH; while neighbor DMA includes all counties in
media markets that share a border with the Youngstown DMA; and non-neighbor DMAs include
all other counties in Ohio, Pennsylvania and West Virginia for which search trends data is
recorded. Shaded regions represent the 95% confidence intervals and the dashed vertical line
demonstrates the date of the East Liverpool event.
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Nielsen DMAs are adjusted to only include counties with significant metered-viewership.

I hand-code these DMAs based on a publicly available map9. Because there still remains

the potential for some bordering counties to be treated by broadcast misinformation, I

additionally employ FCC significant viewership data to include any counties that could

be plausibly subject to spillovers10.

To describe mortality effects, I utilize the CDC’s restricted-use multiple cause of death file.

These data include the entire universe of deaths within the United States over the period

2014-2019 and are recorded at the individual-level. Following the procedures outlined by

Svetla et al. (2015), I identify all overdose deaths as those with ICD-10 underlying cause

of death codes X40-X44, X60-X64, X85, Y10-Y14; then identify opioid overdose deaths

from these as those with with mortality-associated conditions codes T40.0, T40.1, T40.2,

T40.3, T40.4, or T40.611 I aggregate these opioid overdoses and compute the per 100,000

population death rate by the county-quarter and initially drop any counties which did

not record a single opioid overdose over the six year sample. To account for potential

undercounting of opioid overdoses, I also use aggregated counts of overdose deaths which

include the mortality-associated conditions code T50.9 for poisoning by unspecified drugs,

medicaments and biological substances (Buchanich, Balmert, Williams, & Burke, 2018).

As an additional robustness check, I perform placebo tests employing similar mortality

rates for motor vehicle accidents, heart attacks, and assault excluding the use of drugs or

medicants12

Additional control covariates include county-quarter demographic and economic measures,

as well as opioid-use proxies such as the annual opioid dispensing rate and heroin arrest

9Available here: https://web.archive.org/web/20230315182138/https://thevab.com/storage/app/media/Toolkit/DMA_Map_2019.pdf
10The FCC is legally obligated to conduct periodic viewership surveys to determine which specific

channels receive significant viewership outside of their designated TMAs. I use the 2017 survey, which is
available from here: https://transition.fcc.gov/mb/significantviewedstations061817.pdf

11These T-codes correspond, respectively, to: opium, heroin, natural and semisynthetic opioids,
methadone, synthetic opioids, and other or unspecified opioids.

12For motor vehicle accident deaths, I use all underlying cause of death codes corresponding to
unintentional motor vehicle deaths: [V02-V04](.1,.9), V09.2, [V12-V14](.3-.9), V19(.4-.6), [V20-V28](.3-.9),
[V29-V79](.4-.9), V80(.3-.5), V81.1, V82.1, [V83-V86](.0-.3), V87(.0-.8), V89.2. For assault-related deaths,
I use all codes contained under X86-99 and Y00-Y05, which includes all forms of assault, excluding
assault by drugs, medicaments and biological substances. For heart attack-related deaths I use all codes
contained under I10-15, hypertensive diseases; I20-25, ischemic heart diseases; I46, cardiac arrest; and
I50, heart failure.
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rates, and policy indicators for naloxone access, good samaritan, and opioid prescription

control laws. One likely confounder which may prevent the interpretation of any naive

regression results as causal is the significant county-level variation in fentanyl and heroin

prevalence over the observed time frame. Broader historical analyses of the opioid

epidemic have emphasized two consumption innovations– the transition from prescription

painkillers to heroin, and eventually from heroin to fentanyl– as epochal in defining the

associated mortality (Alpert, Powell, & Pacula, 2018; Alpert, Evans, Lieber, & Powell,

2022). There is particular concern over the market transition towards primarily-synthetic

opioid consumption: Because the introduction of fentanyl was so swift, disparate, and

ultimately lethal, the potential for spuriously conflating those associated outcomes with

media misinformation treatment effects seems a valid concern. To control for these

confounding effects then, I also utilize law enforcement drug seizure data collected from

Harm Reduction Ohio, which includes the entire universe of Ohio’s Bureau of Criminal

Investigation’s (BCI) crime lab results for the years 2014-2019. A complete breakdown of

controls employed, their sources, and spatio-temporal coverage is available in Table 1.1.

Unlike user surveys, which are largely dependent on the word of dealers in establishing

the provenance and composition of traded goods, the precise chemical makeup of seized

samples are determined through a gas chromatography process, and as such much less

likely to omit or mistake the presence of specific opioids. The BCI laboratory is also by

far the largest crime lab within the state– of Ohio’s 88 counties, only two are absent for

the years observed. These data contain individual offense-level observations (including

seizure data, arresting authority, and county of seizure location) and the corresponding

chemical makeup of any drugs seized, which represents a significant improvement over

opioid possession or intent-to-distribute arrest records. I extract from this dataset the

total county-quarter counts of seizures which tested positive for fentanyl, or the closely

related carfentanil, and do the same for heroin13.

Summary statistics for key variables of interest and covariates are listed in Table 1.2. To

13Because fentanyl is almost universally used as an adulterant of heroin or psychostimulants, it is
worth noting that these fentanyl and heroin counts are not exclusive.
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Table 1.1: Data description, coverage and sources

Data employed Level of measure Geographic Coverage Temporal Coverage Data Source

Multiple cause-of-death file Individual deaths,
aggregated to county-quarter All US counties 2014-2019 National Vital Statistics System,

Centers for Disease Control and Prevention

Percentage of the population with a credit
score below 660 County-quarter All US counties 2014-2019

Equifax Subprime Credit Population,
Equifax and Federal Reserve Bank of
New York

Arrests per 100k for possession or distribution
of heroin and similar drugs

Month-agency counts,
aggregated to county-quarter All US counties 2014-2019

Uniform Crime Reporting,
Summary Reporting System,
Federal Bureau of Investigation

Unemployment rate County-quarter All US counties 2014-2019 Local Area Unemployment Statistics,
Bureau of Labor Statistics

Percent of laborforce employed in construction County-quarter All US counties 2014-2019 Local Area Unemployment Statistics,
Bureau of Labor Statistics

County-level demographic estimates
(percent hispanic, black) Year-quarter All US counties 2014-2019 County Population Totals,

U.S. Census Bureau

Poverty rate Year-quarter All US counties 2014-2019 Small Area Income and Poverty Estimates,
U.S. Census Bureau

Policy indicator for whether state has a
naloxone access law State-quarter All US counties 2014-2019 Prescription Drug Abuse Policy System

Policy indicator for whether state has a law
restricting prescriptions for opioid analgesics State-quarter All US counties 2014-2019 Prescription Drug Abuse Policy System

Policy indicator for whether state has a drug
overdose Good Samaritan Law State-quarter All US counties 2014-2019 Prescription Drug Abuse Policy System

Policy indicator for whether state requires the
PDMP to be queried under any circumstance State-quarter All US counties 2014-2019 Prescription Drug Abuse Policy System

Opioid dispensing rate per 100 people County-year Most US counties
(n=2975) 2014-2019

Centers for Disease Control and Prevention,
National Center for Injury Prevention and
Control

Crime lab analysis of seized drugs (percent
of seizures containing heroin or fentanyl)

Individual seizures,
aggregated to county-quarter 86 Ohio counties 2014-2019 Ohio Bureau of Criminal Investigation
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Table 1.2: County-quarter summary statistics table.

Control Counties Treated Counties
Statistic N Mean N Mean

Overdose Count 288 5.951 96 11.406
Overdoses per 100k Pop. 288 4.740 96 5.910
Annual Population 288 119,087 96 161,827
% of Pop. Hispanic 288 1.714 96 2.724
% of Pop. Black 288 4.461 96 9.438
Unemployment Rate 288 5.624 96 6.072
% of Laborforce Employed in Construction 288 4.445 96 3.734
Poverty Rate 288 13.221 96 16.058
% of Pop. with Subprime Credit 288 24.656 96 26.918
Prescription Opioid Dispensing Rate 288 82.011 96 96.646
Heroin or Related Drug Arrests per 100k Pop. 96 15.144 96 14.662
Naloxone Access Laws 288 0.931 96 0.969
Good Samaritan Laws 288 0.722 96 0.656
Opioid Prescription Restriction Laws 288 0.441 96 0.438
Mandatory PDMP Laws 288 0.913 96 0.948
Fentanyl % of Seizures 144 12.234 72 14.469
Heroin % of Seizures 144 20.507 72 24.228

All data described above represents average observed values by county-quarter for the years
2014-2019. Treated counties are defined as those within the Youngstown, OH DMA (Columbiana,
Mahoning, Trumbull, OH; Mercer, PA); control counties are those that are directly adjacent and
share a common border. Fentanyl and heroin seizure figures are available within Ohio alone.
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align with my primary identification approach, I separate between columns 1 and 2 the

statistics corresponding to the treated counties (those within the Youngstown DMA),

and control counties (those within a DMA that shares a border with the Youngstown

DMA). One can observe that average mortality within the treated counties is greater than

their neighbors. To expand on this, in Figure 1.3 panel a I plot a time series of average

county-month opioid overdoses for both the treated counties and their direct neighbors

(that is, only the counties that share a border with the treated), and all other counties in

Ohio, Pennsylvania, and West Virginia. Because of the relative ruralness of these treated

counties, direct neighbors are probably more appropriate baselines for comparison here.

The parallel trends in mortality prior to treatment, and divergence afterwards appear

to lend credence to the media exposure hypothesis, although the general stabilization or

decline in mortality is somewhat unexpected. In panel b I plot the time series for the

county-month average percentages of drug seizures containing heroin and fentanyl for

the entire state of Ohio. These plots demonstrate the importance of including opioid

type prevalence measures, as fentanyl overtook heroin in ubiquity at almost precisely the

same time as the East Liverpool event. Omission of such controls could spuriously inflate

derived estimates if fentanyl was more lethal, and differentially distributed among treated

and control areas.

1.3.2 Identification Strategy

My primary identification approach is to look at opioid mortality within the Youngstown

Ohio DMA and compare this against the opioid mortality in some combination of bordering

counties before and after the 2017 East Liverpool event. Because East Liverpool lies

squarely within the Youngstown media market, and because both the timing and location

of the event are seemingly random, the identifying assumption is that any difference

in overdose mortality trends between counties within and outside this market can be

attributed to behavioral changes among first responders due to the difference in exposure

to the corresponding media coverage. In examining this particular exogenous media shock,

I exploit random changes in public perceptions of the fentanyl exposure hazards to identify
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Figure 1.3: Time series for opioid mortality and prevalence.

((a)) Opioid-related deaths per 100 thousand population by county-quarter. Shaded regions
represent the 95% confidence intervals and the dashed vertical line demonstrates the date of the
East Liverpool event.

((b)) Opioid prevalence as percent of drug seizures that tested positive for fentanyl and heroin
based on the BCI data, by county-quarter. Shaded regions represent the 95% confidence intervals
and the dashed vertical line demonstrates the date of the East Liverpool event.
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the causal effects on first responder behavior. The counterfactual here would be that,

absent some media intervention, individuals would not erroneously believe fentanyl to be

so hazardous as to stymie or delay emergency response to overdoses. This is essentially the

canonical differences-in-differences (DiD) research design, but I use additional data-driven

methods to create a better match on pre-treatment observables,

To describe this procedure in more detail, consider a conventional approach at deriving

these misinformation treatment effects using the following two-way fixed effects (TWFE)

model:

yct = µ+ αc + βt + τ · MIct (1.1)

where yct is the opioid-related mortality rate in county c in quarter t; αc and βt are county

and quarter fixed effects, respectively; and MIct is an indicator equal to one representing

misinformation exposure for all counties within the Youngstown DMA following the

May 2017 treatment, and zero otherwise. Because this model specification holds the

composition of intervention and comparison groups stable, and assuming that treatment

assignment is not itself endogenous with opioid-mortality, then τ here can be interpreted as

a causal average treatment effect on the treated as long as the parallel trends assumption

is satisfied. A common critique with this standard DiD approach however, is that the

validity of the parallel trends assumption cannot be formally tested, meaning that ad hoc

control definitions could be yielding spurious results. Considering the relatively small

size of the treated sample examined here, this is particularly threatening to the causal

interpretation as the control group could be misspecified.

With this in mind, I instead estimate a synthetic differences-in-differences (SDiD) model

that minimizes the following error:

argmin
α,β,µ,τ

{
C∑
c=1

T∑
t=1

(yct − µ− αc − βt − τ · MIct)
2 ω̂sdid

c λ̂sdid
t

}
(1.2)

where ω̂sdid
c is a vector of statistically-derived county control weights, and λ̂sdid

t is a vector

of time weights computed according to Arkhangelsky et al. (2021). The SDiD control
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generated by these weights minimizes the error in pre-treatment trends when compared

with the treated, so that it represents a more realistic counterfactual than any ad hoc

specification. Arkhangelsky et al. (2021) describe this as a “generalized” differences-in-

differences model, because- unlike the canonical DiD which assigns uniform weight to

each pre-period control- SDiD weights those control observations which best construct

parallel pre-trends. Because of this strength, SDiD method has been demonstrated to

generally outperform both conventional TWFE and SDiD control estimation approaches

(Arkhangelsky et al., 2021). In addition to these approaches, I estimate a staggered-SDiD

that considers all counties within DMAs that had at least one news article published

making reference to the East Liverpool event as treated, and their bordering DMAs as

controls. This is a similar identification approach to the primary method, but permits

DMAs other than just Youngstown to be treated and uses variation in timing of media

coverage.

A growing concern among applied researchers with interpreting either conventional

synthetic control or SDiD estimates derived from observations of the dependent variable

alone as causal is that the asymptotic irrelevance of auxiliary covariates may not necessarily

hold over finite sample spaces. While the recommendation is often overlooked, Abadie

et al. (2010) and others (Kaul, Klößner, Pfeifer, & Schieler, 2022) propose the inclusion

of potential confounders whenever researchers find them relevant. Recent simulation

results indicate that omitting these confounders in model specifications could not only

introduce significant bias to estimates but also render the precise direction of this bias

virtually unknowable from the outset (Pickett, Hill, & Cowan, 2022). As such, when

possible I duplicate all estimation procedures with and without the inclusion of plausible

confounders, and display both sets of results.

To utilize contemporaneous observations of relevant covariates within the synthetic

differences-in-differences estimation, Arkhangelsky et al. (2021) propose first regressing the

dependent variable on the covariates, then running the SDiD procedure on the obtained

residuals. Kranz (2022) demonstrate however, that in instances where covariates have

time-varying influence on the dependent variable, this residuals approach often fails at
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constructing a SDiD control which satisfies the parallel trends condition. They instead

suggest a correction approach that utilizes fitted values for the dependent variable derived

from a two-way fixed effects regression including the covariates. Because several important

control variables within my model- in particular, those pertaining to opioid demand- likely

differ in their influence on opioid-related mortality across time,14 I opt to utilize this

‘projected’ covariate approach when running my regressions.

Lastly, it is important to acknowledge that- while initially untreated- the control counties

are susceptible to contamination over time as information spillovers occur through social

and national media coverage of later, similar misinformation-triggering events. It is

unlikely that my model is capable of entirely controlling for spillovers. Instead, I opt to

place particular emphasis on examining dynamic trends in mortality for the bulk of my

analysis: If delineating between treated and untreated counties becomes more difficult

as time passes, I should still be able to observe any eventual convergence between the

treated and controls.

1.4 Results

1.4.1 Primary Results

The primary results of my regressions are outlined in Table 1.3. As detailed already, I

estimate SDiD models which assume all counties within the Youngstown DMA are treated

through exposure to misinformation following the coverage of the East Liverpool event,

while donors to the SDiD control are drawn from the immediately bordering counties to

this treated DMA. In the upper panel, I estimate SDiD models both with and without

auxiliary covariates using several measurements for accidental drug poisoning. These

estimates comprise of all drug-related poisonings; opioid-related poisonings; possibly-

opioid-related poisonings which include all opioid-related deaths, as well as those coded as

14For instance, I employ possession and distribution arrests data as a proxy for illicit opioid demand,
but these data do not distinguish between opioid types. Since the observed timeframe also coincides with
the transition from predominantly heroin to fentanyl use, parametrizing this demand effect as constant
while there are unobserved changes in illicit opioid lethality could bias pre-trends.
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related to unspecified drugs; illicit opioid-related poisonings (those associated with either

heroin or a synthetic opioid, like fentanyl); and synthetic opioid-related poisonings. In the

lower two panels I re-estimate my opioid-related SDiD model, but stratify by decedent

demographics and age groups.

Summarizing these results, I observe large and statistically-significant increases to overdose

mortality rates within the Youngstown DMA following the East Liverpool event. Across

specifications both with and without the inclusion of control variables, I observe overall

accidental drug poisoning and opioid-related poisonings are increasing by between 2-

4 additional deaths per 100,000 population. My preferred outcome measure for this

analysis, opioid-related mortality, increased by approximately 2.84 deaths per 100,000

population. This jump in mortality represents a 56.6% increase to the average quarterly

mortality for the treated counties relative to pre-treatment period. The results for possibly-

opioid related, illicit opioid-related, and synthetic opioid-related overdose deaths highlight

data quality concerns that have been voiced by other researchers. It appears likely that-

consistent with earlier findings (Buchanich et al., 2018)- many illicit opioid-related overdose

deaths are being coded under this general “unspecified drugs” category. A lack of adequate

toxicology screening, particularly early on when fentanyl first entered illicit drug markets,

may have failed to correctly identify synthetic opioids when they were in fact present.

While I cannot be certain that all of these deaths represent fentanyl, or even opioid-related

deaths, concern for categorical undercounting here seems valid. Because of this, caution is

warranted in interpreting these more drug-specific mortality coefficient estimates, as they

are almost certainly biased downward. More reassuringly however, the stratified SDiD

results illustrate sensible heterogeneity in changes to opioid-related mortality. Consistent

with other research on the opioid epidemic, the bulk of these effects are being driven by

white males between the ages of 25-34.

To better illustrate the dynamic trends of this phenomenon, I plot time series of the

observed treated opioid-related mortality against the computed counterfactuals for the

estimated opioid-related mortality SDiD model in Figure 1.5. Interestingly, opioid mortality

appears to decline immediately following treatment for all counties, but critically, the
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Table 1.3: SDiD coefficient estimates for mortality by drug type, stratified by
demographics and age.

Pre-treatment Mean SDiD estimates SDiD estimates w/ covariates

Opioid-related 5.012 2.353∗∗∗ 2.838∗∗∗
(0.811) (1.099)

Drug-related 7.890 3.347∗∗∗ 3.953∗∗∗
(0.914) (1.073)

Possibly opioid-related 7.251 3.129∗∗∗ 4.051∗∗∗
(0.823) (1.091)

Illicit opioid-related 3.811 1.520 1.876
(1.009) (1.201)

Synthetic opioid-related 2.221 2.322∗ 2.115∗
(1.222) (1.200)

Opioid related, Male 5.224 1.858∗ 3.285∗∗
(1.109) (1.552)

Opioid related, Female 5.200 1.456 1.720
(1.135) (1.356)

Opioid related, White 3.213 2.040∗∗ 2.849∗∗
(0.903) (1.262)

Opioid related, Black 7.018 −4.034 −1.447
(4.178) (5.876)

Opioid related, Hispanic 3.090 4.324 1.121
(2.639) (4.016)

Opioid related, Age <25 1.398 −0.515 0.172
(1.024) (1.042)

Opioid related, Age 25-34 13.395 6.659 11.445∗∗
(4.945) (4.556)

Opioid related, Age 35-44 11.095 7.970∗ 6.284
(4.611) (4.438)

Opioid related, Age 45-54 8.129 −0.425 0.953
(1.881) (2.052)

Opioid related, Age >54 2.258 0.767 0.800
(0.811) (0.878)

Observations 384 384

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Results depicted here are derived by estimating an SDiD model which considers counties within the
Youngstown OH DMA after the 2017 East Liverpool event as treated, and their immediately bordering
counties as the SDiD control donor set. Dependent variables include per 100 thousand mortality rates for:
all drug-related poisonings; opioid-related poisonings; possibly-opioid-related poisonings which include all
opioid-related deaths, as well as those coded as related to unspecified drugs; illicit opioid-related poisonings
(those associated with either heroin or a synthetic opioid, like fentanyl); and synthetic opioid-related
poisonings. Results in column 3 are estimated by employing the time-variant covariate correction from
Kranz (2022) and include the following auxiliary covariates: Percent of county population hispanic, black,
or with a subprime credit score; percent of county laborforce employed in construction; unemployment
and poverty rates; annual prescription opioid dispensing rate; arrests for heroin or related drugs per
100 thousand population; and policy indicators for whether the county’s state had enacted naloxone
access, good samaritan, mandatory PDMP, or opioid prescription restriction laws. Figures enclosed in
parentheses are cluster bootstrap standard errors.
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Figure 1.4: Treatment maps for East Liverpool event.

((a)) A map of counties considered as treated under my primary identification strategy. Blue-
shaded region is Columbiana county, where East Liverpool is located; yellow-shaded regions
are other counties within the same DMA; purple-shaded counties are bordering counties within
neighbor DMAs; and the orange-shaded region are all other counties within the neighboring
DMAs.

County Treatment Status

Headline−Originating County

Neighbor County

Neighbor DMA

Treated DMA

((b)) A map of national media coverage of East Liverpool event, as based on the data from
Beletsky et al. (2020). Blue-shaded regions correspond to counties where a news article which
made reference to the East Liverpool event originated; yellow-shaded regions are other counties
within the same DMAs as those which originated coverage of the East Liverpool event; purple-
shaded counties are bordering counties within neighbor DMAs; and the orange-shaded region are
all other counties within the neighboring DMAs.
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Figure 1.5: Plotted primary SDiD results.

((a)) SDiD results depicted here are according to the opioid-related mortality specifications
from table 3. Pink-shaded regions at the bottom of plots depict time-weights, black arrowed-line
represents the average treatment effect. The bottom panel is estimated employing the time-variant
covariate correction from Kranz (2022) (hence the seemingly-negative values for the SDiD control
the beginning of the observation period) and includes the following auxiliary covariates: Percent
of county population hispanic, black, or with a subprime credit score; percent of county laborforce
employed in construction; unemployment and poverty rates; annual prescription opioid dispensing
rate; arrests for heroin or related drugs per 100 thousand population; and policy indicators for
whether the county’s state had enacted naloxone access, good samaritan, mandatory PDMP, or
opioid prescription restriction laws.

treated counties rebound much more quickly. This could be representing an incubation

peroid for the misinformation to disseminate and take hold.

One potential confounder missing from these model specifications is the variation in the

ubiquity of particularly potent illicit opioids, fentanyl and heroin, over the observed period.

Prior research examining Ohio over this same timeframe (Peterson et al., 2016; Zibbell et

al., 2022) has identified the regional prevalence of fentanyl as a significant driver of opioid

mortality, so the inclusion of some measure of this within the estimated model appears

justified. By employing drug seizure data from Ohio’s Bureau of Criminal Investigation’s

crime lab (BCI), I use county-quarter counts of total seizures that tested positive for these

compounds to proxy for their prevalence within local drug markets. A problematic factor

with using these direct seizure counts is that they could conceivably be endogenous with
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opioid deaths.15 As an alternative then- and since I am only interested in the relative

prevalence of these opioids- I divide these drug-specific counts by the total count of all

drug seizures conducted within that county-quarter. To test whether these proportional

estimates are endogenous, I estimate a series of simple two-way fixed-effects models where

I regress total drug seizures, fentanyl as percent of seizures, and heroin as percent of

seizures on the one-year lag of opioid deaths. The results for these models are listed in

the upper panel of Table 1.4, but to summarize: As anticipated, deaths do appear to be

significantly decreasing the number of seizures performed in the subsequent years, while

the relative proportions of these seizures being either fentanyl or heroin do not seem to

affected.

With these prior results in mind, I attempt to control for opioid prevalence variation

by including the proportional measures of fentanyl and heroin ubiquity as additional

covariates and re-estimate my primary SDiD model specification on the subsample of

Ohio counties. While not a direct threat to the validity of my reduced form estimates,

a concern with interpreting these results could be a misidentification of the underlying

mechanisms. For instance, it may be the case that these misinformation shocks are

increasing opioid-related mortality, but are doing so by increasing consumer demand for

fentanyl by users. To test this, I replicate my Ohio SDiD results twice more, but with

fentanyl and heroin prevalence on the left-hand side.

The results for the three Ohio models are listed in the lower panel of Table 1.4. In column

1, I note that even with the inclusion of fentanyl and heroin drug seizure proportions, the

primary specification SDiD results within Ohio do not significantly change. In columns 2

and 3, I see that when treating fentanyl and heroin prevalence as the dependent variable,

there is no significant change following the East Liverpool misinformation shock. This

highlights that changes to opioid overdose death are likely not arising from an increase

in demand following media reports on fentanyl’s potency. Taken together, these results

strengthen the central argument that these observed changes to opioid-related mortality

15This could arise, for instance, when a year of unexpectedly high opioid-related deaths within a county
prompts local policymakers to invest more heavily in drug enforcement, and consequently sees an increase
in seizures performed in the subsequent years.
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Table 1.4: Ohio fentanyl and heroin prevalence analysis results.

(a) Opioid prevalence endogeneity test
Dependent variable:

Total Drug Seizures Fentanyl Seizures,
% of Total

Heroin Seizures,
% of Total

(1) (2) (3)

Lagged Opioid Overdose Deaths −0.290∗∗ 0.001∗ 0.00000
(0.124) (0.0003) (0.0004)

Observations 1,740 1,740 1,740

(b) SDiD results with opioid prevalence measures
Dependent variable:

Opioid-Related Overdose
Deaths Per 100k

Percent of Drug Seizures
Containing Fentanyl

Percent of Drug Seizures
Containing Heroin

SDiD Estimates 3.190∗∗ 0.015 0.101
(1.315) (0.036) (0.073)

Pre-treatment Mean 5.821 0.075 0.311

Observations 216 216 216

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
((a)) The results in the top panel are derived by regressing each Ohio county-quarter measure
of the dependent variables for the years 2015-2019 on the number of opioid-related deaths that
occurred in the same county-quarter of the preceding year; as well as including county and
quarter fixed-effects for all Ohio counties.

((b)) The results in the bottom panel outline SDiD coefficient estimates derived from the
primary model specification on the Ohio subsample, along with their bootstrapped standard
errors in parentheses. Column 1 replicates the primary opioid-related results estimate from
table 3 including covariates, but additionally includes measures for the percent of drug seizures
conducted within those county-quarters that tested positive for heroin and fentanyl. Columns
2 and 3 follow the same controls specification, but set the fentanyl and heroin drug seizure
percentages as the dependent variable.
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Figure 1.6: Distribution of placebo test results.

Histogram and density plots above describe the empirical noise distribution for the primary
opioid-related mortality SDiD model controls. Coefficient estimates here are derived according
to the placebo protocol outlined by Arkhangelsky et al. (2021), which randomly assigns controls
as treated and the SDiD model is re-estimated on the donor set alone. Distributions are based
on 500 replications for each model specification. Dashed lines indicate the value of the estimated
SDiD treatment effects.

are being driven by some external factor other than fentanyl, or even heroin prevalence.

1.4.2 Robustness Checks

An initial concern with my estimates is that cluster bootstrap-derived standard errors

are less dependable for small treated sample sizes. Because I have only four treated

counties, I re-estimate my primary SDiD specifications, but instead employ the placebo

protocol outlined by Arkhangelsky et al. (2021). This approach is similar to permutation

tests performed in randomization inference used for conventional DiD estimators (Conley

& Taber, 2011): To directly estimate the noise level of the control units, a number

of controls are randomly assigned as treated and the SDiD model is re-estimated on

the donor set alone. Assuming homoscedasticity across units, this variance estimator

would provide more accurate- if also more conservative- confidence bounds for the causal

treatment effect. I perform this placebo procedure using 500 random placebos and plot the

empirical distribution for their derived SDiD coefficients in Figure 1.6. Across specifications

both with and without the inclusion of covariates, I find my initial SDiD estimates for

opioid-related mortality retain their 99% significance level .
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I re-estimate my opioid-related mortality model with considerations for a spate of other

potential threats to validity and list the results in Table 1.5. These variations include an

alternative treatment specification meant to control for information spillovers that includes

any counties the FCC has listed as having significant viewership of any stations within

the Youngstown DMA; alternative dependent variables of opioid-related death counts

in levels and logs derived from the inverse hyperbolic sine transformation, rather than

mortality rates; and a conventional DiD model. In the top panel I estimate these across all

observations for the period 2014-2019, while in the bottom panel I re-estimate the opioid-

related mortality model on the subset of observations occurring after the October 2015

adoption of the ICD-10 coding system to account for any potential data inconsistencies.

For each of these, I experiment with several different donor-set specifications to derive

my SDiD controls. Under my preferred specification in column 1, donors to the SDiD

control are drawn from the immediately bordering counties to the treated DMA; under

the specification in column 2, I expand this donor set to include all counties of bordering

DMAs; and in column 3 I include all counties in bordering DMAs but exclude immediately

bordering counties so as to control for spillovers. In Table 1.6 I replicate these results, but

use local commuter zone delineations from Fowler and Jensen (2020) instead of DMAs.

Under the primary donor set specification, the magnitude of the coefficients listed in

column 1 are consistent with the preferred SDiD estimates, and are broadly significant.

DiD estimates are qualitatively similar to SDiD, but are insignificant, which highlights the

potential advantages that this more generalized estimation approach affords. Coefficients

generally maintain their magnitudes across the wider donor set definitions in columns 2

and 3, but are noisier.

To better understand these results, I plot the three SDiD controls based on the different

donor set specifications from row 1 of Table 1.5 in Figure 1.7. One can observe that

the generated SDiD controls are nearly identical across these specifications, but that

the alternative donor set definitions including more counties from the bordering DMAs

are weighting earlier observations from the pre-period more heavily (represented by the

shaded regions in the bottom-left). It is primarily because of these differing time weights-
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Table 1.5: SDiD robustness checks, DMAs as treatment unit

SDiD control donor set:

Adjacent counties as control Bordering DMAs as control Bordering DMAs
without adjacent counties

Estimates without Covariates
Youngstown DMA as treated 2.353∗∗∗ 1.352 1.477

(0.811) (1.042) (1.168)
Significant viewership of Youngstown
DMA station as treated 2.031∗∗ 1.643∗ 1.671∗

(0.848) (0.986) (0.965)
Opioid-related death rate, logged 0.417∗∗ 0.161 0.222

(0.186) (0.211) (0.315)
Opioid-related deaths, levels 3.600∗∗ 3.772 4.049∗

(1.668) (2.229) (2.136)
DiD 1.493 1.536 1.551∗

(0.980) (0.987) (0.883)

Estimates with Covariates
Youngstown DMA as treated 2.838∗∗∗ 0.891 0.818

(1.065) (0.801) (0.837)
Significant viewership of Youngstown
DMA station as treated 2.394∗ 1.215∗ 1.088

(1.334) (0.717) (0.765)
Opioid-related death rate, logged 0.519∗∗ 0.040 0.014

(0.233) (0.145) (0.187)
Opioid-related deaths, levels 4.138∗∗∗ 2.935∗∗ 3.176∗

(1.579) (1.302) (1.745)
DiD 2.214∗ 1.078∗ 0.920

(1.134) (0.582) (0.685)

Observations 384 1,200 912

Estimates without Covariates
Post ICD-10 adoption 1.994∗∗ 1.365 1.473

(0.926) (0.978) (1.055)

Estimates with Covariates
Post ICD-10 adoption 3.091∗ 1.429 1.390∗

(1.681) (0.898) (0.766)

Observations 272 850 646

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

SDiD results for opioid-related mortality depicted here include: An alternative treatment
specification that counts any counties the FCC has listed as having significant viewership
of any stations within the Youngstown DMA as treated; alternative dependent variables of opioid-
related death counts in levels and logs derived from the inverse hyperbolic sine transformation;
and a conventional DiD model. The bottom panel re-estimates the opioid-related mortality model
on the subset of observations occurring after the October 2015 adoption of the ICD-10 coding
system. Column 1 defines donors to the SDiD control from the immediately bordering counties
to the treated DMA; column 2, expands this donor set to include all counties of bordering DMAs;
and in column 3 includes all counties in bordering DMAs but excludes immediately bordering
counties. The covariate-inclusive estimates employ the correction from Kranz (2022) and includes
the following time-variant controls: Percent of county population hispanic, black, or with a
subprime credit score; percent of county laborforce employed in construction; unemployment
and poverty rates; annual prescription opioid dispensing rate; arrests for heroin or related drugs
per 100 thousand population; and policy indicators for whether the county’s state had enacted
naloxone access, good samaritan, mandatory PDMP, or opioid prescription restriction laws.
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Figure 1.7: Comparison of SDiD controls constructed under different donor set
specifications.

((a)) SDiD results depicted here are according to the opioid-related mortality specifications from
row 1 of table 5. Shaded regions at the bottom of plots depict time-weights for the corresponding
donor set specification, which include: All immediately adjacent counties to the Youngstown
OH DMA, all counties in within bordering DMAs, and all counties in within bordering DMAs
excluding immediately adjacent counties to the Youngstown OH DMA, respectively.

not the composition of the SDiD control- that the alternative donor set specifications

are yielding smaller, noisier treatment effect estimates. SDiD time weights are assigned

by minimizing the error between pre- and post-treatment observations of the dependent

variable on all controls (that is, it affords more weight to pre-treatment periods which are

better predictors of post-treatment control outcomes). If the donor set contains controls

which are wholly inappropriate for construction of the SDiD control, the unit weighting

algorithm would assign them low weights when estimating treatment effects; but because

the time weighting algorithm is applied across all members of the donor set, then these

invalid controls are receiving the same weight as any other. Therefore, when appropriate

and invalid controls follow different time trends, the vector of generated time weights is

probably biased away from being the best predictor of relevant post-treatment outcomes.

Put differently, the inclusion of control counties which are qualitatively different from

those within the treated DMA could be excessively weighting early-period observations if

these inappropriate control counties report flat or declining opioid mortality rates, rather
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than the wider increasing trend. One way of possibly identifying this biasing effect is to

examine covariate balance on the SDiD-weighted controls against the treated counties.

The reasoning behind this is that a donor set with better balance in terms of observables

linked to opioid mortality should result in a SDiD control that more accurately mirrors an

ideal counterfactual. I perform a series of covariate balancing tests for each of these three

donor set specifications and list the results in Table 1.7. While the weighted controls for

the larger donor sets do appear to be better balanced for some county characteristics, I find

that for essential measures related to opioid use– opioid overdose, dispensing, and arrest

rates, as well as policy status for NALs and mandatory PDMP reporting – my primary

specification demonstrates a greater balance than the alternatives. This is intuitive when

considering Youngstown’s locale: As the radius of counties included within the donor set

is expanded outward, it begins to encroach on the denser, more urban Cleveland, Akron

and Pittsburgh metropolitan areas. Nevertheless, the magnitude of the alternative SDiD

estimates do not vary substantially, so taken together with these other considerations I

retain the initial, adjacent counties specification as my preference.

Because my principal identification strategy considers only one relatively small media

market as treated, it is possible that these results could be driven by some unobserved

change to the underlying first responder mechanism other than the misinformation effect

that I describe. For instance, it could be that counties within the Youngstown DMA

experience similar changes in law enforcement or EMS staffing and response policies

that incidentally coincide with the East Liverpool event. However unlikely, in such an

instance my estimates would be sizably biased upwards. To descriptively analyze this

possibility, I collect municipal- and county-level expenditures data on police protection,

fire prevention, and health services spending from the Census’ Annual Survey of State

and Local Government Finances16. I plot time series for per-capita spending in Figure 1.8

and compare the expenditures made within Youngstown OH DMA against those made by

governments elsewhere in Ohio, Pennsylvania, and West Virginia. I observe no substantial
16Depending on the specifics of local and county government program structure, outlays for first

responder services could appear in any one of these categories. Generally, since ambulance services are
largely operated as private entities in rural areas, most government expenditures for emergency medical
training and equipment will appear as either police protection or fire prevention expenses
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Table 1.6: SDiD robustness checks, commuting zones as treatment unit

SDiD control donor set:

Adjacent counties as control Bordering commuter zones
as control

Bordering commuter zones
without adjacent counties

Estimates without Covariates
Youngstown commuter zone as treated 2.031∗∗ 1.809∗∗ 1.680

(0.813) (0.893) (1.076)
Opioid-related death rate, logged 0.290 0.219 0.249

(0.185) (0.191) (0.250)
Opioid-related deaths, levels 2.979∗ 3.463∗ 3.721∗

(1.557) (1.874) (1.945)
DiD 1.562∗ 1.884∗∗ 2.032∗∗∗

(0.868) (0.752) (0.782)

Estimates with Covariates
Youngstown commuter zone as treated 2.394∗∗∗ 1.534∗ 1.187

(1.190) (0.884) (0.874)
Opioid-related death rate, logged 0.457∗ 0.122 0.006

(0.269) (0.186) (0.235)
Opioid-related deaths, levels 3.329∗∗∗ 3.113∗ 3.676

(1.547) (1.718) (2.250)
DiD 1.933 1.636∗∗ 1.693∗∗

(1.199) (0.717) (0.778)

Observations 384 960 696

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

SDiD results for opioid-related mortality depicted here substitute local commuter zone delineations
from Fowler and Jensen (2020) for DMAs and include the following variations: Alternative
dependent variables of opioid-related death counts in levels and logs derived from the inverse
hyperbolic sine transformation; and a conventional DiD model. Column 1 defines donors to the
SDiD control from the immediately bordering counties to the treated commuter zone; column
2, expands this donor set to include all counties of bordering commuter zone; and in column 3
includes all counties in bordering commuter zone but excludes immediately bordering counties.
The covariate-inclusive estimates employ the correction from Kranz (2022) and includes the
following time-variant controls: Percent of county population hispanic, black, or with a subprime
credit score; percent of county laborforce employed in construction; unemployment and poverty
rates; annual prescription opioid dispensing rate; arrests for heroin or related drugs per 100
thousand population; and policy indicators for whether the county’s state had enacted naloxone
access, good samaritan, mandatory PDMP, or opioid prescription restriction laws.
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relative trend changes within the Youngstown OH DMA following the East Liverpool

event. Because of the inconsistency in spatial coverage for these data however (not all

local and county governments surveyed in every year), I would emphasize that these

figures are only suggestive.

To address this issue then, I estimate three additional model sets identical to my preferred

specification that instead use motor vehicle accidents, heart attack-related, and assault-

related death rates as the dependent variable. The rationale here is that if there is some

alternative factor influencing first responder behavior, one would be able to observe similar

changes in other common forms of death where mortality is subject to these agents’

behavior (that is, other causes of death where lives can be saved with timely intervention

by LEO and EMS). If not however, these regressions would act as falsification tests and

return null results. The results of these falsification tests are outlined in Table 1.8, and as

expected, motor vehicle, heart attack and deaths show no significant variation within the

Youngstown DMA compared to control areas.

1.5 Mechanisms Analysis

1.5.1 Identifying media’s direct role in misinformation shocks

Though there is evidence to corroborate the claim that the East Liverpool event influenced

opioid mortality, it is still unclear how precisely this occurred. I have assumed up to this

point that media coverage is the primary driver, but social media and word-of-mouth are

equally-plausible vectors for misinformation. To test this, I employ a slightly different

treatment definition which utilizes fentanyl misinformation media coverage data collected

by Beletsky et al. (2020) to identify the associated effects of mass media reporting on

mortality. These data collected from the Mediacloud system cover archived news articles

for the period 2015-2019 which contain various combinations of phrases indicating the

presence of erroneous fentanyl exposure hazards information. 17

17Beletsky et al. (2020) manually confirmed the content of each entry as misinformation and code for
each observation the date of publication, location of publisher, associated event (for instance, whether the
article makes explicit reference to the East Liverpool or some other first responder incident). I extract
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Table 1.7: Covariate balance tables for SDiD donor set specifications.

SDiD control donor set:

Covariate Adjacent counties as control Bordering DMAs as control Bordering DMAs without adjacent counties

Control
Weighted Means

Treated
Weighted Means

Adjusted
Mean Difference

Control
Weighted Means

Treated
Weighted Means

Adjusted
Mean Difference

Control
Weighted Means

Treated
Weighted Means

Adjusted
Mean Difference

Overdoses per 100k Pop. 5.181 5.204 -0.050 4.499 5.012 0.185 4.356 5.007 0.158
Annual Population 119,485 162,781 0.559 152,957 163,209 0.078 164,715 163,246 -0.042
% of Pop. Black 4.391 9.385 1.196 5.301 9.362 0.706 5.626 9.361 0.566
% of Pop. Hispanic 1.651 2.613 0.689 2.033 2.581 0.278 2.175 2.579 0.159
Unemployment Rate 6.264 6.589 0.193 6.364 6.471 0.045 6.727 6.806 0.020
% of Laborforce Employed
in Construction 4.086 3.502 -0.328 4.534 3.586 -0.512 4.735 3.563 -0.580

Poverty Rate 13.373 16.456 1.080 14.523 16.525 0.751 14.890 16.557 0.648
% of Pop. with
Subprime Credit 25.024 27.305 0.654 25.897 27.552 0.542 26.286 27.665 0.512

Prescription Opioid
Dispensing Rate 87.896 104.463 0.849 82.597 105.887 1.156 80.348 105.893 1.331

Heroin or Related Drug
Arrests per 100k Pop. 15.983 15.104 -0.085 15.368 15.192 -0.108 15.790 15.216 -0.130

Naloxone Access Laws 0.938 0.969 0.001 0.858 0.942 0.112 0.756 0.893 0.116
Good Samaritan Laws 0.562 0.406 -0.148 0.490 0.365 -0.086 0.420 0.357 -0.085
Opioid Prescription
Restriction Laws 0.052 0.031 -0.022 0.025 0.019 -0.009 0.042 0.036 -0.005

Mandatory PDMP Laws 0.948 0.969 0.001 0.853 0.904 0.066 0.803 0.857 0.063

Figures in the table above represent the weighted means and standardized mean differences on
observables when comparing covariate values for the treated counties against the weighted controls
drawn from the SDiD control donor set. Columns 1-3, represent the donor set specifications
for all immediately adjacent counties to the Youngstown OH DMA; columns 4-6, all counties
in within bordering DMAs; and columns 7-9, all counties in within bordering DMAs excluding
immediately adjacent counties to the Youngstown OH DMA. Weights assigned to controls are
derived from the opioid-related mortality SDiD model estimated without covariates.

Table 1.8: Falsification test SDiD results.

Dependent variable:

Motor Vehicle Accident
Deaths Per 100k

Heart Attack-Related
Deaths Per 100k

Assault-Related
Deaths Per 100k

Without Covariates −0.484 −0.144 0.076
(0.557) (4.695) (0.260)

With Covariates −0.703 3.938 0.026
(0.648) (6.321) (0.293)

Pre-treatment Mean 2.605 66.37 1.152

Observations 384 384 384

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
The results above are derived by following the same specifications as the opioid-related mortality
models in table 3, row 1, but using mortality rates for motor vehicle accident, heath attack,
and assault-related deaths. Auxiliary covariates include: Percent of county population hispanic,
black, or with a subprime credit score; percent of county laborforce employed in construction;
unemployment and poverty rates; annual prescription opioid dispensing rate; arrests for heroin
or related drugs per 100 thousand population; and policy indicators for whether the county’s
state had enacted naloxone access, good samaritan, mandatory PDMP, or opioid prescription
restriction laws. Figures enclosed in parentheses are cluster bootstrap standard errors.



1.5 Mechanisms Analysis 36

Figure 1.8: Regional time series of local and county-level government expenditures on
police protection, fire prevention, and health services.
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((a)) Time series figures for per capita municipal- and county-level expenditures on police
protection, fire prevention, and health services spending from the Census’ Annual Survey of
State and Local Government Finances. Plots are averages across counties within the Youngstown
OH DMA against all other counties in Ohio, Pennsylvania, and West Virginia by county-year.
Shaded regions represent the 95% confidence intervals and the dashed vertical line demonstrates
the date of the East Liverpool event.
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I estimate these media-exposure models employing the staggered SDiD method outlined by

Arkhangelsky et al. (2021) in their appendix. This approach separates treated groups by

their treatment date, estimates an SDiD model for each treated group on the pooled control

units (while excluding the other treated units), then generates the average treatment

effect on the treated (ATT) as a weighted average of each sub-group’s ATT according to

their relative proportion of post-treatment observations. The treatment here is defined as

whether a given county’s DMA has originated some media coverage prior to the observed

date, while controls apply the methodology of my primary estimates and are drawn from

a donor set of all directly adjacent counties to treated DMAs. Because these models are

being identified on regional variation in reporting alone and include time fixed effects,

these estimates would correspond to only the influence of local, rather than national

reporting by media outlets on opioid mortality. Following (Packham, 2019), I increase

this restrictiveness when performing this national-scale analysis to include only counties

which recorded at least one opioid overdose for each year in the sample. A map of the

misinformation-originating counties, their DMAs and neighboring DMAs based on the

Beletsky et al. data is depicted in panel (b) of Figure 1.4.

The results of my media exposure staggered-SDiD are listed in Table 1.9. In column 1, I

use the complete set of all treated DMAs, while in column 2 I exclude the Youngstown

OH DMA to account for potentially-biasing local misinformation vectors (e.g. word-

of-mouth deriving from those involved or otherwise familiar with the East Liverpool

event, absent any media coverage). Though attenuated downward relative to estimates

which consider only the Youngstown OH DMA as treated, opioid-related mortality rates

demonstrate significant increases within media markets following reporting on the 2017

East Liverpool event. Under the preferred staggered-SDiD specification which excludes

the Youngstown OH DMA and includes auxiliary covariates, I observe an increase of

0.448 opioid-related deaths per 100 thousand people, or an increase of approximately 12%.

Even when restricting the treatment definition to regional media reporting, these specific

misinformation shocks are consistently increasing opioid-related mortality at a substantial

from these data all coverage relating to the East Liverpool event nationally and geocode each observation
to their corresponding DMA.
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Table 1.9: Staggered SDiD estimates for all US counties treated with media coverage of
East Liverpool event.

SDiD control treatment specification:
All treated DMAs and

adjacent counties as controls
All treated DMAs except Youngstown, OH

and adjacent counties as controls

Without Covariates 0.571∗∗∗ 0.565∗∗∗
(0.180) (0.197)

With Covariates 0.464∗∗ 0.448∗∗
(0.202) (0.214)

Pre-treatment Mean 3.903 3.892

Observations 13,752 13,656

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Treatment variables used here is an indicator for whether a county’s DMA has originated media
coverage that makes reference to the East Liverpool event. The results for column 1 use a sample
for all counties in treated DMAs and their adjacent neighbors, while column 2 excludes counties
within the Youngstown OH DMA; both samples drop counties which did not record at least one
opioid death per year over the observed period. Covariates employed by the models in row 2
include: Percent of county population hispanic, black, or with a subprime credit score; percent of
county laborforce employed in construction; unemployment and poverty rates; annual prescription
opioid dispensing rate; arrests for heroin or related drugs per 100 thousand population; and
policy indicators for whether the county’s state had enacted naloxone access, good samaritan,
mandatory PDMP, or opioid prescription restriction laws. Estimates enclosed in brackets are
staggered-adoption cluster bootstrap standard errors derived from the method described by
Clarke et al. (2023).

level.

1.5.2 Identifying changes to first responder behavior

Understanding how these fentanyl misinformation shocks actually translate to changes

in mortality remains an open question. If the mechanism pathway that I have

already proposed is valid, than I should be able to examine direct changes to first

responder behavior- in particular naloxone administration rates- within the treated

regions. Unfortunately, naloxone administration data within Ohio for much of the

observed time frame is incomplete. Most notably, naloxone administrations performed by

law enforcement are conspicuously absent from the extant data. Additionally, changes to

community programs that train and distribute naloxone kits could be affecting their use

more than even misinformation.

Though only descriptive, I collect from the Ohio Department of Health data for naloxone
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trainings, distributed kits, and self-reported naloxone resusitations performed by laymen

and plot their time series in Figure 1.9. These figures are suggestive only as there is no

way to know whether the trained individuals or distributed kits actually remained within

the recorded counties. Similarly, resusciations performed by laymen are almost certainly

undercounted. That being said, naloxone distribution and trainings do not appear to

significantly differ between the Youngstown OH DMA and the remainder of Ohio counties.

Naloxone administrations performed by laymen may be affected by misinformation shocks

by staying persistantly low relative to the rest of the state, but there is essentially no data

for the pre-period (due to data collection not having been initiated until well into 2017 for

some counties) with which to make this claim credibly. I additionally collect and plot data

for naloxone administrations performed by EMS from the Ohio Department of Public

Safety, but similarly find no significant changes between treated and untreated regions.

Following observations from Kochersperger (2023) of the relative change in naloxone

administration rates in New York state across different first responder types after the East

Liverpool media event, it seems likely that if naloxone use is changing substantially among

first responders, this is probably most pronounced among unobserved law enforcement

officers.

As an alternative approach at concretely describe the underlying behavioral mechanisms

that are driving this change in mortality, I examine changes in death locations. If

perceptions of the hazards of fentanyl exposure are discouraging the timely administration

of aid, then the number of opioid overdose deaths recorded within hospitals would decline

in treated relative to untreated areas. I estimate this directly with the following linear

probability model (LPM):

Yc,i,t =β11,iODi + β12,iPostt × ODi + β13,iPostt × ODi × Treatc

+ δXi + γc,t + εc,i,t

where Yc,i,t is a dichotomous outcome variable representing whether or not individual

i, residing in county c that died in month t, has their listed place of death as being in
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Figure 1.9: Regional time series of naloxone kit distribution, trainings, and
administrations.
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((a)) Time series figures for naloxone trainings, distributed kits, self-reported naloxone
resusitations performed by laymen, and naloxone resusitations performed by EMS per 100k
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all other counties in Ohio by county-quarter or ZCTA-quarter. Shaded regions represent the 95%
confidence intervals and the dashed vertical line demonstrates the date of the East Liverpool
event.
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one of five places18: inpatient hospital setting, outpatient or emergency room hospital

setting, dead on arrival to hospital, home or residence, and other. ODi indicates whether

the cause of death is attributed to an opioid overdose, which when interacted with the

Postt and Treatc dummies imply a triple-differences identification approach. Postt and

Treatc follow an identical definition to those employed in the staggered-SDiD model based

on the Beletsky et al. (2020) data, where the interaction of the two implies a county’s

DMA has originated media coverage that makes reference to the East Liverpool event.

Xi is a vector of individual-level demographic controls, while γc,t are county-month fixed

effects. I employ individual death certificate data from the CDC multiple cause of death

file and restrict my sample to all deaths attributed to an external injury or poisoning

(S00-T88) for the years 2015-2019 within a treated DMA or their adjacent county neighbors.

Because opioid-related deaths are relatively uncommon events outside of Appalachia, using

alternative external injury deaths as a baseline to compare against would afford a more

complete picture first responder practices. As well, this triple-differences approach allows

me to observe if there are any structural changes in death locations, beyond just those

related to opioid overdoses.

The results of these LPM models are depicted in Table 1.10. To summarize: Within

counties that have been exposed to misinformation pertaining to the East Liverpool event,

and relative to other causes of death, the likelihood of an opioid overdose death being

recorded in an inpatient or outpatient/emergency room setting decreases by approximately

2% and 1.9%, respectively; and the likelihood of those same deaths occurring someplace

other than a medical setting or residence increases by approximately 3%. The interpretation

of the results within Table 1.10 is that hesitancy in administering aid has yielded fewer

attempts at resuscitation, and as such moved the location of death from medical to

non-medical settings. Considering the urgency of opioid poisoning and the general

preventability of death with timely administration of aid, this latter point is troubling.

18Although I only include five here, the CDC MCOD file includes eight possible values that this
location of death variable can take: Hospital, clinic or medical center - inpatient; hospital, clinic or
medical center - outpatient or admitted to emergency room; hospital, clinic or medical center - dead on
arrival; decedent’s home; hospice facility; nursing home/long term care; other; and place unknown. The
omitted locations are excluded due to low counts.



1.5 Mechanisms Analysis 42

Table 1.10: Place-of-death linear probability results.

Death Location: Inpatient Outpatient &
Emergency Room DOA Home Other

Variables
Media-Treated 0.0007 0.0006 −2.15× 10−6 −4.54× 10−5 -0.0010

(0.0018) (0.0016) (0.0006) (0.0001) (0.0009)
Is Opioid Overdose -0.1203∗∗∗ -0.0118∗∗∗ 0.0008 0.2367∗∗∗ -0.0782∗∗∗

(0.0018) (0.0016) (0.0006) (0.0023) (0.0023)
Media-Treated× Is Opioid Overdose -0.0197∗∗∗ -0.0186∗∗∗ −6.46× 10−5 0.0014 0.0298∗∗∗

(0.0031) (0.0025) (0.0010) (0.0035) (0.0037)

Pre-treatment Means 0.2609 0.1307 0.0125 0.2720 0.2233
Percent Effect −0.0755 −0.1423 −0.0051 0.0051 0.1335

Fit statistics
Observations 809,703 809,703 809,703 809,703 809,703
R2 0.20116 0.11889 0.11737 0.19103 0.21648
Within R2 0.01169 0.00050 5.05×10−5 0.03469 0.00363

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Clustered (County×Month) standard-errors in parentheses
Linear probability model estimates for the marginal likelihood of one of five specific death locations
being listed on certificate. Treatment defined as the interaction between an indicator for whether
an individual death observation’s DMA has originated media coverage that makes reference to
the East Liverpool event, and an indicator for whether the observed death is attributed to an
opioid overdose. Sample is drawn from the complete set of individual deaths recorded in a treated
DMA or neighboring county based on Beletsky et al. (2020), which attribute the underlying
cause to an external injury or poisoning (corresponding to ICD-10 codes S00-T88). Covariates
include reported age, sex, race, ethnicity, highest level of educational attainment, as well as
county-month fixed effects.
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1.6 Conclusions

In this paper, I have identified the significant impact of fentanyl exposure misinformation

on first responder behavior during overdose events and overall opioid-related mortality.

In particular, I have examined first responder responses to the widespread dissemination

of inaccurate information regarding the supposedly-lethal hazards of passive fentanyl

exposure. By analyzing changes in opioid-related mortality following a well-covered

episode involving an Ohio police officer in 2017, the study reveals that areas with higher

media exposure to this misinformation experience significant increases in opioid overdose

deaths. This study underscores the importance of accurate information dissemination

and highlights the potentially deadly consequences of misinformation on public health

outcomes.

The primary takeaway from my results is that opioid-related mortality appears to be

increasing by approximately 2.84 deaths per 100,000 population, per county-quarter;

national-scale results place this figure at 0.448 additional deaths per 100,000 population,

per county-quarter. For my preferred specification, this jump in mortality represents

56.4% of the average quarterly mortality for the treated counties over the period observed.

Back-of-the-envelope calculations identify 199 avoidable overdose deaths, or 72 per year

within the Youngstown DMA, according to the SDiD model; and 5,479, or 1,992 per year

nationally, according to the preferred staggered-SDiD model. For perspective on these

magnitudes in the context of other opioid pandemic policies, Rees et al. (2019) find that

the adoption of naloxone access laws by states corresponded to a net decrease of 62-69

opioid-related deaths per year, nationally. Using the Florence et al. (2021) estimate of

$11.548 million in total economic costs per opioid overdose, this would put total costs at

$2.298 and $48.222 billion within the Youngstown DMA and nationally, respectively.

There are several noteworthy policy implications of my findings. First, it would appear

that some corrective effort on the part of criminal justice authorities is needed to combat

further dissemination of misinformation. Recent efforts at retraining first responders to

correct for fentanyl hazard misperceptions do appear effective (Winograd, Phillips, et al.,
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2020; Del Pozo et al., 2021), but there are limitations to the generalizability of these results.

An obvious next-step then would be to pursue a randomized control trial experiment to

observe the causal influence of first responder retraining on overdose response behavior

and mortality.

Enhanced first responder training is an obvious remedy, but there are a number of reasons

for policy makers to take pause when considering this particular approach. Namely,

narrative correction does not appear to enjoy the same degree of social media play or

lurid virality of the initial fentanyl exposure events, so efforts at retraining first responders

could be costly if it were required to be conducted at a scale that compensates for this lack

of information spillovers; and while there is promise that such retraining can influence first

responder beliefs, it is unclear how universally this improved knowledge translates to actual

behavior. Analysis of more general overdose education and naloxone distribution training

revealed more complicated effects on law enforcement beliefs Winograd, Stringfellow, et

al. (2020), with 31% of participants reporting more negative attitudes towards overdose

victims following training. Similarly, the companion paper to this research (Kochersperger,

2023) observes differing responses to the fentanyl misinformation shock in naloxone

administration rates across first responder types, with by far the largest declines in

naloxone administration propensities being observed among law enforcement after the

East Liverpool media event. This pronounced susceptibility to misinformation points to a

broader issue among law enforcement that may be rooted in something more fundamental

than a limited knowledge of toxicology. As outlined earlier in the research background,

the present fentanyl misinformation panic appears to be just the current iteration of

a long-present myth-spinning phenomenon; so even if fentanyl hazards impressions are

completely reversed, this may do little to limit future panics.

Another policy consideration is that media coverage of fentanyl hazards need not necessarily

promote false information, and can even be a useful means of correcting misperceptions.

A cursory survey of recent media coverage of supposed fentanyl exposure incidents does

reveal the pronounced use of more skeptical language, and even statements outright

dismissing the likelihood of events as described by law enforcement. Still, it is unclear
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whether this reactive fact-checking approach is a sufficient means of undoing the damage

already wrought by the initial misinformation shocks.

During the early stages of the AIDS epidemic when misbeliefs of the virus’ transmission

vectors and contagiousness dominated public perceptions, concerted efforts on the part

of a select few journalists to correct these narratives were consistently undermined by

the broader media environment (Beharrell, 2003). Ultimately, this narrative correction

depended on not only the dogged efforts of media insiders, but also celebrity intervention.

Noteworthy events such as Princess Diana’s visits to the opening of London’s Middlesex

Hospital AIDS ward in 1987, and Harlem Hospital’s AIDS unit in 1989 were seminal

in advancing the idea that AIDS victims were not passively contagious after she was

photographed shaking hands and hugging them without gloves. Similarly, Earvin “Magic”

Johnson’s much-publicized HIV-positivity disclosure and subsequent sudden retirement

from the NBA has been demonstrated to have reduced stigma surrounding HIV testing,

and increased diagnoses among heterosexual men (Cardazzi, Martin, & Rodriguez, 2023).

While none of this is to suggest that celebrity endorsements represent a realistic policy

response, it does highlight the corrective capacity that media and media consumption can

command. Herman et al. (2020) note six months elapsed between the time of the East

Liverpool event and the release of the ACMT-AACT joint statement that debunked many

of the sensational fentanyl exposure claims; but that over this same time the scientific

community was quiet and permitted the unchecked dissemination of misinformation.

At a minimum, policymakers should expand on the medical misinformation correcting

initiatives pioneered during the COVID-19 pandemic and prioritize swift fact-checking in

the future. Effective policy to counter these misinformation narratives must both correct

misperceptions among first responders and disincentive the continued dissemination of

misinformation by the media.
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2 Fentanyl on My Mind: Perceived Opioid Exposure Risk and

its Influence on Naloxone Administration Rates

2.1 Introduction

The opioid epidemic is one of the most pressing public health crisis of our era, and has

seen only a marked exacerbation since the onset of the COVID-19 pandemic, further

complicating an already dire situation. Conventional approaches to combating this

epidemic, including interdiction efforts aimed at curtailing the flow of illicit drugs and

educational campaigns directed at vulnerable populations, have largely proven ineffectual

in stemming the tide of opioid-related mortality. In an attempt to mitigate this crisis,

policymakers have turned towards innovative harm reduction strategies designed to

diminish the risks faced by opioid users. Among these, Good Samaritan laws, syringe

service programs, and fentanyl test strip access initiatives stand out for their dual objectives:

Reducing the legal repercussions for individuals assisting overdose victims and decreasing

the health risks associated with opioid usage. Proponents of these policies argue that they

do not promote drug usage but rather provide individuals suffering from substance use

disorders with the resources necessary to make informed decisions and embark on a path

towards recovery.

Naloxone access laws (NALs) represent a pivotal aspect of these harm reduction efforts,

aiming to broaden the availability of the opioid antagonist—commercially known as

Narcan—and lessen the legal barriers to its use. Administered in a timely manner,

naloxone has the capacity to revive individuals from overdose-induced respiratory failure,

thereby presenting a critical lifeline. The objective behind NALs is to curtail opioid-

related fatalities by enhancing the accessibility of this vital medication. However, empirical

evaluations of these laws paint a complex picture. While NALs have been generally effective

in reducing opioid mortality, they have also been critiqued for potentially fostering ex ante

moral hazard, whereby the diminished risk of overdose death might inadvertently encourage
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continued opioid consumption. To date, research has predominantly concentrated on

quantifying the magnitude of these moral hazard effects (Doleac & Mukherjee, 2018),

seeking to ascertain whether they merely attenuate or entirely negate the benefits conferred

by naloxone.

This study delves into a nuanced aspect of the opioid crisis by examining how

misinformation concerning the risks associated with administering aid influences

individuals’ willingness to assist in overdose situations. The act of delivering naloxone

necessitates close physical proximity between the rescuer and the overdose victim, raising

concerns about potential harm to the rescuer. This apprehension is exacerbated by

widespread, albeit unfounded beliefs among first responders that even momentary contact

with fentanyl—a potent opioid—could prove fatal. Such misconceptions, largely propagated

by a few high-profile media incidents coinciding with the widespread adoption of NALs,

suggest an alternative behavioral dynamic that may explain the mixed efficacy of these

laws. The increased availability of naloxone, without a corresponding decrease in mortality

rates, hints at a reluctance among potential rescuers to utilize this critical intervention tool

due to fear of personal harm, thus undermining the effectiveness of NALs in combating

the opioid epidemic.

By exploiting a unique dataset on naloxone administrations that distinguishes between first

responder types from the New York State Department of Health, this analysis examines

the influence of media-fueled misinformation shocks on first responder behavior during

opioid overdose episodes. I concentrate on a 2017 incident involving the hospitalization

of a law enforcement officer after he was exposed to a substance believed to be fentanyl.

This event, as highlighted in media analyses like Beletsky et al. (2020) study, was a key

factor in entrenching the fallacious idea that fentanyl is so uniquely dangerous it poses

lethal acute health risks through momentary contact in the collective public mindset.

Leveraging the unanticipated timing of this event, I seek to explore how misinformation

dissemination influences opioid-related mortality rates. Through a differences-in-differences

(DiD) analysis that takes advantage of the distinct levels of awareness regarding the hazards

of opioid exposure (essentially, how susceptible they are to this misinformation) between
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harm reduction professionals and other emergency responders, my findings point to a

marked decrease in the number of naloxone administrations by police officers following

the dissemination of misinformation. This decrease is interpreted as a sign of increased

caution among officers, likely due to concerns over the amplified risks fentanyl is perceived

to present.

This study can be viewed as a companion piece to Kochersperger (2023), in that these

papers are providing the first credibly-causal estimates for the economic consequences of

the fentanyl hazards myth. Kochersperger (2023) examines changes in county-level opioid-

related mortality rates, leveraging variation in coverage of the same 2017 misinformation

employed here across media markets. While Kochersperger (2023) examines down-stream

opioid mortality responses to media coverage surrounding the fentanyl misinformation

panic, this paper focuses on the underlying mechanism of first responder and naloxone

administration. Despite a wealth of qualitative analysis into how misinformation might

shape first responder behaviors (Attaway, Smiley-McDonald, Davidson, & Kral, 2021;

Beletsky et al., 2020; Del Pozo et al., 2021; Herman et al., 2020), it is only these two

studies that have looked into the tangible effects these attitudes have on public health

indicators. This study contributes a new dimension to understanding the complexity

behind the effectiveness of NALs by highlighting the critical influence of misinformation

on public health initiatives. It moves beyond the conventional moral hazard debate,

proposing that the reluctance of law enforcement to administer naloxone, even when it is

readily accessible, might explain the inconsistent empirical results. This insight marks a

unique addition to the economic discourse surrounding NALs and the broader framework

of harm reduction strategies.

The remainder of the paper is organized as follows. In the next section I offer some

context on naloxone access laws and the specific initiatives employed in New York State

to improve naloxone availability, as well as a brief summary of the fentanyl hazards myth

and relationship to law enforcement. In Section 3 I describe my data and empirical

strategy, in Section 4 I report my results, and in Section 5 I offer a discussion of the policy

implications. I conclude in Section 6.
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2.2 Background

2.2.1 Naloxone and New York state

Harm reduction policies have taken one of two common forms: Efforts aimed at encouraging

overdose victims or their peers to more readily seek medical assistance when in need,

and efforts that lower the direct health risks of drug use. The former of these policies

are perhaps best typified by Good Samaritan laws, which reduce or eliminate criminal

penalties for drug use and possession by parties that seek emergency medical aid for

overdosing peers. The latter has been historically associated with syringe service programs

(or needle exchanges) that furnish intravenous drug users (IDU) clean syringes to limit

the spread of blood-borne disease. Lately however, there have been increased efforts by

policymakers to improve access to the important opioid antagonist, naloxone. While

naloxone first received approval for treating opioid use disorder in 1971, its use within

emergency settings to promptly reverse respiratory failure from acute opioid toxicity

has expanded considerably with the development of nasal aspirator and autoinjector

delivery methods. Related harm reduction initiatives, naloxone access laws (NALs), have

involved a combination of loosening prescribing requirements and limiting liability that

bystanders face for administering naloxone, as well as directly improving the availability

of the lifesaving drug through kit distribution campaigns.

Despite its well demonstrated life-saving capabilities, a common moral hazard concern

with expanding access to naloxone is that it might induce more reckless substance use

behavior by reducing the perceived risks of overdose. The concern that such policies

might ‘enable’ additional drug usage, echoing the objections to clean needle exchanges

dating as far back as the 1980s, has been a common refrain among policymakers invoking

this moral hazard argument. The recent endeavor of researchers has been to quantify

the degree to which the life-saving advantages of naloxone are undermined by moral

hazard concerns. These empirical efforts have mostly focused on examining changes to

opioid-related mortality following adoption of NALs. A systematic review of this literature
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found that NALs demonstrate slight declines to opioid-related mortality (Smart, Pardo,

& Davis, 2021), but that these results are hardly consistent. For instance, McClellan

et al. (2018); Rees et al. (2019) look at NAL adoption while also accounting for other

simultaneous harm reduction policies and find that improved naloxone access yields

significant declines to opioid mortality. Conversely, Doleac and Mukherjee (2018) find

evidence of substantial moral hazard effects and large net increases to mortality with the

adoption of NALs. One concern with this line of research is that NAL adoption may not

be sufficiently random to permit a causal interpretation of these results. Other research

efforts have explicitly attempted to model for states’ selection into treatment, and when

doing so find no significant change to opioid mortality (Erfanian, Grossman, & Collins,

2019). Nonetheless, these remain a popular if ambiguously-effective policy within the

harm reduction toolkit, with all 50 states and the District of Columbia having adopted

some form of NAL by the end of 201719. One motivation for performing this research

here is to examine whether a contemporaneous shock to first responder behavior may be

discouraging naloxone’s use, even as its availability has improved.

New York State has been at the forefront of integrating harm reduction policies to combat

the opioid epidemic, with legislative measures dating back to 2006 aimed at empowering

potential witnesses to opioid overdoses through naloxone training programs registered with

the New York State Department of Health (NYSDOH). The introduction of the 911 Good

Samaritan Law in September 2011, aimed at alleviating fears of legal repercussions when

reporting overdoses, along with the approval for the use of mucosal atomizer naloxone

devices by Basic Life EMS agencies in 2013, significantly broadened the scope of naloxone’s

accessibility. Furthermore, the establishment of Opioid Overdose Prevention Programs

(OOPP) in 2014 marked a critical step in training non-medical persons for opioid overdose

management and enhancing public access to naloxone. These initiatives underscore New

York’s commitment to reducing opioid mortality through legislative and regulatory avenues,

and key to the research design employed here, all policies were implemented prior to the

period analyzed in this study.
19See Prescription Drug Abuse Policy System (PDAPS), https://pdaps.org/datasets/laws-regulating-

administration-of-naloxone-1501695139.

https://pdaps.org/datasets/laws-regulating-administration-of-naloxone-1501695139
https://pdaps.org/datasets/laws-regulating-administration-of-naloxone-1501695139
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In the realm of law enforcement, the 2014 regulations further permitted “shared access” to

naloxone, which allows officers to access naloxone within first aid kits under a non-patient-

specific prescription. This change, coupled with the commencement of the statewide law

enforcement naloxone initiative in the same year, expanded naloxone availability and

overdose scenario training among law enforcement officers, recognizing them as often the

first responders to opioid overdoses. The motivation for this is clear: Law enforcement are

often the first line of defense when responding to opioid overdoses. Empirical evidence,

including officer surveys and analysis of bodycam footage, underscores the pivotal role of

law enforcement in immediate overdose response, often beating EMS to the scene (Smiley-

McDonald, Attaway, Richardson, Davidson, & Kral, 2022; White, Watts, Orosco, Perrone,

& Malm, 2022). Within New York state between 2015 and 2020, law enforcement personnel

were the first on scene in 85% of cases in which they administered naloxone (Pourtaher

et al., 2022); though, in 37% of these cases at least one other dose is administered by

some other party (either a layperson or EMS). This is in line with broader naloxone

protocols: LEOs often immediately administer naloxone then attempt CPR, so as to

buy time before EMS arrives, who ultimately may administer additional doses as needed

(Smiley-McDonald et al., 2022). Indeed, state law dictates that all naloxone-trained

parties (both LEO and laypersons) notify EMS immediately when responding to a scene,

regardless of intervention outcomes prior to EMS arrival. This can be readily observed

by the fact that in 91.2% of instances which LEOs responded to, care is transferred to

EMS and victims are transported to a hospital (Pourtaher et al., 2022). If not escorted to

a hospital, surviving victims are either arrested or released at the scene. Regardless of

these post-intervention outcomes however, State law requires all LEOs to submit a timely

incident report that outlines their naloxone use.

Community Opioid Overdose Prevention programs (COOP) facilitate both the training of

laypersons in proper naloxone use, and the distribution of naloxone kits to eligible parties.

These programs have existed in some form or another in the state since 2006, but the 2014

law updated naloxone distribution, and intervention reporting and training procedures.

The broader program traces its roots to the State’s network of 25 syringe exchange programs
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and adopts an explicitly harm reduction-oriented approach to combating the opioid

epidemic. Registries from 201920 show that the majority of these non-law enforcement

opioid prevention programs are composed of local health departments, drug treatment or

support, and outpatient medical facilities. This aspect is important, as it highlights the

typical familiarity of the COOP-affiliated individuals who are performing these overdose

reversals with narcotics exposure hazards. Despite the structured framework for naloxone

training and distribution, there exists a notable gap in data regarding the frequency with

which laypersons, as opposed to EMS or LEOs, are first responders to overdose scenes.

The geographical and operational positioning of COOPs, often in proximity to areas

frequented by opioid users, suggests a theoretical advantage in facilitating quicker overdose

interventions by trained laypersons. This hypothesis is somewhat supported by statistics

from syringe access programs within New York state, which reported 68% of naloxone

administrations were carried out by laypersons (Pourtaher et al., 2022). While state law

mandates that all trained individuals submit naloxone administration reports through

their affiliated COOP, these procedures are not as rigorously adhered to as with LEOs.

2.2.2 The fentanyl misinformation panic

A critical aspect of the opioid epidemic of late is the unprecedented influence of the opioid

fentanyl. From 2013 to 2020, deaths linked to synthetic opioids (which are predominantly

composed of fentanyl and its close analogs) surged by 18 times, making up 82% of all

opioid-related fatalities in 2020 (Hedegaard, Miniño, Spencer, & Warner, 2021). This

dramatic increase in fentanyl’s market presence has spurred considerable interest and

discussion on the hazards associated with incidental exposure to the substance. Analysis

performed by the American College of Medical Toxicology and American Academy of

Clinical Toxicology has effectively dismissed concerns that short-term contact with fentanyl

is dangerously toxic (Moss et al., 2018), revealing that only exposure lasting several hours

could lead to significant absorption either through inhalation or skin contact. Contrary

to these findings however, media reports often sensationalize encounters, especially with
20See archived regional registries here:

https://www.health.ny.gov/diseases/aids/general/resources/oop_directory/index.htm

https://web.archive.org/web/20190701161807/https://www.health.ny.gov/diseases/aids/general/resources/oop_directory/index.htm
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law enforcement, as having immediate, severe health consequences from minor exposures,

implying fentanyl’s involvement. Additional analyses have not substantiated any cases of

poisoning from these reported exposures (Lynch, Suyama, & Guyette, 2018; Herman et

al., 2020; White et al., 2022), suggesting that the symptoms are more likely attributable

to stress-induced psychosomatic responses rather than direct chemical harm.

Despite doubts of their accuracy, reports of first responders’ experiences with fentanyl

feature prominently in the media. Influenced by this media coverage, a significant part of

the first responder community, including law enforcement and EMS workers, appears to

believe in the severe danger posed by brief contact with fentanyl, as evidenced by high

agreement rates in surveys (Persaud & Jennings, 2020; Del Pozo et al., 2021; Attaway et

al., 2021; Berardi, Bucerius, Haggerty, & Krahn, 2021; Bucerius, Berardi, Haggerty, &

Krahn, 2022). These misconceptions are consequential, influencing some first responders

to avoid providing aid for fear of fentanyl exposure (Berardi et al., 2021; Bucerius et al.,

2022).

Beletsky et al. (2020) highlighted a key incident in East Liverpool, OH, in May 2017,

which had a profound impact on the collective anxiety surrounding fentanyl exposure.

During this incident, a police officer reportedly came into contact with fentanyl while

making an arrest, leading to severe symptoms that necessitated hospitalization after

multiple administrations of naloxone. The widespread media attention and social media

dissemination, especially on Facebook, were instrumental in intensifying public concern

over fentanyl. Analysis of contemporaneous Google search trends highlights a surge in

fentanyl exposure interest following the 2017 event (Kochersperger, 2023). Kochersperger

(2023) further explores the effect of the media’s portrayal of this incident on opioid-related

deaths, utilizing the uneven coverage across different regions to assess its impact. Their

findings suggest a significant correlation between the media focus on this event and an

increase in opioid-related fatalities. They propose that this surge in deaths may be

linked to first responders’ reluctance to engage in overdose interventions, fearing fentanyl

exposure. However, while their research effectively connects media coverage with rising

mortality rates, it stops short of pinpointing the exact mechanism. In this analysis, I aim
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to build upon the East Liverpool event identification approach, enhancing it with data

that more directly accounts for first responder Naloxone use when responding to opioid

overdoses.

A pivotal element in dissecting the public’s fear regarding fentanyl relates to the varied

perceptions among first responders. Bucerius et al. (2022) and Kochersperger (2023)

describe LEOs’ historical vulnerability to misinformation, particularly during health crises

amplified by media narratives. This vulnerability is accentuated in the fentanyl discourse,

where LEOs’ exposure to misinformation is compounded by the nature of media-reported

exposure incidents, predominantly featuring law enforcement personnel. Furthermore,

certain training protocols for LEOs have officially propagated the notion of fentanyl

exposure risks (Kucher & Figueroa, 2021). In contrast, harm reduction advocates and

medical professionals have consistently endeavored to rectify this misleading narrative.

Despite the absence of comprehensive surveys to measure the prevalence of the fentanyl

hazard myth within medical and harm reduction communities, anecdotal accounts reveal

a widespread skepticism towards the accuracy of media portrayals 21.

Considering that many of the laymen being trained by these experts (and who consequently

constitute a portion of the observed COOP resuscitations within the data) are themselves

either current or past opioid users (NYSDOH, 2023), intimate personal knowledge and

experience in handling illicit opioids would preclude a susceptibility to the exposure

hazards misinformation22. While there is evidence indicating that users do change their

consumption practices in the presence of fentanyl (Rouhani, Park, Morales, Green, &

21Representatives of the National Harm Reduction Coalition aired their frustration in 2018
with having the combat the fentanyl “bioterrorism threat” narrative being promoted by media:
https://harmreduction.org/blog/fentanyl-exposure/. Also in 2018, other harm reduction advocates
employed direct methods to combat this misinformation by demonstrating the benign nature of powderized
fentanyl: https://twitter.com/chadsabora/status/1024440190889287680. The AMA adopted policy in
2019 which formalized their position of combatting erroneous beliefs surrounding the fentanyl hazards
myth, citing a particular concern that first responders may be more reluctant to utilize naloxone in life
threatening situations: https://www.ama-assn.org/system/files/2019-05/a19-yps-resolution-02.pdf

22For instance, self-reported aversion to, and even phobia of needles is relatively common among IDUs
(McBride, Pates, Arnold, & Ball, 2001; Tompkins, Ghoneim, Wright, Sheard, & Jones, 2007). Because
needle-phobic IDUs willingly continue to use fentanyl through injection however (and user surveys affirm
that injection is by far the most common route employed (Buresh, Genberg, Astemborski, Kirk, & Mehta,
2019)), this would suggest an awareness of the implausibility of receiving a high through presumably
preferred, passive routes.

https://harmreduction.org/blog/fentanyl-exposure/
https://web.archive.org/web/20210424131424/https://twitter.com/chadsabora/status/1024440190889287680
https://www.ama-assn.org/system/files/2019-05/a19-yps-resolution-02.pdf
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Sherman, 2019), there is nothing to suggest that they outright avoid the opioid out of

some concern for exposure hazards. The vulnerability of EMS to misinformation is more

opaque. While there are supposed exposure incidents involving EMS first responders,

these are considerably less common as those involving LEOs (Adams, Maloy, & Warrick,

2023). Still, surveys of New York state EMS do demonstrate that the majority hold many

of the fictitious beliefs associated with the fentanyl hazards myth, though with slightly

lower prevalence compared to LEOs (Adams et al., 2023).

2.3 Empirical approach

2.3.1 Data

Since the principal outcome variable of interest in this analysis is overdose resuscitation,

an ideal set of data would include individual event-level data for every instance that

naloxone was or could have feasibly been administered, including information on the time

and precise location of the event, as well as details on the first responder; for the treatment

variable, one would have information on the personal beliefs of each first responder involved

in every overdose episode. While the latter of these two is almost certainly nonexistent,

the former does have several close approximations. Numerous states report monthly

naloxone administration data to the county level, but a cursory investigation reveals that

much of this data is limited in availability to only events occurring between 2018-present.

For the primary component of my analysis here I collect data from the New York State

Department of Health (NYSDOH) on the total number of unique Naloxone administration

events by first responder type and by county-quarter over the period Q1 2015-Q4 2019.

These data correspond to the state’s 57 "upstate" and Long Island counties and exclude

New York City. EMS data is derived from the NEMSIS system, to which the vast majority

of EMS agencies report; state law requires all Naloxone resuscitation attempts performed

by either law enforcement officers (LEO) and community opioid overdose prevention

(COOP) programs to be reported to the NYSDOH. These data also include the non-

suppressed county-quarter overdose death counts. Summary statistics for this data can be
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Table 2.1: Summary Statistics of New York Data by County-Quarter

Statistic N Mean Median St. Dev.

LEO Naloxone Administrations 1,140 5.739 2 11.168
EMS Naloxone Administrations 1,140 29.675 12.5 42.333
COOP Naloxone Administrations 1,140 5.697 1 13.829

Deaths (All Opioids) 1,140 7.582 2 14.233
Deaths (Heroin) 1,140 2.837 1 5.287
Deaths (Other Opioids) 1,140 6.386 2 12.715

ED Visits (All Opioids) 798 36.058 16 57.479
ED Visits (Heroin) 706 28.076 13 43.618
ED Visits (Other Opioids) 461 15.217 8 21.326

Hospitalizations (All Opioids) 533 13.741 8 19.063
Hospitalizations (Heroin) 607 3.857 0 8.183
Hospitalizations (Other Opioids) 498 8.004 0 12.064

Rehab Admissions (Heroin) 935 197.043 82 287.369
Rehab Admissions (Other Opioids) 935 63.618 38 83.722

% Pop. Sub-prime Credit 1,140 23.537 23.506 3.432
% Pop. Medicaid 1,140 8.538 7.611 3.549
Unemployment Rate 1,140 4.915 4.700 1.186
% Labor Force in Construction 1,140 0.042 0.040 0.015
Average HH Earnings 1,140 3,899.339 3,754 666.422

All data described above represents average observed values by county-quarter for the years
2015-2019. Data for the total number of unique Naloxone administration events by first responder
type and non-suppressed county-quarter overdose death counts by opioid type are from the New
York State Department of Health (NYSDOH). Counts for the number of opioid overdose-related
emergency department (ED) visits and inpatient hospitalizations come from the New York
Statewide Planning and Research Cooperative (SPARCS) and unique drug treatment clinic
admissions from the Office of Addiction Services and Supports (OASAS) systems. Other data for
the percentage of the population with a credit score below 660 is collected from Equifax, percent
of population eligible for Medicaid from the NYSDOH, unemployment rate, percent of laborforce
employed in construction, and average household earning are from the BLS quarterly census of
employment and wages.
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found in Table 3.1. In Figure 2.1 I plot average county-quarter opioid mortality figures

over time. Without any additional context, one can already see that the timing of the

East Liverpool event (represented by the dashed vertical line) appears to correspond to a

sizeable change in mortality patterns.

In addition to these mortality and naloxone administration data, I also collect opioid-related

hospitalization and drug rehabilitation program admissions data from the same public-

use NYSDOH source. These data originate from the Statewide Planning and Research

Cooperative (SPARCS) and Office of Addiction Services and Supports (OASAS) systems,

respectively, but unlike the mortality data are suppressed over certain county-quarters23.

These data include county-quarter counts for the number of opioid overdose-related

emergency department (ED) visits, inpatient hospitalizations, and unique drug treatment

clinic admissions24. To account for any confounding effects, I also collect county-level

quarterly estimates for the percent of population with a sub-prime credit score from

Equifax, percent of population eligible for Medicaid from the NYSDOH, unemployment

rate, percent of laborforce employed in construction, and average household earning from

the BLS quarterly census of employment and wages.

2.3.2 Identification strategy

Media analyses (Beletsky et al., 2020) have identified a particularly noteworthy 2017

event in East Liverpool, Ohio25 as being an early major influence in the proliferation

of fentanyl hazards misinformation. For identification purposes, I utilize the random

timing of this event in a differences-in-differences setting to identify the causal treatment

of misinformation on first responder behavior. An effective approach to achieve this is

23To avoid patient identification, SPARCS hospitalization data is suppressed when a county-quarter
records 1-5 cases, and OASAS data is suppressed when a county-quarter records 1-10 cases. In practice,
this translates to a slight over representation of larger, more urban counties. As well, since opioid use has
increased significantly over the timespan examined, these hospitalization and rehabilitation admissions
data exhibit greater coverage in the later time periods.

24Starting January 2020, NYSDOH redefined the reported treatment program figures as based on
the number of admissions during the quarter or year, and not on the number of individuals admitted
or individuals treated. Due to these changes in reporting practices, comparable OASAS data is only
available for as recent as Q1 2019 since reporting of this data is delayed by several months.

25see: https://www.wcpo.com/news/state/state-ohio/police-east-liverpool-officer-accidentally-
overdoses-on-fentanyl-after-making-drug-arrest

https://www.wcpo.com/news/state/state-ohio/police-east-liverpool-officer-accidentally-overdoses-on-fentanyl-after-making-drug-arrest
https://www.wcpo.com/news/state/state-ohio/police-east-liverpool-officer-accidentally-overdoses-on-fentanyl-after-making-drug-arrest


2.3 Empirical approach 64

Figure 2.1: Average opioid-related death rates and counts timeseries county-quarter and
opioid type.
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Average opioid-related deaths per 100 thousand population, and opioid-related death counts by
opioid type per county-quarter. Shaded regions represent the 95% confidence intervals and the
dashed vertical line demonstrates the date of the East Liverpool event. The term "pain relievers"
encompasses fatalities from overdoses related to both pharmaceutical and illicitly manufactured
opioids, including substances like fentanyl.

to delve deeper into the qualitative distinctions in how misinformation is spread and

perceived among different types of first responders. In particular, I examine the relative

change in naloxone administration between LEOs, EMS, and COOP programs following

the East Liverpool event. It is worth noting that the vast majority of the exposure events

reported on within the media have been pertaining to events involving LEOs, while nary

few have involved EMS and seemingly none COOPs. Considering that most of the research

on this phenomenon and de-bunking of exaggerated exposure claims has been carried out

by harm reduction researchers and advocates, this is unsurprising. It is plausible to infer

that first responders associated with a COOP are likely less swayed by media depictions

of fentanyl exposure risks due to their more extensive experience with drug overdoses and

their existing understanding of the minimal tactile dangers associated with fentanyl.

A conventional differences-in-differences design should be able to identify misinformation

effects on first responders by separating LEOs and/or EMS as the treated and COOPs
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as the control and observing changes in naloxone administration before and after the

liverpool event. To do so, I estimate the following regression:

Yc,i,t = β1 Postt+β2,i Treat i+β12 Postt× Treat i+δXc,t+γi,t+µc+ηi+λt+εc,i,t, (2.1)

where Yc,i,t is the total number of episodes where naloxone is administered in county c,

by first responder type i, in time t; Treat i is an indicator for whether the type of first

responder is considered to be treated (I estimate two different specifications where the

treated are considered to be only LEOs, and another where both LEOs and EMS are

treated); and Xc,t is a vector of local socio-economic controls.

The validity of this approach is contingent on the parallel trends assumption. To

demonstrate the existence of parallel pre-treatment trends, in Figure 2.2 I plot average

county-quarter naloxone administrations by first responder type. While EMS naloxone

administrations appear to be exhibiting some unusual pre-trends, LEO and COOP

behavior follow similar patterns until the East Liverpool event– suggesting that DiD is an

appropriate design here. I explicitly assume the incident in East Liverpool did not cause a

differential change in the volume of calls to various first responders or healthcare providers.

This assumption holds weight for several reasons: East Liverpool’s geographical location

in another state makes local spillover effects improbable; there were no simultaneous

changes to the COOP program’s structure or overall harm reduction policies in New

York state; and individuals in need of emergency care do not have the agency to select

which first responder attends to their emergency, indicating that any observed changes in

administration rates are more indicative of responder behavior than that of the individuals

seeking help.

A final note on the terminology used here; all of the dependent variables employed within

this analysis are count data, which are of course non-negative. Generally, non-linear

methods are avoided when performing causal inference within the DiD design since these

estimates seldom represent the actual treatment effect. Unfortunately, OLS DiD estimates

can be significantly biased when modelling non-negative variables (Lee & Lee, 2021),
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and the magnitude of this bias can be substantial when outcomes are zero-inflated (as

mortality and hospitalization data often is). To address this issue, I opt instead to employ

a quasi-maximum likelihood Poisson estimator (QP) to compute my results. QP has a

number of distinct advantages over OLS here: For one, estimating model 2.1 with QP-

while nonlinear- still identifies the average treatment effect as β12, albeit a multiplicative

one. Lee and Lee (2021) outline the necessary assumptions for β12 to describe treatment

effects, but they are analogous to a conventional DiD estimated with OLS, with the

caveat that the actual causal estimator is really describing the ratio-in-ratios (RiR), not

absolute differences. The RiR estimate therefore describes the causal elasticity (that

is, the proportional relationship) between treatment and the outcome variable. When

interpreting results I will be certain to emphasize this latter point, but for the remainder of

this paper I will adopt language that is consistent with discipline-norms and use the term

DiD flexibly to in fact mean RiR. Beyond providing me with a causal treatment measure,

the semi-parametric nature of QP means it is capable of remaining a consistent estimator

when data are zero-inflated (Lee & Lee, 2021); and simulations suggest that it outperforms

mixed-models such as the zero-inflated Poisson or negative binomial regressions (Staub &

Winkelmann, 2013) when the zero-inflation data generating process in unknown. Lastly,

unlike most other nonlinear estimators, QP is generally not susceptible to the incidental

parameters problem (Wooldridge, 1999; Weidner & Zylkin, 2021), so the two-way fixed

effects estimator derived in equation 2.1 remains consistent.

2.4 Results

2.4.1 Primary results

To determine the causal impact of the East Liverpool misinformation incident on the

actions of first responders, I utilize two distinct treatment specifications: The first contrasts

naloxone administrations by LEOs after the East Liverpool event with those by COOPs

during the same timeframe, while the second treats both EMS and LEO administrations

in the post-event period as affected by misinformation. For the initial specification, the



2.4 Results 67

Figure 2.2: Average naloxone administration counts timeseries by county-quarter and
first responder type.
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two-way fixed effects regression model described in equation (1) is calculated using a

quasi-MLE Poisson count approach, with the findings presented in Table 2.2.

To summarize these results, I observe significant and substantial reductions in the number

of naloxone administrations by LEOs after the East Liverpool incident. Across various

model specifications, there is a consistent, statistically significant decline in naloxone

administrations by LEOs when compared to COOP responders. The adjustment for

time-varying county demographics and overall trends in opioid use doesn’t significantly

alter the coefficient estimates between specifications (1) and (2), suggesting that COOP

administrations might be effectively accounting for these factors. Given that Poisson

coefficients are interpreted as log-elasticities, the results from the preferred model

specification (2) suggest that post-East Liverpool, LEOs were administering naloxone

at a rate of approximately e−0.1642 ≈ 0.849 times the previous rate. Notably, the size

and significance of this effect remain robust even after introducing county-quarter and

county-agent type fixed effects. In the context of specification (4), this translates to an

18% reduction in naloxone administrations by LEOs. These findings underscore that,

even after adjusting for potential biases like variations in opioid demand, availability, or

naloxone access within county-quarters, law enforcement’s administration rates remain
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significantly lower compared to COOPs.

Collectively, the results from Table 2.2 suggest that LEOs are significantly decreasing their

naloxone administration activities after being exposed to the misinformation following

the East Liverpool event. Although it cannot be definitively stated that this reduction

is due to heightened reluctance stemming from the fentanyl scare, the timing of the

changes seems to support this theory. In the following section, I will explore alternative

explanations that might challenge this interpretation of the results. However, as it stands,

these estimates offer convincing evidence that media events are influencing the behavior

of first responders.

To test whether other first responders, besides just LEOs were affected by misinformation,

I re-estimate all the models from Table 2.2 but consider both LEOs and EMS as treated.

The results for these are listed in Table 2.3, but to summarize: Coefficient estimates

remain negative and of roughly the same magnitude, but are no longer significant. From

this, I conclude that EMS remained relatively unaffected by media coverage of the East

Liverpool event when compared to LEOs, which is consistent with the make up of first

responders that are most commonly profiled as victims of accidental fentanyl exposure in

news items.

In Table 2.4 I perform a series of robustness checks by re-estimating all four of the primary

model specifications under different conditions. To account for any heterogeneity in

treatment effects between LEOs and EMS, I substitute an agent type indicator for the

treatment definitions employed for the estimates outlined in Tables 2.2 and 2.3. This

permits me to observe the comparative change in naloxone administration rates between

LEOs and EMS against COOPs as the baseline. Additionally, I weight all observations by

county-quarter population, to account for any further heterogeneity in data generating

process. Panel (a) essentially replicates the estimates from Tables 2.2 and 2.3, and returns

qualitatively similar results: LEOs are demonstrating large, statistically significant declines

in naloxone administration, while EMS are appear to be unaffected. Panel (b) employs the

ratio of naloxone administrations to opioid-related deaths to adjust for potential unseen
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Table 2.2: Naloxone administration regression results, LEO as treated.

Dependent Variable: Unique Naloxone Administrations Count
Model: (1) (2) (3) (4)

Post × Treat -0.1642∗∗ -0.1642∗∗ -0.1642∗∗ -0.1993∗∗
(0.0745) (0.0766) (0.0744) (0.0815)

Post -0.4176∗∗∗ -0.5113∗∗∗
(0.0909) (0.1279)

Equifax 0.1578
(0.1064)

% Medicaid Enroll 1.202
(1.264)

Unemployment 0.1405∗∗
(0.0694)

% Const. Employ. -14.60
(18.04)

Avg. Earnings -0.0002
(0.0003)

Fixed-effects
First Responder Type Yes Yes Yes
Year Yes Yes Yes
Quarter of Year Yes Yes
County Yes Yes
County×Year Yes
County×Period Yes Yes
First Responder Type×County Yes

Varying Slopes Yes

Observations 2,280 2,208 1,922 1,921
Squared Correlation 0.00416 0.61148 0.74240 0.92181

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
All estimates reflect results from the regression specified in equation (1) estimated as quasi-MLE
Poisson count models. The treatment here is defined as LEO status following the East Liverpool
event in Q2 of 2017. The dependent variable is the count of unique naloxone administrations
performed by each first responder type (LEOs and COOP only) per county-quarter. Covariates
include county-level quarterly estimates for the percent of population with a sub-prime credit
score, percent of population eligible for Medicaid, unemployment rate, percent of laborforce
employed in construction, and average household earning. Standard errors are clustered to the
county-level, and in specification (2) I include both linear and quadratic county-level time trend
parameters; all other fixed effects are detailed within the table.
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Table 2.3: Naloxone administration regression results, LEO and EMS as treated.

Dependent Variable: Unique Naloxone Administrations Count
Model: (1) (2) (3) (4)

Post × Treat -0.1169 -0.1169 -0.1169 -0.0953
(0.0920) (0.0937) (0.0919) (0.1190)

Post -0.1185 -0.1387
(0.0940) (0.1126)

Equifax 0.0602
(0.0371)

% Medicaid Enroll 1.104∗∗∗
(0.3593)

Unemployment 0.0460
(0.0336)

% Const. Employ. 7.934
(10.31)

Avg. Earnings −2.12× 10−5

(0.0001)

Fixed-effects
First Responder Type Yes Yes Yes
Year Yes Yes Yes
Quarter of Year Yes Yes
County Yes Yes
County×Year Yes
County×Period Yes Yes
First Responder Type×County Yes

Varying Slopes Yes

Observations 3,420 3,372 3,321 3,317
Squared Correlation 0.16143 0.83634 0.85494 0.92950

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
All estimates reflect results from the regression specified in equation (1) estimated as quasi-MLE
Poisson count models. The treatment here is defined as either LEO or EMS status following
the East Liverpool event in Q2 of 2017. The dependent variable is the count of unique naloxone
administrations performed by each first responder type per county-quarter. Covariates include
county-level quarterly estimates for the percent of population with a sub-prime credit score,
percent of population eligible for Medicaid, unemployment rate, percent of laborforce employed
in construction, and average household earning. Standard errors are clustered to the county-level,
and in specification (2) I include both linear and quadratic county-level time trend parameters;
all other fixed effects are detailed within the table.
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shifts in the effectiveness of resuscitations. The scenario might involve not just a reduction

in the number of naloxone administrations but also a scenario where administrations

occur yet are less timely and effective due to hesitancy. The outcomes in Panel (b) align

with those in Panel (a) for LEOs, but now EMS shows significant reductions. This trend

might suggest that EMS interventions are becoming less effective, although it could also

be mirroring the overall downward trend in naloxone administrations by EMS as depicted

in Figure 2.2. Lastly, in Panel (c) I replicate the protocol employed in estimating the

results from Panel (a), but use a conventional OLS DiD estimator. Unsurprisingly, these

results are very similar in nature, demonstrating an average decline of 3.8 fewer naloxone

administrations per county-quarter performed by LEOs in the post-period.

2.4.2 Addressing threats to validity

Up to this point my analysis has operated under the assumption that COOP responders are

less affected by misinformation shocks, and although I have provided evidence supporting

this assumption, it’s possible that this premise may not hold, potentially compromising

the robustness of my findings. To refine the understanding of how misinformation about

fentanyl exposure influences the behavior of all first responders, I adopt an additional

difference-in-differences approach akin to the one used by Carrieri et al. (2019) in their

study on the impact of a court ruling in Italy that falsely linked MMR vaccines to

autism—a ruling widely disseminated on social media. Carrieri et al. (2019) aimed

to assess the effect of this misinformation on vaccination rates, facing the challenge of

identifying a control group in a context where social media’s reach is pervasive. Their

solution was to use regional variations in broadband internet access as an interaction term

with their treatment variable, under the logic that individuals in less connected rural

areas would be less influenced by social media. Since broadband availability is presumably

not related to vaccine hesitancy other than through the channel of misinformation, this

approach provides a means to isolate average treatment effects.

I build on this strategy and estimate a dosage-response model that uses the percent

of households with internet access (drawn from the average 5-year, county-level ACS
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Table 2.4: Naloxone administration robustness checks results

Dependent Variable:
Model: (1) (2) (3) (4)

(a) Quasi-Poisson DiD, population-weighted Unique Naloxone Administrations Count
Post × EMS -0.0168 -0.0168 -0.0168 0.0639

(0.1654) (0.1684) (0.1652) (0.2089)
Post × LEO -0.2601∗∗∗ -0.2601∗∗∗ -0.2601∗∗∗ -0.2212∗∗

(0.0368) (0.0375) (0.0367) (0.0935)
Observations 3,420 3,372 3,321 3,317
Squared Correlation 0.15975 0.83454 0.85407 0.93073

(b) Quasi-Poisson DiD, population-weighted Unique Naloxone Administrations
per Opioid-Related Death

Post × EMS -0.3090∗∗ -0.3090∗∗ -0.3090∗∗ -0.1756
(0.1186) (0.1208) (0.1185) (0.1417)

Post × LEO -0.2252∗∗ -0.2252∗∗ -0.2252∗∗ -0.1525
(0.1045) (0.1065) (0.1044) (0.1166)

Observations 3,420 3,324 2,769 2,757
Squared Correlation 0.20996 0.60808 0.82507 0.93736

(c) OLS DiD, population-weighted Unique Naloxone Administrations Count
Post × EMS 11.40 11.40 11.40 11.28

(9.550) (9.721) (9.539) (9.539)
Post × LEO -3.860∗∗ -3.860∗∗ -3.860∗∗ -3.881∗∗

(1.640) (1.669) (1.638) (1.633)
Observations 3,420 3,420 3,420 3,420
R2 0.36976 0.62226 0.64717 0.86017
Within R2 0.00767 0.01373 0.01134 0.02771

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Results outlined above represent the heterogeneous treatment effects of the East Liverpool
misinformation shock for EMS and LEOs using COOPs as the control. Each numbered column
(1)-(4) corresponds to the model specifications estimated in Tables 2.2 and 2.3. Panel (a)
estimates a weighted Quasi-Poisson DiD with the count of naloxone administrations as the
dependent variable; Panel (b) estimates a weighted Quasi-Poisson DiD with the count of naloxone
administrations per opioid-related death as the dependent variable; and Panel (c) estimates a
weighted OLS DiD with the count of naloxone administrations as the dependent variable. All
observations are weighted by the county-quarter population, and standard errors are clustered at
the county-level.
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estimates) as an exogeneous source of variation and interact this with the POST and

agent type indicators. By applying this model that is otherwise identical to my preferred

specification, I can track the variations in naloxone administration across all first responder

types as internet access—and consequently potential misinformation exposure—increases.

Should the rise in possible misinformation exposure via social media lead to a heightened

reluctance among first responders to offer assistance, one would expect to see significantly

negative coefficients for these continuous treatment terms. The findings from this

dosage-response analysis are presented in Panel (a) of Table 2.5. Both LEOs and EMS

show statistically significant reductions in naloxone administrations during the post-

misinformation period, suggesting a correlation between internet access and decreased

intervention in overdoses. While COOP administrations do show a negative relationship

with internet access enhancement, the effect is much smaller and not statistically significant

at the 5% level. Collectively, these results seem to indicate that with rising potential

exposure to misinformation, it is primarily LEOs and EMS who exhibit notable decreases

in naloxone administrations. In appendix 2.8.2, I expand upon this model to delve deeper

into the mechanism of online misinformation exposure. I do this by using time-varying

Google search frequencies for terms associated with fentanyl misinformation panic as a

substitute for the Post indicator to analyze the influence more closely.

Incorporating county-quarter fixed effects is intended to mitigate any county-level, time-

specific variations, especially those related to the availability of naloxone. However, there’s

a concern that this method might not fully address potential discrepancies in how naloxone

administrations are reported, which could be influenced by its increased accessibility. This

situation could lead to a scenario where individuals are more discerning about when to

engage emergency services for overdose incidents. If all first responder groups experienced

a uniform decline in being contacted for assistance, the primary model should still reflect

this adjustment. Conversely, if there’s a notable disparity in how users seek assistance from

LEOs versus COOPs following the East Liverpool misinformation shock, this behavioral

change could be incorrectly attributed to LEOs 26. The ideal approach would involve

26What I am alternatively suggesting here is that the observed disparities in naloxone administration
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Table 2.5: Alternative continuous treatment specifications to address threats to validity

Dependent Variable: Unique Naloxone Administrations Count

(a) Web-based misinformation exposure and reported administrations
Post × % Internet Access × LEO -0.3872∗∗

(0.1577)
Post × % Internet Access × EMS -0.2757∗∗∗

(0.0704)
Post × % Internet Access × COOP -0.1575

(0.1293)
Observations 3,372
Squared Correlation 0.83654

(b) Community naloxone access and reported administrations
Pharmacies per 100k × LEO -0.1140

(218.8)
Pharmacies per 100k × EMS -0.0605

(218.8)
Pharmacies per 100k × COOP 0.0425

(218.8)
Observations 2,688
Squared Correlation 0.86054

County-clustered standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Panel (a) leverages variation in internet access from the ACS five-year average to examine
whether differential exposure to web-based misinformation across counties corresponds to a
heightened reluctance to administer naloxone. By interacting the internet access measure with
the Post and Agent Type indicators according to my preferred specification, this approach
permits identification of heterogeneous treatment responses to misinformation shocks across
all three agent types. Panel (b) utilizes registries of pharmacies distributing naloxone without
prescription under the state standing order, the data for which contains the county-level number
of pharmacies per one hundred thousand people annually from 2016 to 2019. I examine the
influence of pharmacy involvement as a proxy for community naloxone access on first responder
interventions by interacting these pharmacy counts with the responder type dummies, substituting
the PostxTreat variable, to reassess my preferred model for the 2016-2019 subset.
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analyzing naloxone administration based on responder type against the backdrop of its

availability in the community, yet the absence of such detailed data poses a challenge.

To navigate this data limitation, I utilize archived registries of pharmacies participating in a

naloxone distribution initiative under the state standing order that allows non-prescription

access. This data, which provides the county-level number of pharmacies per one hundred

thousand people annually from 2016 to 2019, offers a proxy for understanding naloxone

distribution dynamics. In my analysis, I examine the influence of pharmacy involvement on

first responder interventions by interacting these pharmacy counts with the responder type

dummies, substituting the PostxTreat variable, to reassess my preferred model for the 2016-

2019 subset. The outcomes of this regression analysis are presented in Panel (b) of Table

2.5. These coefficients can be understood as representing the variation in administration

rates among various first responder groups in response to enhanced naloxone availability.

Although there is an indication of reduced administrations associated with better pharmacy

access for LEOs and EMS, these findings are not statistically significant at the 5% level.

Similarly, the COOP indicator points to a slight uptick in administrations, yet this too

lacks statistical significance. These outcomes, while not conclusive for establishing causal

relationships, suggest that enhanced community access to naloxone doesn’t markedly

affect the differing administration rates among first responders.

An alternative hypothesis could be that users are not shifting towards unreported naloxone

use among their peers but instead showing a preference for aid from COOPs over

LEOs. In this scenario, the distribution of naloxone administrations would be skewed

towards COOP interventions rather than those by LEOs, not due to censorship but

due to a disproportionate reliance on COOPs. While this theory is intriguing, it seems

implausible given that individuals requiring emergency assistance typically cannot choose

their responder. Furthermore, this explanation fails to align with the simultaneous

changes observed in naloxone administrations alongside the East Liverpool incident. To

by different first responders are primarily due to a distinct reluctance to seek help from LEOs (perhaps
out of concern of being arrested). This could be because, with the wider availability of naloxone kits,
users may find less need to rely on LEOs for emergency assistance, a sentiment not mirrored in their
interactions with COOPs or those trained by COOPs.
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explore this theory further, I conduct an event study analysis applying my model to both

scenarios where LEOs are treated and where both LEOs and EMS are treated, presenting

the findings in Figure 2.3. Should there be noticeable pre-event trends that suggest

a gradual shift from LEOs to COOPs prior to the misinformation incident, it would

support this alternative explanation. However, the results predominantly show erratic

pre-event patterns that stabilize into consistent declines following the misinformation

event, particularly evident when examining combined treatment for LEOs and EMS,

where significant drops in naloxone use emerge only post-East Liverpool.

A similar concern with interpretation of my primary results is that COOP naloxone

administration reporting likely declined in quality as kit distribution improved. Since

laypersons cannot report directly to the state following a naloxone event, but only

through their affiliated COOP, it’s plausible that reporting compliance suffered as the

number of trained individuals swelled. While this cannot be tested directly with the

New York data employed here, surveys conducted with participants of other similar

community-based opioid overdose prevention programs indicate a reluctance to notify

EMS when naloxone is administered in private settings (Clark, Wilder, & Winstanley,

2014). Since the New York program specifically encourages opioid users to receive training

through these COOPs, it may well be the case that these private-setting interventions

are being largely unreported for similar reasons. Assuming no significant changes to

LEO reporting compliance over the same time however, this actually suggests that these

primary estimates are attenuated towards zero as it is underestimating the magnitude of

interventions performed by laypersons.

2.5 Discussion

In the core part of my analysis, I have provided evidence supporting the idea that

misinformation shocks related to fentanyl panic have led to a notable increase in reluctance

among first responders to assist individuals experiencing an overdose, predominantly

resulting in a reduced number of naloxone administrations by law enforcement officers.
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Figure 2.3: Event studies for naloxone administrations, by treatment definition.
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((a)) Event study results depicted here are according to the specification (4) from Table 2.2 and
is estimating the relative decline in naloxone administrations performed by LEOs compared to
COOP first responders. Models include county-quarter and county-first responder type fixed
effects, standard errors are clustered at the county-level.
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((b)) Event study results depicted here are according to the specification (4) from Table 2.3 and
is estimating the relative decline in naloxone administrations performed by both EMS and LEOs
compared to COOP first responders. Models include county-quarter and county-first responder
type fixed effects, standard errors are clustered at the county-level.

While this information is crucial for understanding the underlying mechanism, it is equally

vital to assess if these alterations in first responder actions have correspondingly resulted

in higher rates of opioid-related deaths or hospitalizations. In an attempt to derive the

overall effects of misinformation on mortality and hospitalizations, I estimate the following
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regression:

Yc,t = β Postt +Ψ Agentc,t +Θ Postt × Agentc,t + δXc,t + µc + λt + εc,t, (2.2)

where Yc,t is the total number of opioid overdose deaths, ED visits, inpatient hospitalizations

or rehab admissions in county c in quarter t; Agentc,t is a vector composed of variables

for the number of naloxone administrations performed by LEO, EMS and COOP, in that

county-quarter; and Xc,t is a vector of local socio-economic controls. Including independent

counts of naloxone administrations performed by each first responder type, rather than

aggregating to the county-quarter total permits varying efficacy. The parameter vector Ψ

represents the elasticity estimates for naloxone administrations and the outcome variables.

The Post indicator is intended to capture any post-treatment changes to mortality or

hospitalization rates arising from misinformation exposure (perhaps as a result of less

efficient or timely naloxone administration), and I will employ it flexibly when specifically

attempting to identify such time variation. I would point out that, while the estimates

derived in equation 2.1 are plausibly causal, there are likely other sources of endogeneity

which prevent the parameters from vector Ψ from being viewed in the same way. Instead,

I opt to treat these results as useful descriptive measures for the relationship between

naloxone administration and mortality and hospitalization outcomes.

I estimate the regression outlined in equation 2.2 omitting the Post interaction term

to derive the average effects of naloxone administration on hospitalization and rehab

admissions across the entire 2015-2019 time span. Results are listed in Table 2.6. These

models follow my preferred specification from Table 2.2 in column (2), with the notable

omission of the quadratic county time-trend and first responder type fixed effect parameters,

since I have only one observation for each county-quarter27. In columns (1)-(3), I use ED

visits by opioid type as the dependent variable; and in columns (4)-(6) I use (inpatient)

hospitalizations. I observe slight decreases to ED visits associated with LEO naloxone

27I would also note that, unlike opioid mortality and naloxone administrations, hospitalization and
rehab admissions data is censored for county-quarter counts between 1-5, so these panels are both smaller
and unbalanced compared to the naloxone admininstration estimates.
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Table 2.6: Opioid hospitalization regression results

Dependent Variables: ED Visits Hospitalizations Rehab Admissions
All Opioids Heroin Other Opioids All Opioids Heroin Other Opioids Heroin Other Opioids

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables
LEO Naloxone -0.0017∗∗ -0.0021∗∗∗ -0.0018 0.0016∗∗∗ 0.0018∗∗ 0.0010∗ -0.0003∗∗ -0.0006∗

(0.0007) (0.0005) (0.0017) (0.0005) (0.0006) (0.0005) (0.0001) (0.0003)
EMS Naloxone 0.0034∗∗∗ 0.0035∗∗∗ 0.0026∗∗∗ 0.0025∗∗ 0.0024 0.0021∗∗ 0.0004∗∗ -0.0004

(0.0011) (0.0012) (0.0010) (0.0010) (0.0014) (0.0009) (0.0002) (0.0003)
COOP Naloxone 0.0016∗∗ 0.0021∗∗∗ 0.0010 0.0006 -0.0021 0.0015∗ −9.83× 10−6 -0.0004

(0.0007) (0.0008) (0.0009) (0.0012) (0.0024) (0.0008) (0.0002) (0.0003)

Fit statistics
Observations 758 604 324 346 158 234 935 935
Squared Correlation 0.97540 0.96564 0.96736 0.96435 0.89889 0.94983 0.99816 0.99467

Clustered (county) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Results outlined above represent the heterogeneous elasticities of opioid-related ED (emergency
department) visits and hospitalization to EMS, LEO, COOP naloxone administrations. These
models are estimated according to equation (2) without the Post indicator and include county-
level quarterly estimates for the percent of population with a sub-prime credit score, percent
of population eligible for Medicaid, unemployment rate, percent of laborforce employed in
construction, and average household earning. Fixed effects include county, county-quarter of year
(season), and county-year, as well as a unique linear time trend for each county; standard errors
are clustered at the county-level.

administrations, while the opposite is true for both EMS and COOPs. In terms of

magnitude, this corresponds to a 0.17% decline in ED visits for all opioids per LEO

naloxone administration, and 0.34% or 0.16% increases in ED visits per EMS and COOP

naloxone administration. Hospitalizations are positively associated with increased naloxone

administration among LEOs and EMS, with respective approximate declines of 0.16% and

0.25% per unique naloxone administration performed. Given that visits to the emergency

department (ED) and hospital admissions correspond to more severe instances of overdose,

it is plausible to assume that without the administration of naloxone, such cases could

have been fatal. Therefore, the notably positive coefficients observed might be tentatively

viewed as an implicit reduction in death rates.

In columns (7)-(9) I estimate the effects of naloxone administrations on unique rehab

clinic admissions by substance dependency type and observe similarly significant, albeit

modest declines resulting from LEO interventions. These highlight the complexity of such

situations: While it may be socially-preferable to have overdosing individuals resuscitated

to dying, and regular opioid users voluntarily seek rehab services to not, LEO interventions
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that save lives also appear to reduce the likelihood of voluntary rehab admission. While

one cannot be certain without precise data on post-intervention outcomes, it seems the

most likely explanation here is the tendency for revived individuals to be incarcerated

when they opt not to receive medical care. Surveys of post-naloxone administration LEO

protocols corroborate this theory (Smiley-McDonald et al., 2022).

I also estimate a similar model examining opioid-related mortality and report the results

in Table 2.7. To summarize: I use raw counts of opioid mortality, by opioid type as

the dependent variable and find null to slightly positive associations between naloxone

administration and mortality. In terms of magnitude, these EMS and COOP estimates

vary from 0.3% to 0.4% increases to mortality per naloxone administration. The coefficient

estimates appear to suggest that the number of opioid-related deaths increases with

more naloxone administrations. Clearly, the number of administrations is endogenous

with overall mortality, as an increase in total overdoses is correlated with the number of

doses administered. In appendix 2.8.1 I explore this more by re-estimating model (1),

but with the dependent variable as the ratio of opioid-related deaths to opioid-related

hospitalizations. To summarize those results, I observe similar positive increases to

mortality when accounting for ED visits and hospitalizations, though the statistically

significant coefficients are predominately concentrated among LEOs.

Determining the economic magnitude of these effects on mortality is somewhat problematic.

As I outlined above, the mortality estimates derived from my secondary estimates are

probably biased to the point of flipping signs, and as such not reliable. Additionally, while

significant, the hospitalization results are suspiciously small in magnitude. Nonetheless,

doing some back-of-the-envelope calculations with an average number of 5.76 LEO naloxone

administrations per county in the post-period, then the 15.1% decline in administration

rate implies 0.872 fewer administrations per county-quarter. Using the population-weighted

model results from Panel (a) of Table 2.4, these estimates imply a 22.9% decline in naloxone

interventions performed by LEOs, or 8.74 fewer unique administrations per county in

the post-period. Using the secondary heroin estimates, this would imply approximately

1 less ED visit, and- if hospitalizations are interpreted as avoided deaths- 1 less death
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Table 2.7: Opioid mortality regression results

Dependent Variables: Overdose Deaths
All Opioids Heroin Other Opioids

Model: (1) (2) (3)

LEO Naloxone 0.0007 0.0019 0.0003
(0.0011) (0.0012) (0.0013)

EMS Naloxone 0.0034∗ 0.0032∗∗ 0.0037∗
(0.0019) (0.0014) (0.0021)

COOP Naloxone 0.0032∗∗∗ 0.0043∗∗ 0.0040∗∗∗
(0.0008) (0.0020) (0.0008)

Fit statistics
Observations 1,096 883 1,081
Squared Correlation 0.95942 0.91893 0.94909

Clustered (county) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Results outlined above represent the heterogeneous elasticities of opioid-related mortality, by
opioid type, to EMS, LEO, COOP naloxone administrations. These models are estimated
according to equation (2) without the Post indicator and include county-level quarterly estimates
for the percent of population with a sub-prime credit score, percent of population eligible for
Medicaid, unemployment rate, percent of laborforce employed in construction, and average
household earning. Fixed effects include county, county-quarter of year (season), and county-year,
as well as a unique linear time trend for each county; standard errors are clustered at the
county-level.
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across the entire state in the post-period. These estimates seem far too low, considering

anecdotal success with which LEO naloxone administrations appear to be in saving lives

(Smiley-McDonald et al., 2022). For instance, Pourtaher et al. (2022) found that in New

York state, 87.4% of overdose victims were saved in incidents where LEOs intervened; and

among the victims who did not survive, only 5% were still alive upon police arrival, before

EMS reached the scene. If each county averaged over eight fewer naloxone interventions

in the post-period, a magnitude estimate between 1-4 fewer deaths per county seems more

feasible. Clearly, without a means of comprehensively addressing endogeneity sources in

the mortality models, these cumulative effects are going to be biased downwards.

Despite the absence of direct proof connecting the decrease in naloxone administration to an

increase in opioid overdose deaths or hospitalizations, the results underscore an important

policy takeaway from this analysis. They point out the potential flaws in previous

studies that investigated how naloxone access laws (NALs) influence economic outcomes,

attempting to determine naloxone’s causal effect on mortality and morbidity. During the

period between 2015 and 2019 covered by this research, twenty-three states enacted their

inaugural NALs (Prescription Drug Abuse Policy System, 2023). Should the behavioral

reactions of first responders in these states mirror those observed in New York following

the 2017 misinformation event, it could introduce a major variable that complicates the

interpretation of NALs’ effectiveness. If the observed reluctance of first responders to use

naloxone coincides with the implementation of these harm reduction measures, then any

lack of observable results could mistakenly be attributed to the unintended consequences

of moral hazard. To illustrate the scale, Doleac and Mukherjee (2018) noted a 15%

rise in opioid-related emergency department (ED) visits in states after implementing

naloxone access laws (NALs). If the findings from New York can be extrapolated to the

entire U.S., then the observed 15.1% to 22.9% reduction in naloxone administrations by

LEOs—coupled with the fact that LEOs are typically the first responders to overdose

incidents—could significantly challenge the moral hazard explanation for the surge in

ED visits. Indeed, Kochersperger (2023) highlights a similar observation, showing varied

opioid-related mortality rates in reaction to the media coverage surrounding the East
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Liverpool event, which suggests that this explanation holds comparable plausibility.

This observation not only points out a potential flaw in such policies but also suggests

different directions for remedial actions: Should misinformation about the risks of fentanyl

significantly elevate mortality via the behavioral responses of first responders, emphasis

should be placed on debunking these myths and enhancing training for first responders.

Conversely, if the easier access to naloxone is leading to riskier behaviors among users,

this would raise questions about the overall effectiveness of harm reduction strategies

writ large. In an ideal scenario, this research here would leverage the design examining

first responder misinformation susceptibility to evaluate the competing theories, but the

absence of variation in NAL policy during the relevant data period precludes this approach.

Consequently, this limitation underscores the necessity for more nuanced investigations

into NAL effectiveness, focusing on concrete indicators of naloxone distribution and

utilization, rather than solely on policy changes.

Another interesting research question for further analysis is to determine what sort of

factors are influencing treatment heterogeneity. In Figure 2.4 I re-estimate model (4)

from my primary naloxone administration results in Table 2.3, but interact the treatment

indicator with a vector of county indicators to back-out average, county-level treatment

effects; I then compute the percent change in the total number of naloxone administrations

(that is, including LEO, EMS and COOPs) observed relative to the counterfactual28.

While most counties did experience significant decreases in naloxone administration rates

overall, a few actually appear to have increased over counterfactual scenario. At first

thought, this may have something to do with the degree of urbanization, but visual

inspection reveals no obvious trend. Doleac and Mukherjee (2018) describe variation

between urban and rural areas in opioid arrests following adoption of NALs, but are not

able to observe such outcomes for New York or the Northeastern United States more

generally. In line with their ambiguous results, I will concede that I cannot say with

certainty whether this is a significant factor here. Instead of interrogating this matter

28I drop a handful of counties which recorded no COOP administrations in the post-period; they are
shaded grey
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further, I leave this curiosity as an open question now for future research.

Figure 2.4: County-Level Heterogenous Treatment Effects.
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Color scale represents the percent change in the observed number of naloxone administrations
compared to the counterfactual scenario. Shaded grey areas represent urban areas, while solid-
grey counties area omitted due to lack of post-treatment data.

2.6 Conclusions

This research has provided a detailed exploration of the interplay between opioid-related

mortality and the behaviors of first responders in the context of the opioid crisis, with a

particular focus on the effect of misinformation on naloxone administration. Employing a

robust dataset from the New York State Department of Health, which segregates naloxone

administration instances by type of first responder, I am able to isolate the impact

of a significant public health misinformation event in 2017. This approach is able to

identify the causal effect of misinformation on the likelihood of naloxone use by different

first responders, particularly contrasting law enforcement officers with harm reduction

professionals. The results reveal a discernible decrease in naloxone administrations by

police officers post-misinformation, suggesting that erroneous beliefs about the dangers of

fentanyl exposure significantly deter its use, despite the availability and known efficacy of
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naloxone in reversing opioid overdoses.

The implications of this research, especially when taken together with observations from

Kochersperger (2023), touch upon the very strategies employed to combat the opioid crisis.

By revealing the substantial impact of misinformation on the actions of first responders,

particularly law enforcement officers, this study underscores a critical barrier to the

effective implementation of naloxone access laws (NALs). While these laws are designed

to enhance naloxone accessibility and encourage its use, the entrenched misconceptions

regarding the risks associated with opioid exposure, especially fentanyl, can stifle these

efforts. This hesitancy not only affects the immediate response to overdose incidents

but also has broader implications for public health strategies aimed at reducing opioid-

related fatalities. Therefore, addressing misinformation and improving education among

first responders emerge as essential components in maximizing the effectiveness of harm

reduction policies.

Moreover, this analysis adds a new layer to the discourse on the efficacy of NALs, suggesting

that the obstacles to their success are not merely legal or logistical but also psychological

and informational. The study’s findings advocate for a more holistic approach to harm

reduction that incorporates not just legal reforms and medical interventions but also

targeted information campaigns to dispel myths and educate first responders about the

realities of opioid exposure risks. By doing so, policymakers can ensure that naloxone’s

life-saving potential is fully realized, contributing to a more informed and effective response

to the opioid epidemic. Experimentation with such retraining efforts have been broadly

successful (Winograd, Phillips, et al., 2020; Del Pozo et al., 2021), but the existence of

some mixed results hints at the need for further study (Winograd, Stringfellow, Phillips, &

Wood, 2020). This approach could bridge the gap between policy intent and on-the-ground

impact, offering a more nuanced understanding of the dynamics at play in the fight against

this pervasive public health challenge.
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2.8 Appendices

2.8.1 Further mortality analysis, controlling for overdose counts

I estimate the regression outlined in equation 2.2 omitting the Post interaction term to

derive the average effects of naloxone administration on opioid-related deaths per ED

visits and hospitalizations. These models follow my preferred specification from Table

2.2 in column (2), with the notable omission of the quadratic county time-trend and first

responder type fixed effect parameters. The results are listed in Table 2.8.

Column (1) is identical to that of Table 2.7; while columns (2) and (5) use the ratio

of deaths to ED visits as the dependent variable; and columns (3) and (6) use the

ratio of deaths to total hospitalizations (that is, the sum of opioid overdose ED visits

and hospitalizations). For the model results depicted in columns (4)-(5), I additionally

include a Post interaction term for LEOs and EMS to capture any changes in naloxone

administration efficacy that extend beyond the extensive margin of dose counts (arising,

say, from the delay of naloxone administration, rather than outright refusal). By omitting

a Post×COOP interaction, these coefficients should be able to identify the change in

relative elasticity of opioid-related mortality to naloxone administration following the East

Liverpool misinformation shock using COOPs as a baseline. This is essentially the same

identification assumption employed in the primary naloxone administration analysis, but

here I assume that in the counterfactual scenario LEO and EMS naloxone administrations

should change at a proportionally identical rate to COOPs in the post-period. Observe

that COOP and EMS coefficients are generally slightly negative as expected, though

insignificant. LEO coefficients are not significantly positive, and even slightly larger in

magnitude.

There could be several reasons for these unanticipated mortality results. It would

appear that LEO administrations have been more effective at preventing deaths following

treatment, perhaps as a result of the misinformation treatment itself. More plausibly

however, it could be that- as observed from the naloxone administration regression results-
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Table 2.8: Mortality results, controlling for overdose counts.

Dependent Variables: Deaths Deaths per
ED Visit

Deaths per
Tot. Hosp. Deaths Deaths per

ED Visits
Deaths per
Tot. Hosp.

Model: (1) (2) (3) (4) (5) (6)

Variables
LEO Naloxone 0.0007 0.0040∗∗∗ 0.0026∗∗ 0.0024∗∗ 0.0081∗∗∗ 0.0058∗∗∗

(0.0011) (0.0013) (0.0010) (0.0010) (0.0029) (0.0018)
EMS Naloxone 0.0034∗ -0.0015 -0.0015 0.0025 -0.0024 -0.0026∗

(0.0019) (0.0013) (0.0013) (0.0020) (0.0017) (0.0014)
COOP Naloxone 0.0032∗∗∗ 5.88× 10−5 -0.0009 0.0024∗∗∗ -0.0008 -0.0015

(0.0008) (0.0017) (0.0017) (0.0008) (0.0016) (0.0015)
Post -0.1483 -0.0484 -0.1346

(0.1352) (0.1671) (0.1330)
LEO × Post -0.0034∗ -0.0089∗∗ -0.0069∗∗∗

(0.0019) (0.0041) (0.0025)
EMS × Post 0.0012 0.0006 0.0015

(0.0010) (0.0017) (0.0012)

Fit statistics
Observations 1,096 729 366 1,096 729 366
Squared Correlation 0.95942 0.74291 0.83784 0.96101 0.74820 0.84247

Clustered (county) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Results outlined above represent the heterogeneous elasticities of total opioid-related mortality
per ED (emergency department) visit and hospitalizations to EMS, LEO, COOP naloxone
administrations. These models are estimated according to equation (2) both with and without
the Post indicator and include county-level quarterly estimates for the percent of population with
a sub-prime credit score, percent of population eligible for Medicaid, unemployment rate, percent
of laborforce employed in construction, and average household earning. The Post interaction
term for LEOs and EMS is meant to capture any changes in naloxone administration efficacy
from the delay of naloxone administration, rather than outright refusal. Fixed effects include
county, county-quarter of year (season), and county-year, as well as a unique linear time trend
for each county; standard errors are clustered at the county-level.
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LEOs are less inclined to administer naloxone, and that some degree of selection is occurring

which is pushing those first responders which would otherwise delay administration towards

not administering at all. Since misinformation appears to be most influential in the absence

of accurate information on opioid exposure hazards, one could describe individual treatment

heterogeneity as arising from some latent variable for general opioid literacy. In such a

conceptual setting, it is reasonable to presume that those LEOs which would be the least

affected by misinformation are also more capable of employing naloxone more effectively.

Without a more complete measure for the total number of potentially-avertable lethal

overdoses that LEOs respond to, this positive coefficient is probably biased upward as it

captures exogenous changes to opioid lethality and the general excludability by agent-type

of naloxone administration (that is, naloxone administration counts are plausibly correlated

across agent-types). With regards to that latter point, consider for instance that if an LEO

administers naloxone when EMS are present, this would effectively increase LEO counts

while lowering EMS’. Since LEOs are consistently arriving to overdose scenes sooner than

EMS or COOPs (Pourtaher et al., 2022), then it may be that a larger portion of those

resuscitation attempts are futile. As well, it may be that EMS are better at establishing

whether an overdose victim is past the point of successful resuscitation, and opt to use

naloxone less often in such scenarios. Lastly, it is simply difficult to envision a scenario

where an increase in naloxone administration is causing an increase in opioid-related

mortality. There are no doubt moral hazard arguments that the increased availability

of naloxone may induce more reckless behavior among regular opioid users (Doleac &

Mukherjee, 2018), but it is unclear why such effects would only manifest in relation to

LEO administrations as they do here.

2.8.2 Additional web-based exposure results

I replicate the web access dosage-response protocol outlined in Panel (a) of Table 2.5,

but additionally relax the treatment periods to represent the comparative frequency of

Google searches for fentanyl exposure hazards. Figure 2.6 represents data taken from

Kochersperger (2023) and shows a clear change in search patterns following the East
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Liverpool event, but these treatment dynamics may still be more complex than our

on-off design is capable of describing. For instance, if some proportion of these Google

searches correspond to one unique individual becoming aware of this misinformation,

then the cumulative index up to some point in time should more accurately capture

this dissemination of information. This is probably more reasonable (this dissemination

process to take time, after all), but adopting such an approach allows me to exploit a

greater source of temporal variation as well. As well, this approach allows me to account

for the cyclical nature of social media coverage related to fentanyl misinformation panic

events, whereby individuals periodically re-share older news articles as new events occur.

I estimate a dosage-response model that uses the interaction of percent of households

with internet access (drawn from the average 5-year, county-level ACS estimates), Google

search trends, and the LEO treatment indicator from equation 2.1 to fully utilize both

spatial and temporal variation in treatment exposure. I find that this dosage-response

coefficient is highly significant and negative (βD =-0.006015, standard error= 0.00125),

suggesting the increased likelihood of having queried Google for information pertaining to

fentanyl exposure myths within a given county-quarter corresponds to a marginal decrease

in the number naloxone administrations performed by LEO, relative to COOPs. Direct,

quantitative interpretation of this coefficient is difficult, however, so instead I compute

the counterfactual scenario where this exposure measure has a null effect and plot these

values against the observed LEO administrations in Figure 2.6. While I do not formally

employ the date of the East Liverpool event as a treatment, observe that the observed

and counterfactual naloxone administrations remain very close to one another until just

after that occurred, lending credence to my primary identification strategy.



2.8 Appendices 94

Figure 2.5: Time series of Google search interest in the hazards of fentanyl exposure.
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Figure 2.6: Average LEO naloxone administrations, observed and counterfactual.
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3 Insurance Barrier Impacts on Vaccine Hesitancy:

Administrative Burden and COVID-19 Vaccination within

the Medicaid Population

3.1 Introduction

The lower engagement in preventative care among Medicaid recipients, compared to

those with private insurance, signals a nuanced challenge in public health accessibility

and equity. Medicaid expansions, while instrumental in extending healthcare coverage,

have not fully bridged the gap in preventative care utilization (H. Allen, Gordon, Lee,

Bhanja, & Sommers, 2021). This persistent shortfall raises concerns about the long-term

health implications for Medicaid beneficiaries, who may face elevated risks of chronic

conditions and delayed diagnosis of serious illnesses. As this issue unfolds within the

broader healthcare landscape, understanding the underlying factors contributing to this

gap is crucial for crafting effective interventions that can elevate preventative care rates

to those comparable with privately insured populations.

The intricate web of administrative procedures associated with Medicaid enrollment and

retention stands out as a significant obstacle to accessing preventative care. For many,

the daunting task of navigating these processes can deter engagement with essential

healthcare services, leading to underutilization (Moynihan, Herd, & Ribgy, 2016). Beyond

the bureaucratic complexities, other factors such as provider availability, awareness of

eligible services, and social determinants of health play pivotal roles in shaping healthcare

behaviors among Medicaid recipients (E. M. Allen, Call, Beebe, McAlpine, & Johnson,

2017). Delving into these aspects, it becomes evident that the issue is multifaceted,

involving not just systemic and procedural barriers, but also personal and community-level

factors that collectively influence healthcare utilization patterns.

This study underscores the importance of understanding the diverse factors that impact

preventative care utilization among Medicaid recipients, with special emphasis placed
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on the role of administrative burden in this process. Utilizing the COVID-19 pandemic

as a case study, the central research question explores the extent to which Medicaid

enrollment status influences COVID-19 vaccination decisions. It delves into whether low

vaccination rates observed among Medicaid recipients29 stem from an overrepresentation

of vaccine-hesitant populations within Medicaid or if enrollment in the program itself

alters vaccination behaviors. If there is a direct impact, the study seeks to understand the

direction of this influence and the driving factors behind it. A key aspect of this inquiry

is whether vaccine reluctance in the Medicaid cohort is rooted in skepticism about the

costs or benefits of vaccination, shaped by their experiences with Medicaid enrollment

and care. Additionally, this research aims to identify the most suitable comparison group

for assessing Medicaid outcomes—exploring whether policymakers should benchmark

program effectiveness against the uninsured or the insured to gauge success or failure.

To perform this analysis I will employ the U.S. Census Bureau’s Household Pulse Survey

to observe differences in the marginal likelihoods to vaccinate between Medicaid recipients

and demographically-similar uninsured and privately insured populations.To mitigate

potential selection biases, such as the inclination for Medicaid recipients to possess poorer

health status or belong to racial and ethnic groups with lower trust in government

policies, I utilize a variety of empirical methods. These approaches aim to generate a

more representative counterfactual, taking into account the complex dynamics within

the Medicaid population. My findings generally support the assertion that an increase

in administrative burden associated with managing state Medicaid programs correlates

with a reduced likelihood of vaccination against COVID-19 among its recipients. This

pattern emerges clearly when contrasting Medicaid recipients with those covered by other

insurance providers; however, Medicaid recipients are more inclined to get vaccinated

compared to the uninsured, underscoring the program’s benefits. A deeper exploration

into the specific reasons for vaccine hesitancy among Medicaid recipients indicates a lower

trust in the COVID-19 vaccines. Overall, the results suggest that while the Medicaid

population may have more familiarity with navigating the healthcare system, they are

29See: https://kffhealthnews.org/news/article/medicaid-covid-vaccine-obstacles-states/

https://kffhealthnews.org/news/article/medicaid-covid-vaccine-obstacles-states/
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Figure 3.1: County-level primary vaccination series completion rate time series, stratified
by Medicaid enrollment rates.
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Plotted lines correspond to the percent of county populations recorded as having completed the
primary series (initial and first booster dose) of COVID-19 vaccinations over time, with the red and
blue lines corresponding to counties below the 25th, or above the 75th percentiles for percentages
of population enrolled in Medicaid. Vaccination data is drawn from the CDC’s compilation
of immunization information systems reported vaccinations. Shaded regions correspond to
the 95% confidence bounds. To address qualitative differences in population characteristics
and demographics between high- and low-Medicaid enrollment counties, the black dashed line
represents the entropy balanced average vaccination rate among the 25th percentile counties that
best approximates the 75th percentile counties. Balanced covariates include county population,
median age and household income, percents of population white, black, and having completed
college; all balancing data are drawn from the 2021 5-year ACS estimates.

less likely to get vaccinated compared to those with private insurance, potentially due to

the anticipated time and effort involved in the vaccination process.

The motivation for this avenue of research is drawn from the growing literature that has

examined the role that administrative burden (Stuber & Kronebusch, 2004; E. M. Allen

et al., 2017; Fox, Stazyk, & Feng, 2020) and cost-sharing (Wright et al., 2005; E. M. Allen

et al., 2017) has played on discouraging Medicaid enrollments and care utilization. Due to

the bureaucratic burdens of enrolling, social stigma, unanticipated cost-sharing, difficulties

in accessing care, and discrimination by providers, Medicaid recipients may naturally

become reluctant to utilize care services, such as vaccination. The primary contribution

of my analysis here is to synthesize the literature on the roles of administrative burden

and trust in mediating public health policy, and cost factors involved with the utilization

of care within the Medicaid population.
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Figure 3.2: Self-reported vaccination or intent to vaccinate rates time series by insurance
coverage type.
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37, corresponding to January through September, 2021; some individuals will report coverage by
multiple insurance types, so these measures should not be considered exclusive. Shaded regions
correspond to the 95% confidence bounds.

The remainder of the paper is organized as follows. In the next section I offer some context

on preventative utilization among the Medicaid population, as well as a summary of the

literature examining the associated role of administrative burden. In Section 3 I describe

my data and empirical strategy, in Section 4 I report my results, and in Section 5 I offer a

discussion of the policy implications and conclude.

3.2 Background

The consistently lower rates of preventative care utilization among Medicaid recipients

are well-documented. Research has shown that infants on Medicaid are less likely to

receive vaccinations compared to those with private insurance (Hill, Elam-Evans, Yankey,

Singleton, & Kang, 2017, 2018). Similarly, the uptake of the HPV vaccine among adolescent

Medicaid recipients is lower, as indicated by claims data (Cook et al., 2010), though

there is evidence that Medicaid expansions have led to improvements in HPV vaccination

rates (Churchill, 2021). When examining influenza vaccinations, a service more akin to

COVID-19 vaccinations, rates among Medicaid recipients are significantly lower than
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those of the broader population (Stoecker, Stewart, & Lindley, 2017; Naderalvojoud et al.,

2023). Furthermore, essential preventative services like mammograms and Pap tests show

persistently low utilization among low-income women, even after Medicaid expansion,

hinting at a systemic issue (Alharbi, Khan, Horner, Brandt, & Chapman, 2019). This is

corroborated by findings of later-stage cervical cancer diagnoses in Medicaid recipients

(O’Malley, Shema, Clarke, Clarke, & Perkins, 2006).

In light of these patterns, it’s not surprising that during the COVID-19 pandemic,

vaccination rates among the Medicaid cohort have been markedly lower than the general

population. Although a comprehensive data source for overarching trends is lacking,

a 2022 study by the Kaiser Family Foundation using data from five states found that

Medicaid recipients were 15-20% less likely to have received at least one dose of a COVID

vaccine compared to the general populace (Galewitz, 2022). Further, a collaborative

report from the National Academy for State Health Policy and Duke-Margolis Center

for Health Policy highlighted vaccine hesitancy that mirrors the broader low-income and

minority group trends. Concerns over these findings led some lawmakers to attribute the

disparities to administrative and technological challenges, prompting a request for the

United States Government Accountability Office to investigate these low vaccination rates

and recommend enhancements in data sharing and outreach (Casey & Wyden, 2022).

In an attempt to better illustrate these Medicaid vaccine hesitancy trends, I collect data

from the CDC for the percent of county populations recorded as having completed the

primary series (initial and first booster dose) of COVID-19 vaccinations and plot the

time series for these in Figure 3.1. I distinguish between counties within the bottom and

top quartiles for percentages of population enrolled in Medicaid in an effort to identify

varying propensities between these groups. One can observe that among counties in

the top quartile (at or above the 75th percentile for enrollment), vaccination rates are

substantially higher. However, it’s crucial to note that these raw figures don’t adjust for

variations in population characteristics or demographics. Given that counties with high

Medicaid participation rates often differ significantly from those with low rates, directly

comparing these vaccination trends might not provide an accurate picture. As such, I
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additionally employ an entropy balancing protocol to compose a weighted average of 25th

percentile counties that best approximates the 75th percentile counties on observable

demographics (more elaboration on this methodology is provided in Methods section

below) and plot this more appropriate comparison as the dashed line. When compared to

this balanced comparison group, counties with high Medicaid participation demonstrate

substantially lower vaccination rates that persisted over the entire observed time frame.

The reasons behind this hesitancy are likely complex and may largely stem from Medicaid

recipients’ distinct perceptions of the costs associated with using care services. Research

exploring the potential costs tied to enrolling in or obtaining care through Medicaid

generally categorizes these costs into two types: implicit and explicit. The implicit costs of

the Medicaid enrollment process have been attributed to administrative burden individuals

face in receiving admission to the program. Evidence suggests that the time and labor

costs of completing paperwork, making phone calls, and similar activities needed to

navigate enrollment bureaucracy have substantial impacts on overall program enrollment

figures. Fox, Stazyk, and Feng (2020) exploit variations across states in the extent of

administrative burden (defined as a composite index based on real-time eligibility, digital

access, enrollment ease, and renewal ease) easing for Medicaid enrollment that occurred

following the enactment of the ACA. They find a 3% increase in Medicaid enrollments

when comparing states which most aggressively pursued administrative burden easing

against those which engaged in relatively little. Similarly, Stuber and Kronebusch (2004)

find that the perceived poor treatment by officials when attempting to enroll or take

advantage of Medicaid, enrollment barriers, and a lack of transparency regarding Medicaid

rules all significantly decrease the likelihood of individuals to enroll in the program. From

an alternate perspective, Moynihan et al. (2016) examine state-by-state variations in

Medicaid enrollment administrative burden finding that policymakers are aware of the

barriers this places on potential Medicaid recipients and actively ease or expand these

burdens according to political preferences.

For those individuals that do prevail and enroll with their state Medicaid programs,

further implicit costs in the form of care-provider discrimination present themselves.
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Numerous analyses of health interview surveys (Thorburn & De Marco, 2010; Weech-

Maldonado, Hall, Bryant, Jenkins, & Elliott, 2012; Han, Call, Pintor, Alarcon-Espinoza,

& Simon, 2015; Alcalá & Cook, 2018; Alcalá, Ng, Gayen, & Ortega, 2020) have repeatedly

demonstrated significantly higher likelihoods of perceived discrimination for Medicaid

recipients from care-providers when compared to those who are privately-insured. It is

unclear whether this perceived discrimination translates to measurable changes in care

utilization (Thorburn and De Marco (2010) find no significant decrease in the receipts

of prenatal care among a sample of California Medicaid recipients, despite substantially

higher self-reporting of discrimination when receiving said care), but the psychic costs

of discriminatory treatment are almost certain to influence patients’ perceptions of care

quality.

The literature on the explicit costs of enrolling or receiving Medicaid has focused primarily

on changes in enrollment following adjustments to cost-sharing policies or extent of

coverage. Survey data suggests that states which offer more extensive benefits to their

Medicaid recipients boast substantially higher enrollment rates (Stuber & Kronebusch,

2004). Other surveys of Medicaid recipients have found that financial concerns (e.g.

“worry pay more than expect,” or “worry insurance won’t cover care”) were cited by 65%

of the survey participants as perceived barriers to receiving care (E. M. Allen et al.,

2017). Wright et al. (2005) examine changes to the enrollments and care utilization among

Oregon Medicaid recipients following an increase in cost-sharing in 2003. Of the 1,378

participants in their survey, 44% ultimately exited the program after the cost-sharing

increase went into effect; and among those individuals that departed from the Medicaid

program and reported “zero income,” 68.2% cited the cost increases as the principal reason

for unenrolling. As well, they find that for those that unenrolled due to cost concerns, the

majority reported having some degree of unmet care in the following year.

It is noteworthy that of these preceding Medicaid cost studies, few if any have explicitly

observed decreases in care utilization based on Medicaid status alone. Indeed, a voluminous

literature has emerged in the past decade examining the effects of Medicaid expansions

under the Affordable Care Act on utilization (see Mazurenko et al. (2018) or Antonisse
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et al. (2019) for exhaustive literature reviews) and has consistently found recipients

consume more care following enrollment. These outcomes are intuitive: as barriers to

care diminish through the extension of publicly furnished health insurance, utilization

should increase to offset previously unmet care demand. Moreover, as access to care

increases, so too should institutional familiarity among the newly-insured. This underscores

a beneficial aspect where Medicaid enrollment is anticipated to enhance vaccination

tendencies. When combined with the previously discussed administrative burden of

enrollment, we would anticipate Medicaid enrollees to show improved vaccination rates

compared to the uninsured, yet experience significant reductions when contrasted with

the privately insured. Consequently, the overall impact within the general population

remains uncertain and a matter for empirical inquiry.

3.3 Empirical strategy

3.3.1 Data

The primary data employed in the analysis here is drawn from the U.S. Census Bureau’s

Household Pulse Survey, which contains the pool of 17 ‘weeks’30 of surveys conducted

between early January through September, 2021. While subject to certain limitations- in

particular relatively low participation rates- these data have been employed successfully

in similar settings to examine how the vaccination decision has translated to delayed

receipt of other care services (Aslim, Fu, Liu, & Tekin, 2022) and reduced demand for

Supplemental Nutrition Assistance Program (SNAP) benefits (Aslim, Fu, Tekin, & You,

2023). These microdata include a rich variety of individual and household demographic

variables. Of critical importance is the existence of a public health insurance status

variable that permits us to identify Medicaid enrollees that exist within the sample. Since

the ‘Week 22’ period that collected data between January 6 through January 18, 2021,

these surveys have solicited participants for their current COVID-19 vaccination status

30These ‘week’ survey periods cover twelve days (Wednesday to Monday) over which surveys are
conducted. Over most of the observed period, the next ‘week’ would commence the Wednesday two days
after the end of the preceding ’week’.
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and intentions towards receiving a vaccine; most significantly, for those individuals that

indicate no intent or a low likelihood of vaccination, they are further inquired of their

reasoning for hesitancy. Prior to exhaustive cleaning, I plot the raw vaccination rate time

series in Figure 3.2, grouped by insurance coverage type. After cleaning, I retain 93,823

unique observations with which to perform this analysis. These cleaned data represent all

individuals who self-report having coverage through their employer (Group), some other

private insurer (Individual), Medicaid, or as having no health insurance. Additionally, all

individuals over the age of 6531, with household income over $63,000 or more than 200%

of their state’s maximum income cap for Medicaid eligibility (I elaborate more on this

measure below), and with self-reported coverage through Medicaid and some other source

(e.g. those who report having coverage through both Medicaid and Medicare) are also

dropped. The summary statistics for a selection of demographic variables can be found in

Table 3.1 and are grouped by insurance coverage type.

As is evident in Table 3.1, the Medicaid and uninsured populations are disproportionately

unemployed and in receipt of SNAP benefits compared to the privately insured, while also

substantially less likely to report either being vaccinated or having an expressed intent

to receive the COVID-19 vaccine. This is made all the more stark in Figure 3.2, which

illustrates persistently lower vaccination rates (in-line with the vaccination rate trends

from Figure 3.1) among the Medicaid population over the entire observed time frame.

Taken together, these summary statistics provide additional evidence of vaccine hesitancy

within the Medicaid population, as well as highlighting the need for concretely identifying

the appropriate counterfactual to Medicaid enrollment.

This analysis delves into the policy implications of Medicaid enrollment’s impact on

vaccination decisions by exploring two specific dimensions: the effect of Medicaid benefits

compared to being uninsured, and the influence of these benefits relative to private

insurance coverage (either group or individual). Despite historically lower rates of

utilization for other preventive care services among Medicaid enrollees versus the privately

insured, Medicaid expansions have shown to enhance utilization for those previously

31All survey data is collected from adults ages 18 and older.
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uninsured. This investigation addresses two critical angles: whether Medicaid policies

should focus on boosting utilization or expanding coverage. Prior research has typically

concentrated on one of these aspects, but this study aims to assess both, along with the

overall effects, by analyzing three distinct sample groups: one comprising individuals who

are either uninsured or solely Medicaid-insured, another limited to those with Medicaid

or other insurance types (excluding Medicaid-only), and a final group encompassing all

individuals from the refined sample.

In addition to these Census data, I also employ a number of others to supplement my

basic analysis. To account for potential endogeneity issues, I utilize state-level Medicaid

income eligibility guidelines for the year 2021 collected from the Centers for Medicare and

Medicaid Services to estimate each observed household’s proximity to the income cap.

This percent of Medicaid income eligibility cap is estimated as the ratio of self-reported

household income, and the state-of-residence’s maximum Medicaid eligibility income cap

based on the household dependents-conditional federal poverty level. State Medicaid

agencies has discretion to set these income caps with respect to not only federal poverty

level, but also conditional on the composition of the household (for instance, requiring

that recipients be parents to children that also within the household). I estimate this by

first deriving the maximum permitted income for each household based on the state or

residence, number of children, and household size, then divide this by either the mid-point

or maximum of the self-reported income-bin from the Pulse Survey. Ideally, this measure

can capture exogenous cross-state variation in Medicaid eligibility policies that should not

directly affect vaccination outcomes, except through changes to Medicaid coverage status.

To provide measurements for variations in administrative burden, cost-sharing, and benefits,

I employ the Health Affairs Medicaid Accessibility Index (Fox, Feng, Zeitlin, & Howell,

2020), which includes standardized performance scores from 0 (poor) to 1 (excellent) for

every state across each of these aspects. The administrative burden index, which draws

on data from the Kaiser Family Foundation’s 50-state Survey of Medicaid and CHIP

Eligibility, Enrollment, and Cost Sharing Policies Reports from 2000 to 2018, examines

the differences in how states manage enrollment and renewal barriers for Medicaid and
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CHIP, alongside their initiatives to simplify these processes. Notable policy improvements

facilitating easier access and maintenance of coverage include the removal of asset tests,

transition from in-person to phone or online applications, shortened waiting times for

enrollment and renewal, and the option for applicants to self-report their income. The

benefit and co-pay coverage index is built on the KFF’s Medicaid Benefits Database

which is derived from surveys conducted with Medicaid directors from all 50 states and

D.C., focusing on the benefits available to adult beneficiaries, the associated cost-sharing

requirements, and benefit limitations. States were scored based on the presence of specific

benefits and the absence of co-pays. I additionally collect per capita Medicaid expenditures

by state and age-group for 2019 (so as to avoid any unusual policy changes initiated

during the COVID-19 pandemic) from the Kaiser Family Foundation website32.

Table 3.1: Summary statistics for cleaned Pulse Survey data, by insurance coverage type.

Insurance coverage sample:
Group Individual Medicaid Uninsured Pooled Sample

Statistic (n = 43, 253) (n = 15, 843) (n = 28, 241) (n = 14, 176) (n = 93, 823)

HH Size 3.223 3.002 3.163 3.169 3.151
Age 42.410 45.363 43.763 42.670 43.205
Is Male 0.249 0.274 0.181 0.323 0.241
Is Married 0.446 0.440 0.266 0.333 0.370
Is Hispanic 0.144 0.139 0.154 0.254 0.159
HH Log Income 10.481 10.344 9.910 10.101 10.233
Is or Intends to Vaccinate 0.741 0.749 0.622 0.599 0.688
HH # of Children 0.884 0.721 1.065 0.879 0.906
SNAP Recipient 0.076 0.075 0.512 0.175 0.221
Is Employed 0.792 0.651 0.402 0.517 0.616
Had COVID 0.152 0.140 0.133 0.140 0.141

All data described above is drawn from the U.S. Census Bureau’s Household Pulse Survey, which
contains the pool of 17 weeks of surveys conducted between early January through September,
2021. These cleaned data represent all individuals who self-report having coverage through their
employer (Group), some other private insurer (Individual), Medicaid, or as having no health
insurance. Additionally, any individuals over the age of 65, with household income over $63,000
or more than 200% of their state’s maximum income cap for Medicaid eligibility, and with
self-reported coverage through Medicaid and some other source (e.g. those who report having
coverage through both Medicaid and Medicare) are dropped.

32Accessible here: https://www.kff.org/medicaid/state-indicator/medicaid-spending-per-full-benefit-
enrollee/

https://www.kff.org/medicaid/state-indicator/medicaid-spending-per-full-benefit-enrollee/
https://www.kff.org/medicaid/state-indicator/medicaid-spending-per-full-benefit-enrollee/
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3.3.2 Methods

To estimate the marginal influence of Medicaid enrollment status on likelihood of

vaccinating, I estimate the following reduced-form linear probability model:

yi,t = α + β MEDICAIDi +Xiδ + ϕs,t + ϵi,t (3.1)

where yi is an indicator for individual i’s self-reported receipt of a COVID-19 vaccine, or

stated intention to receive a full vaccine treatment regimen; MEDICAIDi is the treatment,

an indicator variable for whether the observed individual is insured through Medicaid; Xi is

a vector of individual- and household-level demographic controls; and ϕs,t are state by week

fixed effects. Incorporating state-by-week fixed effects allows for a non-parametric, flexible

approach to adjust for broader trends in vaccine uptake within each state. Specifically,

these fixed effects should control for any spatiotemporal fluctuations in state-specific

policies that could influence the availability or accessibility of COVID-19 vaccines. The

coefficient of interest then is β, which should capture the marginal effect that Medicaid

enrollment status has on the likelihood of vaccinating.

An immediate concern in interpreting any results of (3.1) as causal is that the selection

into the ‘treatment’ group is not random and likely endogenous with other unobserved

variables. For instance, consider the notable absence of the political leanings of observed

individuals within the demographic data: recent studies have demonstrated the influence

of political party-alignment on vaccine hesitancy (Hornsey et al., 2020; Fridman et al.,

2021), while earlier surveys have found evidence of liberal political preferences among the

Medicaid population based on the high degrees of correlation between Democratic voter

registration (Baicker et al., 2019) and vote shares (Hollingsworth et al., 2019) following

Medicaid expansions; this would suggest caution is warranted when attempting to perform

any causal inference based on (3.1) alone, as unobserved political persuasion is likely

confounding any coefficient estimates.

It is worth noting that the most plausible confounding factors are likely to bias the
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coefficient estimates positively. If it were the case that individuals who self-identify

as conservatives exhibited decreased likelihoods for both vaccinating and enrolling in

Medicaid, this would imply the estimated marginal effects from (3.1) are inflated positively.

Similarly, it may be the case that Medicaid recipients are more sickly at the margin relative

to those who are Medicaid eligible but uninsured, and the lack of inclusion of individual-

level health status indicators may bias the estimated treatment effect; but even then,

preliminary evidence (Soares et al., 2021) suggests the presence of comorbidities induces a

greater proclivity to vaccinate, and as such, a more-infirm Medicaid population should

exhibit greater likelihoods overall, thus biasing the coefficient upwards. Taken together

with my previous assertion that- absent the discouraging effects of principal interest

here from enrolling in or receiving care through Medicaid- Medicaid recipients should

presumably demonstrate a higher likelihood of vaccinating based on increased institutional

familiarity, at least when comparing the uninsured and Medicaid populations. When

comparing the Medicaid and privately insured populations, the potential influence of this

bias is less clear a priori : Medicaid recipients may still be more sickly (for instance, if

they are disabled and unable to receive insurance through an employer), but could also

have more limited mobility which prevents easy access to vaccination services.

To derive meaningful estimates for the magnitude of these specific costs of Medicaid

enrollment and utilization, I apply an entropy balancing method (Hainmueller, 2012)

to address potential endogeneity in the MEDICAIDi ‘treatment’ variable. Entropy

balancing is a preprocessing technique that assigns weights to control group observations

to ensure that the distributions of covariates between the ‘treatment’ and control groups

are equivalent, thus "balancing" the covariates. This process aims to balance all relevant

covariates at once, emulating the conditions of a randomized experiment and enabling the

derivation of more credible effect estimates. When successful, entropy balancing ensures

that differences in these covariates do not introduce bias into the results, enhancing the

validity of the causal inferences. This method is an extension of traditional propensity score

weighting, which typically uses logistic regression to calculate weights and then conducts

balance checks to confirm the equalization of covariate distributions. Critically, entropy
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balancing requires fewer assumptions to produce credibly causal estimates, and is less

vulnerable to bias when misspecified compared to propensity score methods (Hainmueller,

2012). Indeed, simulation studies have demonstrated entropy balancing as outperforming

more ad hoc propensity score approaches (Zhao & Percival, 2017). Nonetheless, as a

robustness check I also estimate a similar propensity score matching model and provide

details on this and the results in appendix 3.7.1.

To provide more detail on the specifics involved with estimating these entropy balancing

models: This approach involves recalculating the LPM outlined in equation (3.1), applying

a distinct weighting to each observation based on the vector w = (w1, w2, . . . , wn0). Here,

wi is set to 1 for units where MEDICAIDi = 1, and for those where MEDICAIDi = 0, wi

is chosen by the following reweighting scheme:

min
wi

H(w) =
∑

{i|MEDICAID=0}

h (wi) (3.2)

subject to balance constraints:

∑
{i|MEDICAID=0}

wiXi =
∑

{i|MEDICAID=1}

Xi, or

∑
{i|MEDICAID=0}

wi(Xi − µi)
r =

∑
{i|MEDICAID=1}

(Xi − µi)
r with r ∈ 1, . . . , R

where h(·) is the entropy distance metric, h(wi) = wilog(wi/qi), µi the sample mean

for either the control or Medicaid groups, and R is the number of balance constraints

imposed on the covariate moments of the reweighted control group. For the purposes

of my estimates, I set base weights as uniform, qi = 1/n0, and R = 3 so that derived

control weights satisfy two appealing conditions: The loss function described by equation

(3.2) penalizes larger deviations from a uniform weighting scheme, ensuring no excessive

over-weighting of a few control observations; and for the selected covariates that samples

are balanced on, the mean, variance and skew for the distributions of said covariates are

identical between the Medicaid and control groups. I balance on covariates for gender, race,
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ethnicity, marital status, logged household income, household size, number of children,

age, current housing situation (renting, owned, cohabitating with family, etc.), and SNAP

benefit status. In a similar manner to the naive OLS regressions, all entropy balanced

models are estimated across three sub-samples to identify differing responses across the

Medicaid vs. uninsurance, and Medicaid vs. private insurance margins, as well as net

pooled effects.

In addition to these direct entropy balancing models, I also leverage the computed percent

of Medicaid income eligibility cap measure in two different methodological settings in

an attempt to derive more credibly causal estimates. In the first of these alternative

approaches, I use this percentage measure as a running variable and the 100% level as a

cutoff in a sharp regression discontinuity design (RDD)33. Although eligibility for Medicaid

is frequently affected by various unobserved factors, surpassing the maximum income

threshold generally renders most households ineligible unless they qualify for a specific

exemption, such as one related to a medical disability. Because a primary source of bias in

naive OLS estimates could stem from the disproportionate number of individuals with poor

health within the Medicaid population, utilizing this income threshold provides a strategic

method to detect any marginal changes in vaccination practices among Medicaid recipients

of more typical health status. If some data preprocessing method is employed to balance

observables between control and Medicaid groups, these RDD estimates should be able

to identify causal marginal effects of enrollment status as households and individuals on

either side of this cutoff are approximately identical, notwithstanding Medicaid eligibility.

Moreover, a household or individual’s location immediately to the left or right of the

cutoff should be fairly random and subject to cross-state variation in eligibility limits.

This can be thought of as a generalization of the method used by H. Allen et al. (2021),

which leverages the 138% of the federal poverty level eligibility cutoff on a propensity

score balanced sample in an RDD setting.

33As an example, if you lived in a state where the maximum Medicaid eligible income was 100% of the
FPL, then the 100% cutoff would represent the FPL for your household size and number of dependents.
Alternatively, if you lived in an expansion state where the maximum eligible income was 138% of the
FPL, then the 100% cutoff would represent 138% of the FPL for your household size and number of
dependents.
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In the second alternative to the primary entropy balancing results, I employ the Medicaid

income eligibility cap measure as a synthetic instrumental variable within a two-stage

least squares (2SLS) model to account for any biasing selection into ‘treatment’. If the

inclusion of direct measures for income and household size as covariates are sufficiently

capturing the influence of these factors on the vaccination decision, then the simultaneous

inclusion of the income eligibility cap should describe only (and comparatively random)

cross-state variation in eligibility guidelines. If this assumption is correct, that would

satisfy the necessary exclusion restriction for this income cap measure as it should only

affect the vaccination decision through Medicaid enrollment status (and consequently

uncorrelated with the second-stage error term). Given that the income cap measure has a

clear correlation with the endogenous Medicaid regressor, this indicates its potential as a

valid instrument.

Lastly, to produce evidence of the relative impact of the suggested mechanisms, I propose

(3.3) as an amended version of (3.1)

yi,t = α3 + β1MEDICAIDi + β2MEDICAIDi × PCs + β3MEDICAIDi × BCs

+ β4MEDICAIDi × ABs +Xiδ3 + ϕs,t + ϵ3i,t

(3.3)

this includes interaction terms between MEDICAIDi and per capita Medicaid expenditures

(PCs), the benefit and copay coverage index (BCs), and the administrative burden index

(ABs) compiled by Fox, Feng, et al. (2020). If my administrative burden mechanism

hypothesis is correct, I should observe positive coefficients for β2, β3, and β4, suggesting

that as per capita spending increases, and copays and administrative burden decrease (an

increase in the index score), the likelihood of vaccinating increase. To address potential

collinearity concerns between these mechanism variables, I estimate multiple models

that variously include the different interaction terms. As well, to specifically identify

tangible administrative burden effects, I utilize data collected on the ease of the Medicaid

application process from Code for America (2019) to observe any categorical differences

in the vaccination decision within the Medicaid population between states with more and

less-onerous enrollment procedures.
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3.4 Results

I estimate the naive OLS regressions according to the Linear Probability Model specified

by equation (3.1). Results are listed in Table 3.2. Estimates in column one describe the

marginal change in vaccination likelihood of Medicaid status compared to the uninsured

population; column three estimates have the same interpretation, but compare vaccination

outcomes between the Medicaid and privately-insured populations; column two estimates

these changes for the pooled uninsured, Medicaid, and privately-insured populations. All

three estimates include individual-level covariates, as well as state-week and state-MSA

(if surveyed individual resides in one of the fifteen largest MSAs in the US) fixed effects.

Note that because the monetary cost for the COVID-19 vaccine at this time was zero, the

extent of cost-sharing associated with an individual’s insurance coverage should not affect

the vaccination decision. I observe that on average, Medicaid recipients demonstrate a 4.1

percentage point higher propensity to vaccinate, relative to those who are not insured, and

that these marginal effects are highly statistically significant. Conversely, when compared

to the privately insured (those with group or inidividual private insurance), the Medicaid

population appears to be exhibiting a lower likelihood to be vaccinated of 6.3 percentage

points. In the pooled sample, Medicaid recipients remain 3.4 percentage points less likely

to vaccinate, suggesting that in absolute terms when considering the relative prevalence of

private insurance coverage and uninsurance, Medicaid recipients appear to be less likely

to receive the COVID-19 vaccine than the general population of similar households. This

would appear to justify my line of inquiry here, suggesting that- at least relative to the

privately insured- some other underlying aspect of the Medicaid experience is categorically

discouraging recipients from electing to receive vaccination.

One concern already noted with these naive OLS results is that there may be some selection

into treatment effects that are biasing estimates. To address this I employ an entropy

balancing approach according to equation (3.2) to derive weights for control observations

that balance covariate distributions with the Medicaid recipients, then re-estimate the

LPM specified under equation (3.1) with the inclusion of these observational weights. I
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Table 3.2: Naive OLS estimates for likelihood of receiving or intention to receive vaccine
by insurance coverage type.

Dependent variable:

Vaccine Status

Sub-sample: Medicaid Only
& Uninsured Pooled Medicaid Only

& Insured

Medicaid 0.041∗∗∗ -0.034∗∗∗ -0.063∗∗∗
(0.005) (0.004) (0.004)

Fixed-effects
Week×State Yes Yes Yes
Week×MSA Yes Yes Yes

Fit statistics
Observations 42,417 93,823 79,647
R2 0.18096 0.16820 0.17634
Within R2 0.07445 0.07972 0.08851

Clustered (Week×State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

All coefficient estimates are derived from a fixed effects linear probability model and represent
the marginal change in likelihood of being vaccinated, or having a stated intent to vaccinate by
insurance type. Estimates in column one describe the marginal change in vaccination likelihood
of Medicaid status compared to the uninsured population; column three estimates have the
same interpretation, but compare vaccination outcomes between the Medicaid and privately-
insured populations; column two estimates these changes for the pooled uninsured, Medicaid, and
privately-insured populations. Covariates include: individual age, sex, marriage status, ethnicity,
race, logged household income, home ownership status, household size, number of children in
household, employment status, whether they had contracted COVID at some point, and whether
they had difficulty with paying bills. Estimates include state-week and MSA-week fixed effects;
all standard errors are clustered at the state-week level.
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perform these weighting and estimation procedures for each of the three sub-samples, and

list the results in panel (a) of Table 3.3. As a robustness check, in panel (b) I use the

same entropy balancing weights for each respective sub-sample, but employ them using a

weighted fixed effects logistic regression estimator instead of the LPM approach.

Comparing the entropy balanced results in Table 3.3 against those in Table 3.2, I observe

virtually identical results. Relative to the uninsured, the Medicaid population is exhibiting

a 3.4 to 3.6 percentage point higher likelihood to vaccinate, depending on whether using

the LPM or logit results. This would appear to corroborate the claim that more consistent

or easier access to care afforded by Medicaid coverage, as well as the development of

greater institutional familiarity from being enrolled in the program has translated to

a greater proclivity to vaccinate against COVID. When weighted to ensure the most

demographically-similar control group within both the pooled and insured (private or

Medicaid ) populations, I observe a significantly negative estimates and interpret this as

Medicaid enrollees exhibiting 3.1 and 6.9 percentage points lower likelihoods of vaccinating

(using the LPM estimates). These results appear to align with my primary argument

that the barriers to enrollment and care utilization, and the general sense of mistrust

unique to the Medicaid population are discouraging vaccine uptake at rates as high as

other conventional insurance populations (this is tested directly in a later analysis).

The interpretations of the results in rows one and three of Table 3.3 are relatively

straightforward, showing the marginal effects of Medicaid enrollment on vaccination

rates compared to the uninsured and privately insured groups, respectively. However,

interpreting the pooled results necessitates further clarification. Similar to the naive

OLS findings, the pooled results offer a weighted average of the effects within the two

sub-populations, reflecting the general population’s distribution of private insurance and

uninsurance. In the context of entropy balancing, this concept is extended to consider that

an ideal control group for comparison should include both uninsured and privately insured

individuals to address selection biases. This method also leverages the advantage of a

larger sample size, reducing the impact of atypical members within the uninsured (e.g.,

young, healthy individuals who forego insurance) and privately insured groups, thereby
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enhancing the representativeness of the results.

Table 3.3: Entropy balanced estimates for likelihood of receiving or intention to receive
vaccine by insurance coverage type.

Dependent variable:

Vaccine Status

Sub-sample: Medicaid Only
& Uninsured Pooled Medicaid Only

& Insured

(a) Linear probability Medicaid 0.034∗∗∗ -0.031∗∗∗ -0.069∗∗∗
estimates (0.007) (0.005) (0.007)

Observations 42,417 93,823 79,647
R2 0.19220 0.19744 0.22487
Within R2 0.08056 0.08544 0.08726

(b) Fixed effects logistic Logit coefficients 0.186∗∗∗ -0.162∗∗∗ -0.387∗∗∗
regression estimates (0.038) (0.028) (0.041)

Estimated Marginal 0.036∗∗∗ -0.028∗∗∗ −0.064∗∗∗
effects (0.007) (0.006) (0.012)

Observations 42,297 93,734 79,557
Squared Correlation 0.17132 0.15090 0.15185
Pseudo R2 0.17357 0.23276 0.25776
BIC 57,626.1 104,991.4 86,167.7

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
((a)) All coefficient estimates are derived from a fixed effects linear probability model weighted
according to the entropy balancing protocol outlined in equation (3.2). Estimates in column
one describe the marginal change in vaccination likelihood of Medicaid status compared to
the uninsured population; column three estimates have the same interpretation, but compare
vaccination outcomes between the Medicaid and privately-insured populations; column two
estimates these changes for the pooled uninsured, Medicaid, and privately-insured populations.
Covariates include: individual age, sex, marriage status, ethnicity, race, logged household income,
home ownership status, household size, number of children in household, employment status,
whether they had contracted COVID at some point, and whether they had difficulty with paying
bills. Estimates include state-week and MSA-week fixed effects; all standard errors are clustered
at the state-week level.

((b)) All coefficient estimates are derived from a fixed effects logistic regression model weighted
according to the entropy balancing protocol outlined in equation (3.2). The estimated marginal
effects in the second row have the same interpretation as the primary results outlined in panel
(a).

In Tables 3.4 and 3.5 I perform some stratification analysis and re-estimate the three

primary entropy balanced LPMs from Table 3.2 across several key subgroups. In Table

3.4 I focus on heterogeneous responses to Medicaid status across individual and household

demographics and characteristics. It is noteworthy that across all of these subgroups, the
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differences between coverage type sub-samples remain qualitatively the same: Relative

to the privately insured, the Medicaid population demonstrates lower propensities to

vaccinate, and that these negative responses persist in the pooled populations but are

attenuated towards zero. In most subgroups, the Medicaid continues to demonstrate

statistically significant higher likelihoods to vaccinate relative to the uninsured population.

Intriguingly, SNAP recipients and black individuals enrolled in Medicaid demonstrate

null effects in this regard, while Hispanic Medicaid recipients are less likely to vaccinate

relative to the uninsured. These findings underscore the significant impact of mistrust

in government on vaccination decisions among minority groups, aligning with previous

research (Khan, Ali, Adelaine, & Karan, 2021). Additionally, the data related to SNAP

participation suggest potential spillovers in health service use linked to SNAP involvement.

Notably, the SNAP estimates within both the pooled and insured subsets closely mirror

the primary findings from Table 3.3, with a marked contrast observed only when compared

with the uninsured group. This discrepancy can likely be attributed to Medicaid enrollees’

higher rates of SNAP participation relative to the uninsured. It may also reflect a greater

propensity for vaccination among SNAP beneficiaries, possibly due to increased trust in

institutions.

In Table 3.5, I categorize the entropy balancing outcomes based on state-specific factors,

including Medicaid expansion status and political leanings, indicated by the vote shares

from the 2016 presidential election. Since a key aspect of Medicaid expansions involves

simplifying enrollment processes (Fox, Feng, et al., 2020), analyzing variations across

these policy dimensions can shed light on potential mechanisms at play. Moreover, the

effectiveness of state political organizations in facilitating vaccine distribution has differed

significantly across ideological lines, making vote shares a useful metric to explore diverse

responses in this context. Most noteworthy is that Medicaid recipients in non-expansion

states appear to be no more likely to vaccinate, compared to the uninsured, which again

further bolsters the administrative burden argument if these states have also not updated

or simplified enrollment procedures. Also intriguing is that Trump states appear to have

more exaggerated Medicaid enrollment effect estimates across the board, with larger
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Table 3.4: Entropy balanced estimates for likelihood of receiving or intention to receive
vaccine by insurance coverage type, stratified by individual characteristics.

Dependent variable:

Vaccine Status

Sub-sample: Medicaid Only
& Uninsured Pooled Medicaid Only

& Insured

Black individuals 0.0111 -0.0204 -0.0498∗∗∗
(0.0207) (0.0141) (0.0183)

Observations 5,073 9,339 7,754

Hispanic individuals -0.0267∗ -0.0356∗∗∗ -0.0360∗∗
(0.0140) (0.0111) (0.0144)

Observations 7,942 14,902 11,300

Men 0.0722∗∗∗ 0.0059 -0.0531∗∗∗
(0.0133) (0.0105) (0.0121)

Observations 9,675 22,618 18,045

Women 0.0165∗∗ -0.0430∗∗∗ -0.0720∗∗∗
(0.0082) (0.0060) (0.0081)

Observations 32,742 71,205 61,602

Employed 0.0307∗∗∗ -0.0498∗∗∗ -0.0725∗∗∗
(0.0101) (0.0067) (0.0073)

Observations 18,703 57,837 50,501

Unemployed 0.0209∗∗ -0.0201∗∗∗ -0.0670∗∗∗
(0.0101) (0.0075) (0.0108)

Observations 23,714 35,986 29,146

SNAP recipients 0.005 -0.031∗∗∗ -0.068∗∗∗
(0.014) (0.009) (0.013)

Observations 16,939 20,749 18,262
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

All coefficient estimates are derived from a fixed effects linear probability model weighted
according to the entropy balancing protocol outlined in equation (3.2), stratified by self-reported
personal or household characteristics. Estimates in column one describe the marginal change in
vaccination likelihood of Medicaid status compared to the uninsured population; column three
estimates have the same interpretation, but compare vaccination outcomes between the Medicaid
and privately-insured populations; column two estimates these changes for the pooled uninsured,
Medicaid, and privately-insured populations. Covariates include: individual age, sex, marriage
status, ethnicity, race, logged household income, home ownership status, household size, number
of children in household, employment status, whether they had contracted COVID at some point,
and whether they had difficulty with paying bills. Estimates include state-week and MSA-week
fixed effects; all standard errors are clustered at the state-week level.
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percentage point increases (decreases) to vaccination likelihood compared to the uninsured

(privately insured).

Table 3.5: State stratification entropy balancing analysis by political and expansion
policy status.

Dependent variable:

Vaccine Status

Sub-sample: Medicaid Only
& Uninsured Pooled Medicaid Only

& Insured

Medicaid Expansion 0.035∗∗∗ -0.031∗∗∗ -0.069∗∗∗
States (0.008) (0.006) (0.007)

Observations 38,567 85,017 72,591

Not Medicaid Expansion 0.022 -0.024∗ -0.072∗∗∗
States (0.019) (0.014) (0.024)

Observations 3,850 8,806 7,056

Trump States 0.046∗∗∗ -0.035∗∗∗ -0.090∗∗∗
in 2016 (0.011) (0.008) (0.012)

Observations 18,225 41,500 34,943

Not Trump States 0.029∗∗∗ -0.026∗∗∗ -0.056∗∗∗
in 2016 (0.009) (0.007) (0.008)

Observations 24,192 52,323 44,704
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

All coefficient estimates are derived from a fixed effects linear probability model weighted
according to the entropy balancing protocol outlined in equation (3.2), stratified by state-
of-residence Medicaid policies and political preferences. Estimates in column one describe
the marginal change in vaccination likelihood of Medicaid status compared to the uninsured
population; column three estimates have the same interpretation, but compare vaccination
outcomes between the Medicaid and privately-insured populations; column two estimates these
changes for the pooled uninsured, Medicaid, and privately-insured populations. Covariates
include: individual age, sex, marriage status, ethnicity, race, logged household income, home
ownership status, household size, number of children in household, employment status, whether
they had contracted COVID at some point, and whether they had difficulty with paying bills.
Estimates include state-week and MSA-week fixed effects; all standard errors are clustered at the
state-week level.

To examine more concretely the motivations for vaccine hesitancy, I restrict the sample

to only those individuals who had not been vaccinated and had no stated intent to

vaccinate and replicate the entropy balanced specifications from Table 3.2 on a schedule

of possible hesitancy reasons34. The results of these regressions are listed in Table 3.6;

34The Pulse Survey only queried participants that provided a vaccination intention response of "probably
get a vaccine," "be unsure about getting a vaccine," "probably NOT get a vaccine," or "definitely NOT
get a vaccine" for their hesitancy reason. Although there’s a potential discrepancy between those who
express a willingness to get vaccinated but don’t intend to follow through, and those who initially state
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these coefficients should be interpreted as the marginal likelihood of reporting a given

reason for not vaccinating when enrolled in Medicaid. The results for all hesitancy reasons

by each insurance coverage sub-sample with the Medicaid and uninsured population in

column one, the Medicaid and privately-insured populations in column three, and the

pooled uninsured, Medicaid, and privately-insured populations in column three. The

results provide nuanced evidence for the validity of the trust mechanism hypothesis:

Medicaid recipients were 2-2.5 percentage points more likely to cite vaccine or government

trust concerns as a reason for vaccine hesitancy, but these effects are only observable

in the pooled and insured sub-samples. Medicaid recipients were also more likely to

report side effects concerns across all sub-samples. Also intriguing is that across all of

these sub-samples, Medicaid recipients were less likely to report cost concerns associated

with receiving the COVID-19 vaccine. Again, these results do not imply that Medicaid

recipients are not offering these reasons for their hesitancy, but that at margin, when

compared to similar insured individuals, Medicaid recipients are no more likely to offer

these as explanations.

3.4.1 Income eligibility cap analysis

To amend the preceding analyses and provide more plausibly causal estimates for the

influence of Medicaid enrollment status on the vaccination decision, I employ a computed

income eligibility cap measure within a few different methodological settings. Recall that

the percent of Medicaid income eligibility cap is estimated as the ratio of the midpoint of

the self-reported household income bin, and the state-of-residence’s maximum Medicaid

eligibility income cap based on the household dependents-conditional FPL. This metric is

designed to capture exogenous variations in Medicaid eligibility policies across states, which

should not directly influence vaccination outcomes, except indirectly through changes in

Medicaid coverage status.

they’re not interested but end up getting vaccinated, my analysis is concentrated on individuals who
explicitly expressed no intention to get vaccinated. Despite the self-reported nature of these responses,
which may introduce some inaccuracies due to dishonesty, the reasons given by individuals who assertively
declare their unwillingness to vaccinate are likely more reliable and indicative of genuine sentiments.
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Table 3.6: Entropy balanced likelihood estimates for vaccine hesitancy reason by insurance
coverage type.

Sub-sample: Medicaid Only
& Uninsured Pooled Medicaid Only

& Insured

Dependent Variable
Side Effects 0.072∗∗∗ 0.048∗∗∗ 0.024∗

(0.012) (0.009) (0.013)

Won’t Work 0.011 0.012 0.013
(0.010) (0.008) (0.011)

Don’t Need -0.017∗∗ -0.002 0.013
(0.008) (0.007) (0.009)

Not Recommended 0.017∗∗∗ 0.003 -0.015∗∗
(0.006) (0.005) (0.008)

Wait and See 0.044∗∗∗ 0.021∗∗ 0.003
(0.013) (0.010) (0.013)

Cost Concern -0.062∗∗∗ -0.035∗∗∗ -0.014∗∗
(0.008) (0.005) (0.007)

Don’t Trust Vaccine 0.015 0.022∗∗ 0.025∗∗
(0.011) (0.009) (0.012)

Don’t Trust GOV 0.004 0.020∗∗∗ 0.023∗∗
(0.010) (0.007) (0.010)

COVID Not Threat -0.005 0.0009 0.003
(0.005) (0.004) (0.005)

Observations 16,379 29,300 23,609

Clustered (Week×State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

All coefficient estimates are derived from a fixed effects linear probability model weighted
according to the entropy balancing protocol outlined in equation (3.2). Results in column one are
estimated on the Medicaid and uninsured population sub-sample; column three on the Medicaid
and privately-insured populations; and column two is for the pooled uninsured, Medicaid, and
privately-insured populations. The provided reasons are, in order: I am concerned about possible
side effects of a COVID-19 vaccine; I don’t know if a COVID-19 vaccine will protect me; I don’t
believe I need a COVID-19 vaccine; my doctor has not recommended it; I plan to wait and see if
it is safe and may get it later; I am concerned about the cost of a COVID-19 vaccine; I don’t
trust COVID-19 vaccines; I don’t trust the government; I don’t think COVID-19 is that big of a
threat; and other. All coefficient estimates represent the marginal change in likelihood of citing
these reasons for vaccine hesitancy associated with Medicaid enrollment. Covariates include:
individual age, sex, marriage status, ethnicity, race, logged household income, home ownership
status, household size, number of children in household, employment status, whether they had
contracted COVID at some point, and whether they had difficulty with paying bills. Estimates
include state-week and MSA-week fixed effects; all standard errors are clustered at the state-week
level.
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To start, I estimate the same entropy balancing model on the Medicaid and uninsured

sub-sample described in the column one of Table 3.3, but stratify by binned percentages of

this maximum income cap. A potential issue with considering the Medicaid population as

uniform and comparable to either uninsured or privately insured groups is the inclusion of

individuals who qualify for Medicaid due to severe illness or disability, despite surpassing

income thresholds. Analyzing vaccination behavior changes in relation to the income cap

percentage offers a strategy to differentiate between these individuals and those who are

typically healthy yet lose eligibility upon exceeding the 100% income threshold. I plot

the coefficient estimates for these stratified models in Figure 3.3 against the percent of

Medicaid income eligibility cap. Because the Pulse Survey provides binned household

income measures, panel (a) uses the midpoint, and panel (b) the maximum value of these

bins as the household income from which the percent of cap measure is derived35. One

can observe in both panels a clear decline in vaccination propensities when surpassing

the 100% income cap threshold, suggesting that conventional, income-eligible Medicaid

recipients are more likely to utilize these services with coverage.

In Table 3.7 I estimate a series of models employing local polynomial regression

discontinuity designs (RDD), utilizing the percentage of the Medicaid income eligibility

cap as the running variable with 100% of the cap serving as the threshold. Following the

methodology of H. Allen et al. (2021), these estimates are based on samples matched via

propensity scores as described by equation (3.5) and detailed in Appendix 3.7.1. The

regression discontinuity models are computed using standard, bias-corrected, and robust

estimators as per Calonico et al. (2014, 2015, 2020), applying both linear and quadratic

local polynomial regressions with a triangular kernel and an MSE-optimization bandwidth

selector. Surprisingly, despite the clear trends observed from Figure 3.3, none of these

RDD models yield significant point estimates for this eligibility cutoff. To make sense of

these results, I illustrate one RDD by plotting the local polynomial (LOESS) regressions

on the propensity score matched Medicaid recipients and uninsured sub-sample in panel

(a) of Figure 3.4. Although there might be a noticeable increase at the cutoff point,
35When using the max of bin as income, there are no households at or below 25% of the Medicaid

income cap, so this coefficient is omitted due to lack of data in panel (b).
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Figure 3.3: Entropy balanced results for Medicaid recipients against uninsured sub-
sample, stratified by percent of Medicaid income eligibility cap.
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((a)) Entropy balancing coefficient estimates represent Medicaid-status’ effect on likelihood
to vaccinate, stratified by distance from estimated income eligibility cap. Percent of Medicaid
income eligibility cap is estimated as the ratio of the midpoint of the self-reported household
income bin, and the state-of-residence’s maximum Medicaid eligibility income cap based on the
household dependents-conditional FPL. Models are estimated on the Medicaid and uninsured
population sub-sample. Error bars represent the 95% confidence bounds.
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((b)) Entropy balancing coefficient estimates represent Medicaid-status’ effect on likelihood
to vaccinate, stratified by distance from estimated income eligibility cap. Percent of Medicaid
income eligibility cap is estimated as the ratio of the maximum of the self-reported household
income bin, and the state-of-residence’s maximum Medicaid eligibility income cap based on the
household dependents-conditional federal poverty level. Models are estimated on the Medicaid
and uninsured population sub-sample. Error bars represent the 95% confidence bounds.
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significant heteroskedasticity is present, as shown by the wide confidence intervals in

the left-hand regression. An uneven distribution of observations around the cutoff could

challenge the validity of the RDD approach. Specifically, in panel (b), when plotting a

histogram for the running variable, there’s a notable clustering of observations just beyond

the 100% threshold. Despite the theoretical merits of this method, the Pulse Survey’s

income bin data may lack the precision required for effective RDD application, especially

when contrasted with the more detailed household eligibility data from state Medicaid

agencies highlighted by H. Allen et al. (2021).

As an alternative to the RDD approach, I additionally estimate the naive LPM model

described by equation (3.1), but using the percentage of Medicaid income eligibility cap

in the first stage as an instrument to account for endogenous selection into Medicaid

participation. The results for this 2SLS are listed in Table 3.8. Across all three sample

specifications, the income eligibility cap appears to be a strong instrument and produces

sensible first-stage results: As expected, the likelihood of being enrolled in Medicaid

declines as the percentage of the income cap increases. The second-stage results are

somewhat similar to the naive OLS and entropy balanced results, but differ in a few

key ways. First, after accounting for selection effects with this income cap instrument,

Medicaid recipients appear to be no more likely to vaccinate compared to the uninsured.

Secondly, within both the pooled and insured samples, the marginal effects of Medicaid

enrollment status are substantially larger than in the primary estimates (though these

estimates are only significant at the 10% level for the insured sub-sample). Collectively,

these findings offer a less optimistic view of the impact of Medicaid enrollment on vaccine

uptake. When adjusting for selection biases, the advantages of institutional support and

acquired knowledge seem to be minimal, whereas the deficiencies in care quality and

accessibility, especially in comparison to what is available to the privately insured, become

significantly more evident.
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Table 3.7: Regression discontinuity results on propensity score matched samples, percent
of Medicaid income eligibility cap as running variable.

Dependent variable:

Vaccine Status

Sub-sample: Medicaid Only
& Uninsured Pooled Medicaid Only

& Insured

Linear Quadratic Linear Quadratic Linear Quadratic

Conventional -0.006 -0.017 0.034 -0.015 0.008 -0.020
(0.043) (0.042) (0.041) (0.031) (0.038) (0.032)

Bias-Corrected -0.015 -0.033 0.026 -0.026 0.002 -0.026
(0.043) (0.042) (0.041) (0.031) (0.038) (0.032)

Robust -0.015 -0.033 0.026 -0.026 0.002 -0.026
(0.045) (0.045) (0.043) (0.032) (0.040) (0.035)

Observations 28,352 28,352 56,482 56,482 56,482 56,482
BW est. 13.534 36.250 15.043 27.660 8.536 27.474
BW bias 29.766 48.731 32.615 48.049 21.995 38.678
ρ 0.455 0.744 0.461 0.576 0.388 0.710

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Coefficient estimates represent local polynomial regression discontinuity point estimates using
the percentage of Medicaid income eligibility cap as the running variable and 100% of cap as
the cutoff. Outcome variable, vaccination status, is an indicator for self-reported receipt or
intent to receive the COVID-19 vaccine. Following H. Allen et al. (2021), these estimates are
performed on the propensity score matched samples derived according to equation (3.4) and the
procedure outlined in Appendix 3.7.1. Percent of Medicaid income eligibility cap is estimated as
the ratio of the midpoint of the self-reported household income bin, and the state-of-residence’s
maximum Medicaid eligibility income cap based on the household dependents-conditional federal
poverty level. Discontinuity models are estimated using conventional, bias-corrected and robust
estimators according to Calonico et al. (2014, 2015, 2020), with both linear and quadratic local
polynomial regressions employing a triangular kernel and a MSE-optimization bandwidth selector.
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Figure 3.4: Regression discontinuity analysis on propensity score matched samples
(Medicaid recipients against uninsured).
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((a)) Plotted local polynomial (LOESS) regressions on the propensity score matched Medicaid
recipients and uninsured sub-sample derived from equation (3.4), with percentage of Medicaid
income eligibility cap as the running variable. Outcome variable, vaccination status, is an
indicator for self-reported receipt or intent to receive the COVID-19 vaccine. Percent of Medicaid
income eligibility cap is estimated as the ratio of the midpoint of the self-reported household
income bin, and the state-of-residence’s maximum Medicaid eligibility income cap based on
the household dependents-conditional federal poverty level. Shaded regions represent the 95%
confidence bounds.
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((b)) Histogram and empirical distribution of observations within the propensity score matched
Medicaid recipients and uninsured sub-sample, on household percentage of the Medicaid income
eligibility cap.
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Table 3.8: 2SLS estimates using percent of income cap as instrument.

Dependent variable:

Vaccine Status

Sub-sample: Medicaid Only
& Uninsured Pooled Medicaid Only

& Insured

First Stage
% of Income Cap -0.0026∗∗∗ -0.0018∗∗∗ -0.0018∗∗∗

(0.0002) (0.0001) (0.0001)

F-test (IV only) 240.82 310.66 301.69
Wald (IV only), p-value 3.43× 10−47 7.01× 10−64 1.44× 10−59

Second Stage
Medicaid 0.0003 -0.1504∗∗ -0.1188∗

(0.0668) (0.0614) (0.0612)

Fit statistics
Observations 42,417 93,823 79,647
R2 0.17971 0.15928 0.17435
Within R2 0.07305 0.06986 0.08630

Clustered (Week×State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

2SLS estimates above represent the results of estimating the naive LPM model described by
equation (3.1), but using the percentage of Medicaid income eligibility cap in the first stage as an
instrument to account for endogenous selection into Medicaid participation. Percent of Medicaid
income eligibility cap is estimated as the ratio of the midpoint of the self-reported household
income bin, and the state-of-residence’s maximum Medicaid eligibility income cap based on the
household dependents-conditional federal poverty level. Subset analysis follows the same column
format as the primary results; covariates, fixed effects and standard errors clustering procedure
are also identical to primary results.
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3.4.2 Mechanisms

These initial results demonstrate a strong correlation between Medicaid status and the

vaccination decision, but are also unclear and painting a considerably more complex picture

than perhaps initially expected. The question remains for what mechanisms are actually

driving these observations. If the particular administrative burden and costs of free care

mechanisms are the primary drivers for the negative Medicaid coefficient as hypothesized,

then I should be able to observe some degree of heterogeneity in the magnitude of this

treatment effect across states and these variations in treatment should correlate to those

states’ respective mechanism indexes. To model this explicitly I re-estimate the entropy

balanced model performed on the Medicaid and privately insured sub-sample but include

a vector of State×Medicaid interaction terms; I then plot these estimated interaction

coefficients and their 95% confidence intervals in Figure 3.5 for each state against their

average administrative burden index (top panel) and average benefit and copay index

(bottom panel). To improve interpretability, the Rhode Island interaction term is omitted

as the baseline reference point as it has both median administrative burden and benefit

and copay scores. While it is difficult to discern any obvious positive relationships among

these data, there does appear to be a slight upward trend in the state-level Medicaid

marginal effects against the administrative burden index. At a minimum, I can observe

that no State×Medicaid interaction coefficients are significantly positive compared to

the dozen that are significantly negative, suggesting Medicaid recipients are rendering

vaccination decisions in a fairly consistent manner across the the country.

To estimate the magnitude of these mechanism effects formally, I again replicate the

primary entropy balancing estimates on the Medicaid and uninsured sub-sample, but with

the inclusion of AB×Medicaid and BC×Medicaid interaction terms to capture the marginal

influence of administrative burden and benefits and copays on vaccination likelihood.

Regression results are listed in Table 3.9. The results in column (4) are identical to the

primary entropy balanced results from Table 3.3; column (5) is identical to (4) but includes

the AB×Medicaid and BC×Medicaid interaction terms; column (6) is identical to (5), but
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Figure 3.5: Estimated State×Medicaid coefficients against Administrative Burden and
Benefits & Copay Indexes.
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Coefficient estimates derived from an entropy balanced model on the Medicaid and privately
insured populations sub-sample, with the inclusion of State×Medicaid interaction terms. The
Rhode Island interaction term is omitted as the baseline reference point as it has both median
administrative burden and benefit and copay scores. Heterogeneous, state-level estimates for
the marginal influence Medicaid status on vaccination likelihood, relative to the Rhode Island
median, are plotted against the Administrative Burden and Benefits & Copay Indexes from Fox,
Feng, et al. (2020) for the respective states, along with their 95% confidence intervals.
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substitutes the state-level per capita Medicaid expenditures (PC, in thousands of USD) for

the administrative burden index and estimates the interaction term, PC×Medicaid; column

(8) includes all three interaction terms, AB×Medicaid, BC×Medicaid, and PC×Medicaid.

Interestingly, only the administrative burden index appears to be significant at the 5%

level in describing state-by-state variation in vaccination propensities across all of the

model specifications. Moreover, the estimated marginal effects for increased AB score are

positive, which imply that reducing administrative burden barriers (a higher AB score) is

associated with higher marginal likelihoods to vaccinate within the Medicaid population.

I can observe an average increase in the likelihood to vaccinate when moving from the

lowest (0.53 in Texas) to highest (0.97 in Illinois) index scores of 4.75 percentage points

for administrative burden; or a 1.17 percentage point increase in vaccination propensities

for a one standard deviation improvement in a state’s administrative burden score.

In Table 3.12 I perform this same analysis, but on the Medicaid and uninsured populations

sub-sample. Curiously, I observe the exact opposite outcomes, with the administrative

burden score again being the only consistently significant factor influencing Medicaid

vaccination outcome, but with relatively large coefficient estimates. One reason for these

seemingly counterintuitive results could be that as a state’s AB score improves, more of

the uninsured population receives coverage and the selection into Medicaid effects become

less pronounced. For instance, states with lower AB scores may have Medicaid populations

which are more sickly (and more likely to vaccinate) than those that have less onerous

enrollment procedures.

To make more sense of these mechanisms results, I perform some additional entropy

balancing exercises following equation (3.2), but stratify by state-of-residence direct

measures of Medicaid enrollment ease and list the estimates in Table 3.10. Enrollment

ease data comes from Code for America (2019) and describe whether a given state permits

joint application and processing for receipt of SNAP and Medicaid benefits, the number

of screens required to click through to complete the online Medicaid application is at or

below (above) the 25th (75th) percentile, and whether average time it takes to complete

the online Medicaid application on a standard desktop computer is at or below (above) the
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Table 3.9: Entropy balanced estimates for likelihood of receiving or intention to receive
vaccine by Medicaid status and state-level Medicaid measures interactions (Medicaid
recipients against privately insured).

Dependent variable:
Vaccine Status

(4) (5) (6) (7)

Medicaid -0.069∗∗∗ -0.129∗∗ -0.170∗∗∗ -0.148∗∗
(0.007) (0.064) (0.053) (0.072)

BC×Medicaid -0.025 -0.024
(0.052) (0.052)

AB×Medicaid 0.102∗ 0.112∗∗ 0.108∗
(0.055) (0.055) (0.056)

PC×Medicaid 0.002 0.002
(0.003) (0.003)

Observations 79,647 79,647 79,647 79,647
R2 0.22487 0.22500 0.22501 0.22501
Within R2 0.08726 0.08742 0.08743 0.08743

Clustered (Week×State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

((a)) All coefficient estimates are derived from a fixed effects linear probability model weighted
according to the entropy balancing protocol outlined in equation (3.2). Analysis is performed
on the entropy balanced sub-sample of Medicaid recipients and the privately-insured. BC and
AB are the benefits and copay and administrative burden indexes collected from Fox, Feng, et
al. (2020), PC is the 2019 per capita Medicaid expenditures by state; all three variables are
interacted with the MEDICAID dummy in the regression. Covariates, fixed effects and standard
errors clustering procedure are also identical to primary results.
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25th (75th) percentile. When comparing states across these measures, only the differences

between SNAP dual enrollment/processing and number of application screen measures

are significant to the 5% level after performing a coefficient difference test. Somewhat

surprisingly, states that permit greater ease when enrolling in either or both the SNAP

and Medicaid programs demonstrate lower marginal vaccination rates among the Medicaid

population. This could be a result of states with easier enrollment processes having a

larger proportion of individuals who are historically underserved or have lower healthcare

engagement levels. To more precisely gauge the effort required for enrollment, the "number

of screens" variable distinguishes states in the highest or lowest quartile based on the

actual volume of paperwork individuals must complete to enroll in Medicaid. I observed

that on both the Medicaid vs uninsured, and Medicaid vs privately insured sub-samples,

states which require the most amount of ‘work’ to apply for Medicaid benefits demonstrate

marked declines in vaccination propensities in the Medicaid population. When stratified

across application time quartiles, there do not appear to be any significant differences

between states. These results generally appear to validate the crux of my argument: as

states increase the bureaucratic burden that Medicaid recipients face, they become less

inclined to utilize vaccination services.

3.5 Discussion & Conclusions

Overall my estimates appear to consistently demonstrate two common trends among

the Medicaid population: After accounting for confounding factors and selection effects,

Medicaid status appears to imbue the otherwise uninsured with a greater propensity to

vaccinate; but that these benefits are trumped by program shortcomings when compared

against conventional insurance enrollment. The results of the hesitancy motivation analysis

bolster the argument that systemic mistrust is a driving factor in vaccine hesitancy. Taken

together this suggests that the experience individuals accumulate and familiarity gained

from accessing care through Medicaid do represent significant means of circumventing

well-established informational barriers to vaccination (Dubé et al., 2013), but that these

benefits are still insufficient compared to similar services offered by conventional insurance.
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Table 3.10: State stratification entropy balancing analysis by Medicaid enrollment ease.

Dependent variable:

Vaccine Status

Sub-sample: Medicaid Only
& Uninsured Pooled Medicaid Only

& Insured

Joint SNAP and Medicaid 0.034∗∗∗ -0.042∗∗∗ -0.044∗∗∗
application/processing (0.013) (0.010) (0.011)

Observations 12,043 29,079 24,996

Separate SNAP and Medicaid 0.044∗∗∗ -0.024∗∗ -0.019
application/processing (0.016) (0.011) (0.013)

Observations 6,191 12,705 10,739

# of screens to complete 0.053∗∗∗ -0.024∗∗ -0.017
application (25th percentile) (0.014) (0.011) (0.011)

Observations 8,453 17,991 15,444

# of screens to complete 0.027∗∗ -0.028∗∗∗ -0.032∗∗∗
application (75th percentile) (0.011) (0.008) (0.009)

Observations 13,490 30,931 25,956

Time required to complete 0.042∗∗∗ -0.028∗∗∗ -0.026∗∗∗
application (25th percentile) (0.010) (0.007) (0.008)

Observations 8,453 17,991 15,444

Time required to complete 0.046∗∗∗ -0.024∗∗ -0.024∗∗
application (75th percentile) (0.012) (0.010) (0.010)

Observations 10,321 24,138 20,469
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

All coefficient estimates are derived from a fixed effects linear probability model weighted
according to the entropy balancing protocol outlined in equation (3.2), stratified by state-of-
residence measures of Medicaid enrollment ease. Enrollment ease data comes from Code for
America (2019) and describe whether a given state permits joint application and processing
for receipt of SNAP and Medicaid benefits, the number of screens required to click through to
complete the online Medicaid application, and the average time it takes to complete the online
Medicaid application on a standard desktop computer. Subset analysis follows the same column
format as the primary results; covariates, fixed effects and standard errors clustering procedure
are also identical to primary results.
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I argue here that the comparative magnitude of the Medicaid-vs-uninsured and Medicaid-

vs-insured causal estimates is evidence of the relative weight of the implicit costs

(administrative burden, stigma, insurance discrimination by providers, etc.) associated

with the receipt of Medicaid. Table 3.9 illustrates that, of the three mechanisms examined,

only administrative burden appears to be a significant factor in capturing cross-state

variations in vaccination rates. In both relative and absolute terms, variations in

administrative burden appear to constitute approximately four times as much influence in

the vaccination decision as benefits coverage and copays, which is also consistent with the

zero-cost nature of the COVID-19 vaccine.

To estimate the economic magnitude of vaccine hesitancy demonstrated by Medicaid

recipients, I perform some back of the envelope calculations using costs figures derived

by Bartsch et al. (2021). Medicaid enrollment for May 2021 was 82.8 million36; if I

consider two counterfactual scenarios, one where Medicaid recipients were no more likely

to vaccinate than the uninsured, and another where Medicaid recipients were no less

likely than the insured to vaccinate, then my estimates would imply there have been 2.815

million more, and 5.713 million fewer vaccinations respectively (or 0.85% and 1.72% of the

total US population) based on the entropy balanced figures from Table 3.3. Using the most

conservative figures for averages in moving from 50% to 70% vaccine coverage (Bartsch et

al., 2021), I find this corresponds to 390,200 fewer cases and 1,662 fewer deaths than if

Medicaid recipients were no more likely to vaccinate than the uninsured; and 791,800 more

cases and 3,373 more deaths than if Medicaid recipients were no less likely to vaccinate

than the insured over the observed January to September, 2021 time frame. With respect

to reducing administrative burden, if all states improved their enrollment procedures so as

to increase their AB scores by one standard deviation, this would correspond to 971,900

more vaccinations, 134,700 fewer COVID-19 cases, and 574 fewer deaths. The increased

proclivity to vaccinate that Medicaid status affords clearly saves lives, but could stand to

save substantially more if it were as persuasive as conventional insurance.

36https://www.kff.org/coronavirus-covid-19/issue-brief/analysis-of-recent-national-trends-in-
Medicaid-and-chip-enrollment/

https://www.kff.org/coronavirus-covid-19/issue-brief/analysis-of-recent-national-trends-in-Medicaid-and-chip-enrollment/
https://www.kff.org/coronavirus-covid-19/issue-brief/analysis-of-recent-national-trends-in-Medicaid-and-chip-enrollment/
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This analysis warrants consideration of several potential limitations and contextual

factors. Medicaid eligibility criteria extend beyond mere income and household size,

hinting at possible missing variables in the balancing models that could restrict the

causal interpretation of the findings. To address this, I utilize the Medicaid income

cap percentage as a tool for introducing exogenous variation in enrollment, applying it

within both regression discontinuity and instrumental variable frameworks. Despite the

challenges posed by the imprecision of self-reported income, which may affect the regression

discontinuity approach’s effectiveness, the instrumental variable analysis consistently

reveals lower vaccination rates among Medicaid enrollees in both pooled and insured

groups after accounting for selection effects. Furthermore, changes in Medicaid enrollment

policies during the pandemic, including reduced churn and relaxed eligibility criteria,

might be influencing the estimates. Lastly, the study does not account for how shifts

in administrative burdens over time could affect the results, adding another layer of

complexity to their interpretation.

The policy implications of my results here highlight the urgency in reducing or eliminating

administrative burden in the Medicaid enrollment and care utilization processes. From

a public health perspective, the magnitude of the costs of vaccine initiative failure is

substantial; but to portray hesitancy as irrational appears to be unsubstantiated. As

with all forms of care utilization, individuals form expectations on care quality and costs

based on experience and institutional familiarity. Even if Medicaid recipients possess

greater institutional familiarity, this alone does not (at least not entirely) offset the general

unpleasantness of utilizing Medicaid care. Some form of welfare analysis that includes,

for instance, the administrative burden measurements could be helpful in identifying the

marginal willingness-to-pay for vaccination among the Medicaid population relative to

the increased time and effort costs of receiving care. As well, including a formal measure

of insurance discrimination faced by Medicaid recipients from care providers could further

distinguish between the relative size of implicit administrative and utilization costs.
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3.7 Appendices

3.7.1 Propensity score matched model results

As an alternative to the entropy balancing approach used in the primary component of

my analysis, I additionally employ propensity score matching (PSM) to account for any

endogeneity in the MEDICAIDi treatment variable.

I estimate the probability of being ‘treated’ (enrolled in Medicaid) given a set of pre-

treatment covariates according to the following logistic regression:

MEDICAIDi = Xiδ1 + STATEiγ + ϵ1i (3.4)

where, as with (3.1), Xi corresponds to vectors of individual and household demographic

variables, and STATE is a vector of state-of-residency indicators to ensure matching is

performed to locate within state controls.

To eliminate potential biasing from selection into treatment, I use the estimated propensity

scores from (3.4) for each observation and employ a nearest neighbor matching algorithm

to pair each ‘treated’ individual with their most demographically similar untreated control.

Then to ensure robustness and account for potential imbalance within the one-to-one

matched sub-sample (Nguyen et al., 2017), I run the following LPM and fixed effects logit:

yi,t = α2 + β MEDICAIDi +Xiδ2 + ϕs,t + ϵ2i,t (3.5)

which follows a similar variable specification as (3.1). The results of these regressions are

listed in Table 3.11. To summarize: These results are virtually identical to the primary

entropy balancing estimates, with the same significance levels, signs, and magnitudes for the

coefficients. The Medicaid population exhibits a 3.3 percentage point higher likelihood to

vaccinate compared to the matched uninsured population, and a 6.5 percentage point lower

likelihood to vaccinate compared to the matched insured population. When examining

the net effects on the matched pooled population (row 2), these PSM results are slightly
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larger than the entropy balancing estimates, indicating a 3.6 percentage point decline in

vaccination likelihoods compared to broader, Medicaid-similar population.

Table 3.11: Propensity score matched estimates for likelihood of receiving or intention
to receive vaccine by insurance coverage type.

Dependent variable:

Vaccine Status

Sub-sample: Medicaid Only
& Uninsured Pooled Medicaid Only

& Insured

(a) Linear probability Medicaid 0.029∗∗∗ -0.037∗∗∗ -0.065∗∗∗
estimates (0.009) (0.004) (0.004)

Observations 28,352 56,482 56,482
R2 0.18311 0.18618 0.18971
Within R2 0.07009 0.08671 0.09351

(b) Fixed effects logistic Logit coefficients 0.168∗∗∗ -0.197∗∗∗ -0.371∗∗∗
regression estimates (0.048) (0.022) (0.024)

Estimated Marginal 0.033∗∗∗ -0.036∗∗∗ −0.065∗∗∗
effects (0.009) (0.005) (0.006)

Observations 28,208 56,372 56,393
Squared Correlation 0.18123 0.18833 0.19345
Pseudo R2 0.14537 0.15648 0.16301
BIC 42,778.3 72,058.2 70,157.5

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
((a)) All coefficient estimates are derived from a fixed effects linear probability model estimated
on propensity score matched samples produced according to equation (3.4). Estimates in column
one describe the marginal change in vaccination likelihood of Medicaid status compared to
the uninsured population; column three estimates have the same interpretation, but compare
vaccination outcomes between the Medicaid and privately-insured populations; column two
estimates these changes for the pooled uninsured, Medicaid, and privately-insured populations.
Covariates include: individual age, sex, marriage status, ethnicity, race, logged household income,
home ownership status, household size, number of children in household, employment status,
whether they had contracted COVID at some point, and whether they had difficulty with paying
bills. Estimates include state-week and MSA-week fixed effects; all standard errors are clustered
at the state-week level.

((b)) All coefficient estimates are derived from a fixed effects logistic regression model estimated
on propensity score matched samples produced according to equation (3.4). The estimated
marginal effects in the second row have the same interpretation as the primary results outlined
in panel (a).
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Table 3.12: Entropy balanced estimates for likelihood of receiving or intention to receive
vaccine by Medicaid status and state-level Medicaid measures interactions (Medicaid
recipients against uninsured).

Dependent variable:
Vaccine Status

(4) (5) (6) (7)

Medicaid 0.034∗∗∗ 0.072 0.171∗∗∗ 0.088
(0.007) (0.077) (0.066) (0.090)

BC×Medicaid 0.096 0.096
(0.064) (0.064)

AB×Medicaid -0.143∗∗ -0.162∗∗ -0.148∗∗
(0.066) (0.066) (0.068)

PC×Medicaid -0.001 -0.001
(0.004) (0.004)

Observations 42,417 42,417 42,417 42,417
R2 0.19220 0.19255 0.19247 0.19256
Within R2 0.08056 0.08096 0.08086 0.08097

Clustered (Week×State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

All coefficient estimates are derived from a fixed effects linear probability model weighted
according to the entropy balancing protocol outlined in equation (3.2). Analysis is performed on
the entropy balanced sub-sample of Medicaid recipients and the uninsured. BC and AB are the
benefits and copay and administrative burden indexes collected from Fox, Feng, et al. (2020),
PC is the 2019 per capita Medicaid expenditures by state; all three variables are interacted with
the MEDICAID dummy in the regression. Subset analysis follows the same column format as
the primary results; covariates, fixed effects and standard errors clustering procedure are also
identical to primary results.
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