
Top Eight Computer Science Education Research Papers

These papers provide a breadth of information about Computer Science Education Research that is generally useful

and interesting from a computer science perspective.

Contents

1. Identifying Student Misconceptions of Programming

2. Undergraduate Women in Computer Science: Experience, Motivation and Culture

3. Improving the CS1 Experience with Pair Programming

4. A Multi-institutional Study of Peer Instruction in Introductory Computing

5. Constructivism in Computer Science Education

6. Using Software Testing to Move Students from Trial-and-Error to Reflection-in-Action

7. Contributing to Success in an Introductory Computer Science Course: A Study of Twelve Factors

8. Teaching Objects-first In Introductory Computer Science

Need a research paper on a similar topic? Check out how our research paper writing services can help youCheck out

https://www.researchprospect.com/category/research-paper-examples/
https://www.researchprospect.com/category/research-paper-examples/

Identifying Student Misconceptions of Programming
 Lisa C. Kaczmarczyk Elizabeth R. Petrick
 University of California, San Diego University of California, San Diego
 Sixth College, MC0054 Department of History, MC0104
 lisak@acm.org erpetric@ucsd.edu
 J. Philip East Geoffrey L. Herman
 University of Northern Iowa University of Illinois at Urbana-Champaign
 Department of Computer Science Dept. of Electrical and Computer Engineering
 east@cs.uni.edu glherman@illinois.edu

ABSTRACT
Computing educators are often baffled by the misconceptions that
their CS1 students hold. We need to understand these
misconceptions more clearly in order to help students form correct
conceptions. This paper describes one stage in the development of
a concept inventory for Computing Fundamentals: investigation
of student misconceptions in a series of core CS1 topics
previously identified as both important and difficult. Formal
interviews with students revealed four distinct themes, each
containing many interesting misconceptions. Three of those
misconceptions are detailed in this paper: two misconceptions
about memory models, and data assignment when primitives are
declared. Individual misconceptions are related, but vary widely,
thus providing excellent material to use in the development of the
CI. In addition, CS1 instructors are provided immediate usable
material for helping their students understand some difficult
introductory concepts.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer science education.

General Terms
Human Factors.

Keywords
Curriculum, Concept Inventory, Programming, Misconceptions,
Pedagogy, CS1.

1. INTRODUCTION
Most Computer Science Educators will recall times when they
were completely baffled by how their students expressed their
understanding of a critical topic. Clearly, understanding a
student’s inaccurate conceptualization is a necessary prerequisite

for helping them move toward an accurate conceptualization.
Unfortunately we cannot read minds and we cannot speak in
depth with every struggling student. Thus, it would be very useful
to have a reliable method of rapidly gauging the most important
areas of conceptual difficulty, and to reveal in what form these
difficulties manifest themselves.

A promising assessment approach is the use of a concept
inventory (CI). The original CI was developed by physics
educators (Hestenes, et al.) and addressed concepts of Newtonian
Force as taught in introductory physics [10]. The authors had
previously discovered that many students did not develop correct
conceptions of critical topics. In response, the authors produced a
multiple-choice examination that could be used by all physics
instructors to determine whether their students appropriately
understood the concepts of Newtonian Force. Perhaps their most
critical contribution has been that instructors can use the
inventory results to gain “on the ground” insight into not only the
concepts their students are struggling with, but what specific
misconceptions they hold. This information can be immediately
leveraged to adjust instruction.

Prior to the project of which this paper is part, there was some
discussion and preliminary attempts to develop a CI for discrete
mathematics [1]. A digital logic CI is currently being developed
and is nearly complete [9]. No other CIs have been fully
developed for any area of introductory computing.

The results reported here are part of a multi-institutional project to
develop concept inventories for three introductory computing
topics: digital logic, programming fundamentals, and discrete
structures. The process is as follows: previously, Delphi studies
were conducted to identify concepts considered both important
and a source of difficulty for students [7]. The next step involves
interviewing students who have been instructed on each topic to
identify their misconceptions. Results for digital logic have been
published [8]; initial findings from interviews on programming
fundamentals are reported here. As will be discussed in Section 6,
these data and additional data currently being collected, will be
used to develop, test, and validate the CI instrument.

2. BACKGROUND
Student misconceptions of programming and closely related
topics have been studied for some time. Early studies, such as
Mayer’s work on mental models of the actions of programming
statements [16], were followed by Bayman and Mayer examining
misconceptions related to individual program statements in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’10, March 10–13, 2010, Milwaukee, Wisconsin, USA.
Copyright 2010 ACM 978-1-60558-885-8/10/03...$10.00.
.

107

BASIC [2]. They found that many students had incorrect
understandings or outright misconceptions of “much” of even
very simple statements. Bonar and Soloway looked more
generally at groups of statements to examine student
understanding of programming [3]. They recognized that student
“step-by-step natural language programming knowledge”
interacted negatively with the programming knowledge of formal
instruction. These studies touched upon misconceptions, but their
primary focus was on larger mental models and theories of
cognitive representation, or in some cases discoveries of
misconceptions were not fully followed up pedagogically.

Spohrer and Soloway [20] examined the source of programming
errors or bugs to see if they result from “misconceptions about the
semantics of programming language constructs”. They concluded
that bugs are more likely to arise from student errors in reading
and analyzing specifications and failures to see negative
interactions between segments of code. Pea [18] looked beyond
language constructs altogether, seeking insight into
misconceptions. He found a “superbug”—students’ tendency to
expect computers to correctly interpret student actions and do the
right thing. Confrey [5] examined both theoretical and empirical
literature on misconceptions in mathematics, science, and
programming and noted that the primary focus of the research was
to avoid misconception development though changes in teaching.
These studies focus primarily on misconceptions and present
important results, however for a wider pedagogical use in CS1,
they provide insufficient breadth and depth.

More recent work has often been narrowly focused. Ma, et al. [14]
examined the correctness of mental models of assignment (of
values and references) that are held by students at the end of a
programming course and found a substantial number or erroneous
models for even simple assignment. Fluery [6] and Madison and
Gifford [15] focused specifically on parameters. Holland, et al.
[11] presented misconceptions related to Objects and
recommendations for addressing them, however their results were
anecdotal and not supported with data.

A variety of other work on misconceptions exists, but from the
perspective of providing data needed to develop a CI for CS1,
they either replicate the problematic issues above, or else focus on
other areas of program related conceptions (correctness and
grading) rather than programming conceptions (e.g. Kolikant and
Mussai [12] and Sanders and Thomas [19]). Thus there remains a
need to investigate student misconceptions across a wide variety
of CS1 topics. Conducting in-depth interviews with
methodological rigor is one way to provide the broad cognitive
understanding needed. In the following sections, we report a first
set of results to rectify this situation.

3. INTERVIEW & ANALYSIS PROTOCOL
Eleven students took part in interviews conducted at the
University of California, San Diego (UCSD) in spring 2009.
Students were recruited from the undergraduate student
population who were currently or recently enrolled in Computer
Science or Computer Engineering introductory courses CSE8a or
CSE11 (two versions of CS1). Participation was voluntary;
subjects were recruited through announcements made in courses
and via email to CSE lists. Students were compensated for
participation in the project.

The primary purpose of the interviews was to reveal
misconceptions held by students on an initial group of ten of the
thirty-two concepts identified by the Delphi experts [7]. There
were eighteen problems, covering the following concepts:
1. Memory Model, References, and Pointers (MMR)
2. Primitive and Reference Type Variables (PVR)
3. Control Flow (CF)
4. Iteration and Loops I (IT1)
5. Types (TYP)
6. Conditionals (COND)
7. Assignment Statements (AS)
8. Arrays I (AR1)
9. Iteration and Loops II (IT2)
10. Operator Precedence (OP)
A secondary purpose of the interviews was to validate the Delphi
experts' conclusions that these concepts were indeed difficult.

The interviews were semi-structured and used a modified think-
aloud protocol [4]. Choosing a language for code examples was
an unavoidable necessity in spite of an overarching goal to
develop as language neutral a CI as possible. We selected Java for
three reasons. First, Java is currently one of the most widely used
introductory programming languages. Second, our Delphi experts
explicitly identified a subset of troublesome concepts as Object
Oriented (OOP) based. Third, our student population had been
taught in Java. It is important to note that not all concepts
required that actual code be presented to students in order to
reveal misconceptions. A full list of the problems is available
from the authors and is expected to be published in a subsequent
longer article. In addition, we will address the language
dependence issue further in Sections 5 and 6.
There were multiple problems per concept, in order to guarantee
that results did not depend on a single question. The majority of
problems were covered in at least two distinct variations. Pilot
interviews revealed that some concepts were closely related (e.g.
Control Flow with other concepts). Thus, misconceptions
emerged for some concepts within discussion of problems
designed for another concept. Additional interviews and analysis
on several of these “overlap” concepts are underway.

Each student was given a subset of the problems. Each interview
lasted approximately one hour. With a few exceptions, every
student was provided questions for all ten concepts. The
exceptions occurred when students worked slowly and time
limitations prevented full coverage. To avoid order bias, the
problems were given in a semi-random order to each student. The
caveat to the randomness of problem ordering is that each student
was given one or two simple questions in the beginning to reduce
anxiety and acclimate them to the interview process. Students
were given the problems on paper, and provided scrap paper to
work on if they desired. At no time did the interviewer reveal
correct or expected answers to the problems. We collected audio
and video recordings of the interviews, along with any written
work the students produced. The audio tracks of the interview
recordings were transcribed verbatim. Video was used as a back-
up and as a visual resource if needed.
We analyzed transcripts and written work from ten of the
interviews. Due to equipment failure, one interview was lost. The
interviews were analyzed using the following steps of grounded
theory and qualitative data analysis as described by Kvale [13],
Strauss and Corbin [22], and Miles and Huberman [17]:

108

1. All of the survey responses were selected for coding in order
to avoid bias in selection.

2. All of the survey responses were read and analyzed
independently by three researchers: the first and second
authors, and a researcher from one of the project's partner
institutions (the fourth author).
a. Each researcher developed codes, operational definitions,

and themes grounded in the textual responses.
b. The three researchers compared their coding and thematic

decisions. When there were divergent findings, only those
encodings were retained in which all researchers agreed.
An inter-rater reliability rating of 96% was achieved.

3. Thirty-two codes with operational definitions were agreed
upon. Twenty-five codes addressed the ten targeted concepts.
a. The codes describe the misconceptions students held and

were grouped according to the important and difficult
concepts identified by the Delphi experts.

b. Additional codes addressed other concepts from the full
Delphi expert list have been specifically targeted in
further interviews during summer and fall 2009.

4. RESULTS
Four themes emerged from the students’ misconceptions (see
Table 1). Themes 1 and 4 are highly language independent and
cover general misunderstandings. Theme 2 involves a number of
misconceptions all related to an inability to properly understand
the process of while loop functioning. Though not truly language
independent, this theme and its misconceptions are applicable
across several commonly used contemporary and historic
languages. Finally, Theme 3 is a basic lack of understanding of
the most fundamental aspects of Object-Oriented Programming.

For the purpose of building a CI, misconceptions are the key data,
as they are used to create authentic distracter questions on the
instrument. In this paper, we focus on three of the six
misconceptions within Theme 1: “Semantics to semantics,”
(MMR1), “Primitive no default,” (PVR1) and “Uninstantiated
memory allocation” (MMR4) (see Table 2). Both of the Delphi
process concepts these misconceptions fall under (MMR, PVR)
were highly ranked overall for importance and difficulty. Of the
ten concepts addressed in this set of interviews (see Section 3),
these two concepts were ranked highest by the Delphi experts for
difficulty.

The first misconception, “Semantics to semantics,” (MMR1)
occurred when the student inappropriately assumed details about
the relationship and operation of code samples, although such
information was neither given nor implied. This misconception is
language independent although every language will manifest the
misconception differently. For example, when examining a list of
Java variable definitions and declarations whose inter-
relationships are unstated (see Appendix: Problem 1), Student2
explains: “And then have the names of the songs in here, which –
but this would be stored in library, I'm assuming, or in the library
class. I don't know how they're linked together exactly.”
In another example, with a different problem (see Appendix:
Problem 2b), Student3 makes incorrect assumptions about
connections between variables to the extent that the student makes
a mistake concerning the types of the variables. As a result, the
student places Objects of different types in an array whose type
matches none of them: “And so because there’s two arrays, cheese
and meats, uh, all those turkey and ham and roast beef are gonna
be sorted into the meats array.”

In a third example, Student8 completely and repeatedly ignores a
variable, because it does not fit with her/his assumptions of how
these variables must relate. In a lengthy discussion of the
supposed relationships between the variables (see Appendix:
Problem 2a), the sole reference (verbally or written) to
“sauceType” was the following statement at the very start of the
problem discussion: “Usually all the variables go to describing the
Object, but I don’t think it would describe a sauce.”

It should not be surprising that students bring their own
assumptions to problems. The Educational Psychology literature
has solidly established this basic function of human cognition
(e.g. [21]). However, we found it surprising where these
assumptions led in terms of confusion between syntax and
semantics. Even when an assumption based confusion led to
clearly contradictory beliefs and conclusions, the students still
could not recognize that their assumptions caused a problem. In
one example, a student realized that the syntax did not fit his/her
semantic assumptions and, instead of questioning those
assumptions, he/she assumed that the syntax must be logically
incorrect. Fortunately, this problematic cognitive behavior (for the
purposes of learning programming) has also been discussed in the
psychological literature and we should be able to draw upon that

Table 1. Themes Emerging From Student Misconceptions
T1: Students misunderstand the relationship between language elements and underlying memory usage.
T2: Students misunderstand the process of while loop operation.
T3: Students lack a basic understanding of the Object concept.
T4: Students cannot trace code linearly.

Table 2. Misconceptions About the Relationship Between Language Elements and Underlying Memory Usage

MMR1 Semantics to semantics Student applies real-world semantic understanding to variable declarations.
MMR2 All Objects same size Student thinks all Objects are allocated the same amount of memory regardless of

definition and instantiation.
MMR3 Instantiated no memory allocation Student thinks no memory is allocated for an instantiated Object.
MMR4 Uninstantiated memory allocation Student thinks memory is allocated for an uninstantiated Object.
MMR5 Off by 1 array construction Student thinks an array's construction goes from 0 to length, inclusive.
PVR1 Primitive no default Student thinks primitive types have no default value.
PVR2 Primitives don't have memory Student thinks primitives without a value have no memory allocated.

109

field’s expertise and resources to customize solutions for
computing education.

The second misconception, “Primitive no default,” (PVR1) relates
to lists of instance variables. This misconception is related to
OOP and is a Java specific misconception. Student3 discusses two
boolean variables without assigned values (see Appendix:
Problem 2b) and states: “I don't think any value is being created
for them because there's no assignment there. You know, it's just
being declared as a variable.” Student5 similarly discusses an
integer which is not assigned a value (see Appendix: Problem 2a):
“And then int is empty too and it’s just creating space to later
store an integer.”

The third misconception, “Uninstantiated memory allocation,”
(MMR4) reveals itself when students think that memory is
allocated for Objects which have been declared, but not
instantiated. This misconception is also related to OOP. For
example, Student5 explains how the computer handles memory
for the uninstantiated Object “turkey” (see Appendix: Problem
2a): “it’s just going to be this blank turkey because we’re not
setting it to be anything but we’re creating like free space to the
mater [sic] later on declare it.”

In another example, involving a similar problem, Student2
discusses the memory allocated for the uninstantiated Object
“artist” (see Appendix: Problem 1): “I'm thinking it goes to
wherever artist is defined and looks at that class. And I feel like
the class would set aside memory.

5. DISCUSSION
We found both unsurprising and surprising results in these
interview data. The primary unsurprising, but welcome, result is
that the misconceptions we uncovered confirmed the Delphi
experts’ choice of concepts as difficult for CS1 students.

Two surprising outcomes relate specifically to student
misunderstandings. First, the breadth of misconceptions about
memory models was unexpected. Memory models are very
difficult, but we did not expect such a high number and variety of
misconceptions. This finding has an important implication for
pedagogy. There are likely to be a diversity of strategies to
address memory model misconceptions, without any one quick or
universally applicable fix. This challenge is particularly apparent
regarding the misconception about students applying semantic
assumptions to syntax (MMR1). It will take creative thinking by
each instructor, as well as further research, in order to determine
the most effective way to leverage these results.

The second surprising outcome relates to Theme 3, not otherwise
discussed in this paper: a dearth of even basic conception of an
Object. Some students had not formulated misconceptions about
Objects, as they had no conceptions at all. During the interviews,
they either froze, admitted with some embarrassment to having no
idea what an Object was, even when prompted in several ways, or
simply changed the subject. This extreme difficulty is being
further investigated and results will be reported in a future
publication. Meanwhile, one important implication of a lack of
knowledge about Objects is that perhaps, within the context of
particular student populations, instructors can take a step back and
re-think how to introduce the concept of Objects, and focus
explicitly on what they consider most critical about Objects in
their particular incarnation of CS1.

6. FUTURE WORK
Our findings are representative of our participant population.
However, many of the misconceptions we found are generally
believed to be universal, but play out differently in different
languages, and as such will need to be dealt with in the inventory.
As we move forward in developing the inventory, we will further
address issues of language dependence. We are currently
evaluating options to address this concern. We will also need to
address issues of OOP. OOP was an important category of
concern to the Delphi experts, and thus must be included.
However, we also want to make the inventory as flexible as
possible, because at some point in time OOP may no longer be the
dominant paradigm. The tension between these competing needs
may be our most challenging task.

In following good grounded theory based protocols we have
already used the data gathered so far to inform our next steps.
First, we have completed a set of interviews conducted in
Summer, 2009 that address the remaining Delphi expert concepts
as well as the “overlap concepts”. We also conducted interviews
in the Fall, focusing on concepts which we determined needed
additional investigation. Additional interviews are currently
taking place at a partner institution to broaden the demographic of
student subjects. Next, we will build and test the inventory. Pilot
tests will take place at multiple institutions with diverse
populations and multiple languages. Many of the original Delphi
experts have expressed interest in taking part in initial field tests.
Pilot inventory test results will provide feedback about how to
improve the inventory questions so that the instrument will be
useful to the broadest population and demographic possible.

7. CONCLUSION
We have presented initial results describing three important
misconceptions held by CS1 students, along with four broad
themes encompassing a larger group of misconceptions. The
misconceptions detailed in this paper explore memory model
representation and default value assignment of primitive values.
These data provide immediately useful information for CS1
instructors to help them understand their students'
misconceptions. Finally, these results will be merged with
additional data being gathered, and used in the development and
validation of a CI for Programming Fundamentals.

8. ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
under Grants DUE-0618589, DUE-0618598, DUE-0943318, and
CAREER CCR-03047260. The opinions, findings, and
conclusions do not necessarily reflect the views of the National
Science Foundation or the authors’ institutions.

9. APPENDIX
Problem 1. You are setting up a database of information about all
the songs you own. Each song has certain information associated
with it. Diagram (or use pseudo-code) how this information would
be stored in memory:

Library library = new Library();
SongList[] songList = new SongList[3];
Genre genre;
Artist artist;
Title title;
Album album;

110

int trackNumber = 2;
int year = 1961;
int rating = 5;

Problem 2a. You are setting up a database of information about
sandwich ingredients. There are a number of information items
associated with your database. Diagram (or use pseudo-code) how
this information would be stored in memory:

Cheese[] cheeses = new Cheese[4];
Meat[] meats = new Meat[2];
Turkey turkey;
Ham ham;
RoastBeef roastBeef;
boolean lettuce = true;
boolean tomato = true;
SauceType sauceType = new SauceType();
int numMeat;
int numCheese;

Problem 2b was identical to 2a except for the following two
declarations:

boolean lettuce;
boolean tomato;

10. REFERENCES
[1] Almstrum, V. L., Henderson, P. B., Harvey, V., Heeren, C.,

Marion, W., Riedesel, C., Soh, L., and Tew, A. E. 2006.
Concept inventories in computer science for the topic
discrete mathematics. In ACM SIGCSE Bulletin, 38, 4 (Dec.
2006), 132-145.

[2] Bayman, P. and Mayer, R. E. 1983. A diagnosis of beginning
programmers' misconceptions of BASIC programming
statements. Commun. ACM 26, 9 (Sep. 1983), 677-679.

[3] Bonar, J. and Soloway, E. 1985. Preprogramming
knowledge: a major source of misconceptions in novice
programmers. Hum.-Comput. Interact. 1, 2 (Jun. 1985), 133-
161.

[4] Bowen, C. W. 1994. Think-Aloud Methods in Chemistry
Education. In Journal of Chemical Education. 71, 3 (Mar.
1994), 184-190.

[5] Confrey, J. 1990. A review of the research on student
conceptions in mathematics, science, and programming.
Review of Research in Education, 16, 3 (1990), 3-56.

[6] Fleury, A. E. 1991. Parameter passing: the rules the students
construct. In Proceedings of the Twenty-Second SIGCSE
Technical Symposium on Computer Science Education (San
Antonio, Texas, United States, March 07 - 08, 1991).

[7] Goldman, K., Gross, P., Heeren, C., Herman, G.,
Kaczmarczyk, L., Loui, M. C. and Zilles, C. 2008.
Identifying important and difficult concepts in introductory
computing courses using a Delphi process. In Proceedings of
the Thirty-Ninth SIGCSE Technical Symposium on Computer
Science Education (Portland, OR, United States, March 12-
15, 2008).

[8] Herman, G. L., Kaczmarczyk, L., Loui, M. C., and Zilles, C.
2008. Proof by incomplete enumeration and other logical
misconceptions. In Proceedings of the Fourth International
Workshop on Computing Education Research (Sydney,
Australia, Sep. 06 - 07, 2008).

[9] Herman, G. L., Loui, M. C., and Zilles, C., Creating the
Digital Logic Concept Inventory. In Proceedings of the
Forty-First ACM Technical Symposium on Computer
Science Education, Milwaukee, WI, March 10-13, 2010.

[10] Hestenes, D., Wells, M., and Swackhamer, G. 1992. Force
concept inventory. The Physics Teacher, 30 (Mar. 1992),
141-158.

[11] Holland, S., Griffiths, R., and Woodman, M. 1997. Avoiding
Object misconceptions. In Proceedings of the Twenty-Eighth
SIGCSE Technical Symposium on Computer Science
Education (San Jose, California, United States, February 27 -
March 01, 1997).

[12] Kolikant, Y. B-D. and Mussai, M. 2008. “So my program
doesn't run!” Definition, origins, and practical expressions of
students' (mis)conceptions of correctness, Computer Science
Education, 18, 2 (Jun. 2008), 135-151.

[13] Kvale, S. 1996. Interviews: An Introduction to Qualitative
Research Inquiry. Sage Publications, Thousand Oaks, CA.

[14] Ma, L., Ferguson, J., Roper, M., and Wood, M. 2007.
Investigating the viability of mental models held by novice
programmers. In Proceedings of the Thirty-Eighth SIGCSE
Technical Symposium on Computer Science Education
(Covington, Kentucky, United States, March 07 - 11, 2007).
SIGCSE '07.

[15] Madison, A. and Gifford, J. 2003. Modular programming:
Novice misconceptions. Journal of Research on Technology
in Education, 34, 3 (Spr. 2003), 217-229.

[16] Mayer, R. E. 1981. The Psychology of How Novices Learn
Computer Programming. ACM Comput. Surv. 13, 1 (Mar.
1981), 121-141.

[17] Miles, M.B. and Huberman, A.M. 1994. Qualitative Data
Analysis: An Expanded Sourcebook, 2nd Edition. Sage
Publications, Thousand Oaks, CA.

[18] Pea, R. D. 1986. Language-independent conceptual “bugs”
in novice programming. Journal of Educational Computing
Research, 2, 1 (1986), 25-36.

[19] Sanders, K. and Thomas, L. 2007. Checklists for grading
Object-oriented CS1 programs: concepts and
misconceptions. In Proceedings of the Twelfth Annual
Conference on Innovation and Technology in Computer
Science Education (Dundee, Scotland, June 25 - 27, 2007).

[20] Spohrer, J. C. and Soloway, E. 1986. Alternatives to
construct-based programming misconceptions. In
Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Boston, MA, United States, April 13
- 17, 1986).

[21] Stanovich, K. E. 2003. The Fundamental Computational
Biases of Human Cognition: Heuristics That (Sometimes)
Impair Decision Making and Problem Solving. In The
Psychology of Problem Solving, J. E. Davidson and R. J.
Sternberg, Eds. Cambridge University Press, Cambridge,
UK, 291-342.

[22] Strauss, A. and Corbin, J. 1998. Basics of Qualitative
Research. Sage Publications, Thousand Oaks, CA

111

Undergraduate Women in Computer Science:
Experience, Motivation and Culture

Allan Fisher, Jane Margolis and Faye Miller
School of Computer Science, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213

Abstract

For the past year, we have been studying the experiences of undergraduate women studying computer science at Carnegie
Mellon University, with a specific eye toward understanding the influences and processes whereby they attach themselves to or
detach themselves from the field. This report, midway through the two-year project, recaps the goals and methods of the study,
reports on our progress and preliminary conclusions, and sketches our plans for the final year and the future beyond this
particular project.

1. Background

The goal of our project has been to understand women's attachment and detachment from computer science, and to find ways for
CMU to intervene at the undergraduate level in favor of gender equity in computer science. Women are underrepresented in
computer science at CMU and in other higher education institutions across the nation: for example, they receive 18% of the
bachelor's degrees in CS at the top 12 research departments [1]. Since computers and information technology play an
increasingly pervasive role in education and careers, this underrepresentation is critical, not only for the women whose potential
may go unrealized, but also for a society increasing dependent on the technology.

Clearly part of the low representation of women in CS at the undergraduate level is inherited from the secondary school level,
where girls do not participate in computer science courses and related activities as much as boys [7]. There is a gap between
male and female enrollment in high school computer science courses that increases as students progress from introductory to
more advanced CS courses [8]. Females have been only about 12% of AP computer science AB exam takers over the past five
years (College Board, private communication). As we learn more about the different ways that students attach to and detach from
computer science, we will apply the lessons learned to the design of pedagogical, administrative, and social methods aimed at
both attracting and retaining women students.

This paper reports our findings in the initial phase of our research. This part of the research is based on gathering students'
accounts of their histories and thoughts about computer science. We have been studying students' perceptions of attachment and
detachment from the discipline. In order to conceive of the most effective interventions, we are working to understand the relative
importance of the factors that have the greatest bearing on the low numbers of women in the field.

2. Ethnographic Methodology

We have been using ethnographic methods [4,5], with interviews being the primary source of our data. We regard the students as
expert witnesses in their own world, and try to ask the questions that will enable them to best elucidate their thoughts about
computer science. It is then up to us to note significant themes and patterns. We are not testing hypotheses, but rather are
generating testable hypotheses about students' attachment and detachment.

Participants

The participants of our study are:

1. CMU Computer Science male (29) and female (20) students (first-year to senior);
2. Two selected samples of female non-CS majors: 9 students doing well (receiving an A at midterm) in a non-majors'

programming class.

Analyzing the Data

Every interview is tape recorded. The interviews are transcribed and the transcripts are entered into HyperResearch, a
commercial computer program developed to assist in qualitative data analysis. After coding the interviews for events and themes,
the coder writes what we call a "narrative summary." This is our attempt to keep the participants story as whole as possible, to
avoid "context stripping." We have worked very hard negotiating the tension between presenting our data as full portraits and the
almost necessary "fracturing" of the data into discrete elements so that we can detect patterns across groups and categories (see
[4, p. 63]).

Reliability

We are aware of the risk of compromised data analysis and we are continually asking ourselves how can we get the most
accurate and detailed picture of the situation.

We have three main defenses against drawing biased or unwarranted conclusions. First, we are refining the coding scheme to a
fine level of detail, which tends to decrease the subjectivity of the classification of elements of students' accounts. Second, the
cross-disciplinary makeup of our research team helps to expose implicit preconceptions. Finally, we will be holding regular focus
groups this year to continually return to the participants, and other groups of CS students, to double-check what we are hearing
and hypothesizing.

3. Initial Findings

In this section we briefly discuss our "working hypotheses" from the first year of interviews.

Gender Gap in Previous Experience

During the interviews with first-year CS students, many of the women speak of feeling less prepared than the other students in
the department. To obtain more insight into this issue, we distributed a survey questionnaire to all first-year CS students regarding
their experience and knowledge of computers prior to attending CMU. Our study confirms a significant gap between male and
female prior experience, noted in other studies as well [2,3]. It is notable that 40% of the male respondents from the CMU first-
year class passed the AP exam, thereby placing out of the CMU introductory level computing class. None of the first-year women
placed out. Also, we found a correlation between females students' sense of feeling less prepared and their actual experience
with computers prior to CMU.

Gap Between Perceived and Actual Ability

Despite this difference in how students evaluate themselves, there is a gap between women's perceived ability and their actual
performance. Despite their modest estimates of their own standing in the class, three out of the seven first-year students made
the Dean's List (which turned out to be about the top third of the class) in the first semester, and six of the seven women made a
B or A average for the first year.

Hacking Not a Prerequisite for Success

Many of the female students have entered the department with very little computer experience, yet they do well. Their stories
counter the suggestion that prior computing experience is necessary to do well in undergraduate computer science. Their stories
of success raise some challenges to widely-held beliefs of who does computer science. Their success is not without costs, though
-- they often go through a very difficult period of adjustment, facing tremendous self-doubt and feelings of isolation and
inadequacy. Nonetheless, it is clear that one need not have been a high school hacker to major in CS. Our findings have become
an important talking point for prospective students, and may have contributed to the improved recruitment of women students for
the coming year.

Confidence Gap Narrows

Based on the gender gap in previous computing experience, it is not surprising to find a difference in the confidence levels of
male and female first-year students. Female first year students report themselves as being significantly lower in computing
experience, preparedness for their computer science courses, and ability to master the course material than the males. In
contrast, in response to a first semester survey, the males' stated confidence is quite high. For example, 53% of the men rated
themselves as highly prepared for their classes, whereas none of the women rated themselves as highly prepared. 50% of the
men reported themselves as having an expert level of at least one programming language prior to CMU, whereas none of the
women reported themselves as having an expert level of knowledge of a language. We have heard in the interviews how this
gender gap in confidence affects the women students' experiences in the program. In our first-year interviews female students
commonly refer to how much more other students (males) know, and question whether they belong.

What we were surprised to hear from the upperclass women was that confidence seems to rise, rather than fall, as women
progress through their junior and senior years. This is contrary to the findings of studies from other disciplines. Junior and senior
women talked to us about a leveling process, which occurs as the course material gets more difficult for everyone by the junior
year, and as women's hard work and discipline has paid off. We asked first-year students and upperclass students to rate their
feeling of preparedness for their CS classes compared to classmates, and their ability to master the course material, for their first
semester and their current semester. For both groups, those students who felt least prepared at the beginning experienced the
greatest increase in feelings of preparedness over time. Women rate themselves lowest in initial feelings of preparedness, and
show the most increase (1.1 rise in preparedness for first-year women on a scale of 1-5, versus a .3 rise for men.)

If we continue to hear this, as we interview more students, this finding could be very important for increasing women's confidence
about themselves in this field.

Attachment Begins at Home

Research on women in the sciences has highlighted the importance of family influence on students' exposure to and interest in
majoring in the sciences [9]. Our interviews certainly confirm this. Most of the students, male and female, were first introduced to
computing by a parent who either works on computers themselves or brings one home for the child. School is almost incidental,
except in a few cases. Male students, with only a few exceptions, reported owning their own computer, or having the family
computer in their room, by an early age. Only one of the seven first-year women reported having her own computer prior to CMU.

While females are also influenced by a parent at home, we hear a difference between the females and males that we believe to
be important and deserving of further inquiry. Females' stories are filled with descriptions of watching their dad work at the
computer, or having their older brother show them how he programs the machine. From there, their interest is sparked, and some
do become active in computing activities in high school, but their participation is much more qualified than the males'. There
seems to be less tinkering, less unguided exploration and less obsession. Indeed, even the female who was president of her high
school computer club, says in reference to computing, "I never really got totally into it."

Males: Computers as the Ultimate Toy

Several males describe epiphany moments from their earliest (before 10) computing experiences, sometimes receiving the sense
that this is what they wanted to do for the rest of their lives. They become consumed early on and their computer activities
become a consistent part of their identity. One student answers the question "Can you tell me how you got interested in
computers?" this way:

Well, I think it was sometime in middle school, sixth grade about then, my dad borrowed a computer from a friend, it was an old
black and white Macintosh, just totally self contained one unit thing, and I remember just playing with that all the time and trying to
figure stuff on it. And that got me really hooked ... I was really getting into figuring things out on computers and I just knew that
that was going to be something for me.

Other male students respond likewise:

I started playing around with computers before I can remember...I think I supposedly knew how to type on a machine before I
could write....

I liked to play games a lot when I was growing up on them. They just seemed to be really integral to how I like to express my
creativity....

But I like just what a computer can do. I don't know why it interests me so much...They say kids like to take things apart and see
what makes them go and I do that a lot....

My mother brought me a computer back in Alabama when I was four years old and I guess ever since it has been me playing
video games, thinking "WOW, how did they do that"?

The male narratives are filled with descriptions of the computer itself as an alluring object. The computer is the ultimate toy and
they get "hooked."

Females: Computing with a Purpose

The female stories have a very different sound: When the first-year females talk about their personal history with computers, their
narratives are not filled with long and detailed accounts of all the different activities they have done at the computer. They do not
describe years of unguided exploration. They contextualize their interest in computer science, instead, within a larger purpose:
what they can do in the world. One female student who talks about her "lust" for technology, continues to explain that she is "not
interested in the nitty-gritty of computers", but sees herself as "exploiting" the department --- getting all the computer knowledge
she can, to then be able to apply it to puppetry and art. The women we are interviewing describe computers as a tool to use
within a broader context of education, medicine, communication, art and music.

What I would really like to do is teach...would like to minor in education and how computers affect education and what is the most
efficient way to use them in education.

I really wanted to get people together...how can this change the world as we see it today. You can get people together. You can
provide information.

I think with all this newest technology there is so much we can do with it to connect it with the science field, and that's kind of what
I want to do(study diseases). Like use all this technology and use it to solve the problems of science we have, the mysteries."

You tend to think of computer scientists as people that sit in front of computers all day...doing netscaping, that sort of thing. I can't
stand doing that. I have to be actually making something, something productive, or I get depressed.

This is not to say that women totally lack interest in the computing process itself. Female students describe computing as
enjoyable, interesting and "hard but fun." Two of the women who had previous work experience in computing lab environments
describe the experience as "awesome." But, most of the women talk more about the uses of computing. We have also heard
older males, as they progress in the program, articulate more interest in the larger context of computing.

Computer Science: An Acquired Taste

Rather than epiphany moments as described by the males, females stories seem to reflect a process over time, in which their
interest in computers evolves. Due to the variety of obstacles girls/women find in their computing path, it may take women more
time to be drawn to computers (Sheila Tobias, personal communication). Developing an interest over time was expressed by one
of the first year female students:

My dad's always been into computers... We always had a computer in the house. It's always been like, we always like tinker
around with them, play games, stuff like that. I never really got totally, like totally into it. I never started programming. But, I don't
know, I just kind of found that I really enjoyed working with computers over time... So now I am here and I get it more than I would
have. And I'm pretty good at like fooling around with something and just kind of getting it to work, I guess you can say.

Similarly, an international woman senior student, who had no computing experience at all prior to coming to CMU, described her
experience with computing as "an acquired taste." As she progressed in the program she became more comfortable in the
department and with the course work and actually developed a new-found interest in the field. This certainly speaks against the
notion that women are cognitively ill-equipped to do CS. Rather, it bolsters the notion of cultural artifacts that stand in between
women and computing.

Decision to Major in CS: Love and Pragmatism

Reasons for becoming interested in computer science and selecting it as a major differ among the men, American women, and
international women in our sample. We asked the students both why they became involved in computing, and why they chose CS
as a major; the most salient reasons cited are plotted below as percentage citing a reason for majoring vs. percentage citing it as
a reason for attachment.

As Figure 1 shows, all of the men interviewed cited an intrinsic interest in computers and computing as a reason for becoming
involved in the field. While they cited a number of other factors (notably games, classes and the influence of peers) for their initial
attachment, interest alone was the primary driver of their decisions to major in CS.

Figure 1: Majoring vs. Attachment (Men)

American women, while also citing intrinsic interest as a motivator, rank class experiences and their sense of the promise of the
field and its future high among reasons for majoring. It is interesting to note that while they reported encouragement from family
and teachers as reasons for attachment, these do not rank high in terms of reasons for majoring. Also notable is that few cite
games or peer interactions as reasons for attachment.

Perhaps the most interesting finding in our interviews concerns the international women. Among this group, pragmatic factors
(employability, the image of CS as a pragmatic choice among math, science and engineering-related fields) dominate both
attachment and choice of major. While all of the US students cited interest as a reason for attachment, fewer than 60% of the
international students did so. This stands in sharp contrast to Seymour's findings that interest above any other factor is critically
important in retaining women in the sciences [9]. Whether this contrast is due to cultural differences and/or to the circumstances
under which international women find themselves studying in the US bears closer study.

Figure 2: Majoring vs. Attachment (US Women)

Figure 3: Majoring vs. Attachment (International Women)

Perceptions of the Field

A large fraction of the CS experience in the first year is programming. Upper class students comment on how they realized in
their Junior and Senior years that Computer Science is more than programming, and they often express relief at that. First- year
students who have had the benefit of hearing from upper class students, and who have regular contact with faculty first-year
advisors, also seem to know that programming is not the be-all and end-all. But, outside of the School of CS, we hear students'
beliefs that computer science is programming.

Students from the Information Science major, who share much interest in computers and computing, state their disinterest in
Computer Science largely based on the emphasis on programming in the CS curriculum. Women students whom we interviewed
in the non-major introductory programming course (from a variety of fields) describe their fear, dislike, intense anxiety, disinterest
in programming when they began the class. Most of these students express an awakening in the course to the fact that
programming can actually be interesting and satisfying to understand. But most are not motivated to continue to a deeper level,
and they associate the CS major with programming.

Geek Mythology: Lore about Being in CS

Interviews with all students are filled with local lore and impressions about CS and about the CMU department in particular. The
beliefs we hear over and over again are that:

computer science students have a single-minded focus and talk incessantly about computing
CS is the department with the really smart students
the work load is extremely heavy (with special emphasis on the amount of time that it takes to complete programming
assignments)

The stereotype is clearly the myopic, narrowly focused, young male who sits at his computer all day. This is how one of the
female CS students describes this type of student and how they affect her:

I ask them, "How can you sit in front of a computer for eight straight hours and then when you go home you start to play on
computer games again?" And then they say, "oh, because it's fun." I say, "don't you spend time with your friends?", and they say,
"no, I just like sitting in my room and just play these games." So I just felt really different because, I don't know, I don't know... if
you want to major in computer science, what you are supposed to do? Like just play on the computer all day? I don't, so I felt
different.

It is important to note that most of the CS students (both male and female) we interviewed feel they do not match the stereotype:
their interests are varied (including sports, theater, poetry) and not isolated to computer science. The gap between reality and
stereotype of the qualities needed to be a successful CS major and who CS majors are is important to analyze, because the
stereotypes work against gender equity. If we can dispel the perceptions of most CS students being immature males who burrow
into their computers for all forms of satisfaction, there is hope for progress.

Climate Issues

From our interviews we hear a tension between some women who believe gender to be a non-issue, and other women who feel
disrespected in the department because of their gender. The former group feel experienced at handling male environments, feel
at ease, and believe attention to gender is unnecessary. The latter group of women describe concerns and/or unhappiness about
the male environment and/or the way they are treated. For instance, one first-year woman describes unwanted romantic attention
when she is trying to complete her assignments in the computer lab; another describes her alienation from the culture of CS,
which she attributes to testosterone run amok.

Peers

It is not unusual for a woman student, within one semester, to report differing impressions: that most of her male peers are willing
to help, and that male students make her feel so stupid when she asks them a question. Several of the women talk about the
male students knowing so much more than they do.

We asked every student for their views on why there are so few women in computer science. As we understand their comments
at this point, we have found some of the male interviews to be particularly provocative. Many of them have concluded, from their
school and family experience, that women just aren't interested in the subject the way males are. Most of the males describe
school classes with only a very few women, and families where mothers are "unable to plug in the machine" etc. One male
student added that he doesn't think he has had a computer conversation with a girl in his life. We wonder how this socializing
history may influence male students' attitudes towards women students and faculty in the program.

Faculty and Teaching

While one upperclass student who had transferred out of the department reported negative experiences with an unsupportive and
unhelpful professor, most of the female students either have felt supported by the faculty, or have not voiced any complaints. It is
not clear to us whether the disparity between this finding and the commonplace occurrence of behavior discouraging to female
students in other studies is due to a favorable environment at CMU, failure of the students to notice those behaviors, or the
peculiar effects of especially low ratios of women in classes. We will need to carry out more classroom observations and focus
group discussions to clarify this point.

4. Conclusions and Next Steps

As we work forward from these observations toward a program of interventions, the three sets of issues we will be working to
elucidate are those surrounding individual and cultural conceptions of computer science, those involving pedagogy, and those
involving institutional culture. In all cases, we will be working to sort the essential features of computer science from the

accidental (and perhaps harmful), and to understand how perceptions and misperceptions are formed and influence students'
decisions. We will be asking how we can improve both the reality of the computer science program and its culture, and the
accuracy with which they are perceived by computer science students, other students and prospective students.

A key question that pervades students' accounts of their relationships with computing is their understanding of the nature of the
field, in both its intellectual and social aspects. Considering that a wide range of conceptions of computer science exists among
faculty, what about the nature of the field gets translated to existing and potential female and male students? Among the issues
that seem to deter women from pursuing computer science is the conception that it is narrowly focused on programming and
other technical issues, and that people who enter CS are forced (or choose) to be narrowly focused themselves. Even students
within CS carry this stereotype of others, while denying it applies to them. In our ongoing study, we will work to elucidate these
issues, and to develop ways of communicating the "big picture" earlier and more accurately to first-year and prospective students.

Part of this effort will be to sharpen our picture of the CS education process and ways in which it could be improved. If women
prefer to learn about the computer in a purposeful context (i.e. "programming for a purpose, not just to program"), does the
curriculum respond? Are assignments more in line with what seems to be young male desires, such as focusing predominantly on
the machine? Although the department has made improvements, it is arguably still true that the early curriculum (here and
nationwide) fails to paint a complete picture of the field's possibilities [3,6]. We are also aware of the possibilities of different
pedagogical approaches to programming [10]. One question we are analyzing is whether females and males differ in their
cognitive preferences in programming.

Another issue we plan to address is the prevailing conception of gender in CS among the student body. The only significant
"chilly climate" issue raised in our interviews concerns the attitudes of fellow students. This is a delicate issue, posing substantial
risk of backlash against clumsy consciousness-raising efforts. In seeking effective means of shifting the prevailing culture, we will
be asking students about the roots of their assumptions about women and computer science, and about experiences that have
changed or might change them.

Acknowledgment

We gratefully acknowledge the support of the Alfred P. Sloan Foundation.

Bibliography

1. Andrews, Gregory R. (1996). "1995 CRA Taulbee Survey: New enrollment in Ph.D. programs drops," Computing Research
News, March, pp. 6-9.

2. Kersteen, Z., Linn, M., Clancy, M., & Hardyck, C. (1988). "Previous Experience and the Learning of Computer
Programming: The Computer Helps Those Who Help Themselves." Journal of Educational Computing Research, 4(3): 321-
333.

3. Martin, C. Dianne, ed. (1992). In Search of Gender-Free Paradigms for Computer Science Education. ISTE. Eugene, OR.
4. Maxwell, Joseph A. (1996). Qualitative Research Design: An Interactive Approach. Sage Publications, Thousand Oaks, CA.
5. Miles, Matthew, and Huberman, Michael. (1994). Qualitative Data Analysis, 2nd edition. Sage Publications, Thousand

Oaks, CA.
6. Rosser, Sue V. (1995). Teaching the Majority. Teachers College Press, New York.
7. Sanders, Jo. (1995). "Girls and Technology: Villain Wanted". in Teaching the Majority, Sue V. Rosser, ed., Teachers

College Press, pp. 147-159.
8. Schofield, Janet Ward. (1995). Computers and Classroom Culture. Cambridge University Press, New York.
9. Seymour, Elaine and Nancy M. Hewitt. (1994) Talking About Leaving. Factors Contributing to High Attrition Rates Among

Science, Mathematics & Engineering Undergraduate Majors: Final Report to the Alfred P. Sloan Foundation on an
Ethnographic Inquiry at Seven Institutions. University of Colorado. Boulder.

10. Turkle, Sherry and Seymour Papert. (1990). "Epistemological Pluralism: Styles and Voices within the Computer Culture." in
Signs: Journal of Women in Culture and Society. 16(1), 128-157.

Improving the CS1 Experience with Pair Programming

Nachiappan Nagappan1, Laurie Williams1, Miriam Ferzli2, Eric Wiebe2, Kai
Yang1, Carol Miller1, Suzanne Balik1
1Department of Computer Science

2Department of Math, Science and Technology Education
North Carolina State University, Raleigh, NC 27695

{nnagapp, lawilli3, mgferzli, wiebe, kyang, miller, spbalik}@unity.ncsu.edu

Abstract

Pair programming is a practice in which two programmers
work collaboratively at one computer, on the same design,
algorithm, or code. Prior research indicates that pair
programmers produce higher quality code in essentially half
the time taken by solo programmers. An experiment was run
to assess the efficacy of pair programming in an introductory
Computer Science course. Student pair programmers were
more self-sufficient, generally perform better on projects and
exams, and were more likely to complete the class with a
grade of C or better than their solo counterparts. Results
indicate that pair programming creates a laboratory
environment conducive to more advanced, active learning
than traditional labs; students and lab instructors report labs
to be more productive and less frustrating.

Categories & Subject Descriptors
K.3 [Computers & Education]: Computer &
information science Education- Computer Science
Education.

General Terms
Management, Human Factors

Keywords
Pair programming, collaborative environment, Computer
Science education.

1 Introduction
In industry, software developers generally spend 30% of
their time working alone, 50% of their time working with
one other person, and 20% of their time working with two or
more people. [3] However, most often in an academic
environment, programmers must learn to program alone, and
collaboration is considered cheating. Unfortunately, this time
spent working alone is inconsistent with a student’s future

Permission to make digital or hand copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, require prior specific permission and/or a fee.
SIGCSE’03, February 19-23, 2003, Reno, Nevada, USA.
Copyright 2003 ACM 1-58113-648-X/03/0002…$5.00.

professional life in which collaboration is both encouraged
and required. In addition, studies show that cooperative and
collaborative pedagogies are beneficial for students [6, 7].
In pair programming one person, called the driver, is
responsible for typing at the computer or documenting a
design. The other partner, called the navigator, observes the
work of the driver, looking for defects in the work of the
driver and is an ever-ready brainstorming partner. Research
results [2, 8, 11] indicate that pair programmers produce
higher quality code in about half the time when compared
with solo programmers. These research results are based on
experiments held at the University of Utah in a senior-level
Software Engineering course. The focus of that research was
the affordability of the practice of pair programming and the
ability of the practice to yield higher quality code. However,
the researchers observed educational benefits for the student
pair programmers. These benefits included superior results
on graded assignments, increased satisfaction/reduced
frustration from the students, increased confidence from the
students on their project results, and reduced workload of the
teaching staff.
These observations inspired further research directed at the
use of pair programming in educating Computer Science
students. Educators at the University of California-Santa
Cruz [1, 5] and North Carolina State University [9, 10] have
reported on the use of pair programming in introductory
undergraduate programming courses. Experiments
specifically designed to assess the efficacy of pair
programming in an introductory Computer Science
classroom found that pair programming improved retention
rates and performance on programming assignments.

This paper details the results of our experiment carried out at
North Carolina State University. We provide results from a
larger sample size than previously reported. The remainder
of this paper is organized as follows: Section 2 provides a
description of the experiment; Section 3 discusses qualitative
findings on pair programming in the CS1 laboratory; Section
4 shares the results of our quantitative findings; Section 5
highlights a few challenges we faced during this experiment
and Section 6, summarizes our findings and discusses our
future work.

2 Experiment
In the 2001-2 academic year, an experiment was conducted
in the CS1 course at North Carolina State University. The
course was taught with two 50-minute lectures and one three-
hour lab each week. Students attended labs in groups of 24

with others in their own lecture section. The lab period was
run as a closed lab where students were given a weekly
assignment to complete during the allotted time. Lab
assignments are “completion” assignments whereby students
fill in the body of methods in a skeleton of the program
prepared by the instructor. Student grades are based on two
midterm exams, one final exam, lab assignments, and
programming projects that are completed outside of the
closed lab. The programming projects are generative, that is,
the students start the project from scratch without any
structure imposed by the instructor. The course is a service
course and is therefore taken by many students throughout
the university. Most students are from the College of
Engineering and are either freshmen or sophomores.
However, students of all undergraduate and graduate levels
may take the course.
The Fall 2001 experiment was run in two sections of the
course; the same instructor taught both sections.
Additionally, the midterm exams and the final exam were
identical in both sections. One section had traditional, solo
programming labs. In the other section, students were
required to complete their lab assignments utilizing the pair
programming practice. When students enrolled for the class,
they had no knowledge of the experiment or if their section
would have paired or solo labs. In the pair programming
labs, students were randomly assigned partners based on a
web-based computer program; pair assignments were not
based on student preferences. Students worked with the
same partner for two to three weeks. If a student’s partner
did not show up for a particular lab, after 10 minutes, the
student was assigned to another partner. If there were an odd
number of students, three students worked together; no one
worked alone. Closed labs are excellent for controlled use
of pair programming [1]. The instructor or teaching assistant
can ensure that people are, indeed, working in pairs at one
computer. He or she can also monitor that the roles of driver
and navigator are rotated periodically.
Our course also includes programming projects that require
work outside of the closed lab. We gave the students in both
sections the option of working alone or in pairs for these
projects. Only students who attained a score of 70% or better
on the exams could opt to pair. (We felt those who did not
attain a score of 70% or above should not work with a pair
on the project lest they rely too heavily on their partner to
produce the project.) Most students, who were eligible to
pair, chose to pair program on projects. However, the
instructors now feel that the 70% eligibility might be unfair
to the students, and this practice has been discontinued as of
Fall 2002.
Using this Fall 2001 research design, we also completed a
study on a larger scale in the Spring 2002 semester. In the
fall, 112 students were in the solo section and 87 were in the
paired section, whereas in the spring 156 students worked
solo and 346 students worked in pairs. Our study was
specifically aimed at the effects of pair programming on
beginning students. Therefore, we analyzed the results of the
freshman and sophomores only. We also only analyzed
students who took the course for a grade, concluding that
students who audited the class or took it for credit only were
not as motivated to excel as other students. This reduced our
sample size to N=69 in the solo section and N=44 in the

paired section for the Fall semester, and N=102 for the solo
section and N=280 in the paired section for the Spring
semester.
In our experiment (spanning both Fall and Spring semesters),
we examined the following five hypotheses:
H1. A higher percentage of students who have participated

in pair programming in CS1 will succeed in completing
the class with a grade of C or better when compared
with students who have worked solo in CS1.

H2. Students’ participation in pair-programming in CS1 will
lead to better performance (higher scores) on the
examinations when compared with students who have
worked solo in CS1. (Examinations are completed solo
by all students)

H3. Students’ participation in pair-programming in CS1 will
lead to better performance on course projects (higher
project scores) in that class when compared with
students who have worked solo in CS1.

H4. Students’ participation in pair-programming will lead to
a reduced workload in terms of grading, questions
answered, and teaching effort for the course staff when
compared with the teaching staff for students who
worked solo in CS1.

H5. Students in paired labs will have a positive attitude
towards collaborative programming settings when
compared with students who have worked solo in CS1.

3 Qualitative Results
Each semester, we observed and codified many paired and
solo lab sections. In addition, two focus groups were held,
one with a randomly selected group of students and the other
with a randomly selected group of lab instructors (LIs). (See
focus group technical report [4].) Analysis of qualitative
data from lab observations and focus groups strongly support
pair programming in the CS1 laboratory. The next sections
detail student and lab instructor perspectives on pair
programming.

3.1 Students
Solo lab sessions were quiet and appeared to be very
frustrating for the students. Frequently, a student needed to
wait 10-30 minutes to ask a question, often a fairly simple
one. During this waiting period or “down time”, students
were often very unproductive (i.e. “stuck”). Alternately,
paired labs were vocal and interactive. Students in paired
labs engaged in extensive discussion throughout the entire
lab session, and students seemed to help each other resolve
questions. Most often, each pair could piece together the
knowledge they needed to figure out questions and remain
productive. Because most pairs were self-sufficient, lab
instructors had time to get around to more students than in
the unpaired sections. Paired students who needed help,
found it easy to get help from the LI, and had little “down
time.” [9]
During the focus group discussion, students stressed the
advantages of pairing. Primarily, students brought up the
benefits of having their questions answered immediately by
their partner rather than having to wait for an LI. Having

someone there while working on problems also seemed to
help them pick up on minor errors and to focus on
understanding conceptual knowledge.
Since communication skills and collaboration are important
components of paired learning, students recognized that the
paired labs made them work on these skills. Students
realized that the paired format mimics real world settings
where people are often randomly matched to work and
collaborate on programming projects.
3.2 Lab Instructors
In solo lab sections, the LIs were often overwhelmed with
questions. LIs often spent a minimum of five minutes and a
maximum of 20 minutes with each student. LIs remained
busy answering basic questions for the duration of the lab
sessions. In paired labs, instructors spent more time
discussing advanced issues with students, rather than
answering basic questions.[9] For example, students in
paired labs would ask the LIs how to improve their
algorithm, or how to apply it to another scenario. Questions
from students in solo labs were mostly about fixing syntax
errors or getting compilation errors clarified
In the focus groups, the LIs all agreed that implementing the
paired protocol gave them flexibility and time to give
students equal opportunities for questions, discussions, and
other support. As a result of having more time for
meaningful exchanges with students, LIs found their jobs
more satisfying and rewarding when teaching in paired labs.
An added benefit is that LIs of paired labs graded half the
number of projects and labs as compared to the LIs of solo
labs.
LIs noted that students in paired labs displayed more active
participation in their learning than students in the unpaired
labs. Paired student questions displayed higher order
thinking such as application, synthesis, and evaluation. LIs
observed that paired students’ efforts and willingness to learn
seemed to surpass their “traditional” counterparts.
(H4) We hypothesized that students’ participation in pair
programming will lead to a reduced workload for course
staff. Our qualitative findings support this claim.
3.3 Common Concern
In both focus groups, the students and LIs noted the
importance of having “compatible” partners. Two
suggestions for constructing compatible pairings were to
have them be based on personality type and/or on skill level.
We address our research plans in this area in Section 5.

4 Quantitative Findings
In the prior section, we shared our qualitative findings that
pairing creates a laboratory environment conducive to more
advanced, active learning; both students and lab instructors
reported this lab time to be more productive and less
frustrating. In this section, we discuss quantitative results
from data comparing paired to solo students.
 4.1 Success Rate/Retention
First, we examined the percentage of students who succeeded
in the class by completing the course with a grade of C or
better. Historically, beginning Computer Science classes

have poor success rates. Despite the good intentions and
diligent work of computer science educators, students find
introductory computer science courses very dauntingso
daunting that typically one-quarter of the students drop out of
the classes and many others perform poorly (by receiving a
grade of D or F).
Using the above criteria, we combined results for the Fall
2001 and Spring 2002 semesters as shown in Table 1. Our
results indicate that pairing helped the non-CS majors but did
not cause any significant improvement among the CS majors.
A Chi-Square test was run on the success rates and it showed
the solo and paired sections to be statistically independent
(χ2(1)=0.0043, p < 0.98). These results are consistent with a
similar study at the University of California UC-Santa Cruz
that reported 92% of their paired class and 76% of their solo
class completed the course [5].

Table 1: Success Rate
Semester Paired (%) Solo (%)

Non-CS Majors 66.4 (N=274) 55.9 (N=145)
CS Majors 83.0 (N=50) 84.0 (N=26)

(H1) We hypothesized that pair programming would increase
the success rate of the students who used the practice
(measured by taking students with a grade of C or higher).
Our results validated this claim for non-CS majors.
4.2 Performance on Examinations
In the fall semester, students in the paired section performed
better on the two-midterm examinations and the final
examination, as shown in Table 2. We removed 0 scores
from our analysis, making these results based on scores of
students who attempted to take the exam.

Table 2: Examination Scores Fall 2001
Exam Paired

Mean
Paired
Std Dev

Solo
Mean

Solo
Std Dev

Midterm 1 78.7 11.8 73.4 13.8
Midterm 2 65.8 24.2 49.5 27.2
Final 74.1 16.5 67.2 18.4

As stated earlier, students chose their class section without
knowledge of the experiment or pair programming. We had
hoped that their random enrollment in the class would yield
equivalent sample groups based on their SAT-Math scores.
However, the students in the paired group had a mean SAT-
Math score of 662.1 while the solo group had a mean score
of 625.4. When using SAT-Math as a covariate, an
ANCOVA test does not show any significant difference
between sections with regards to any of the exams. Based on
these results, we cannot conclude that pair programming in
the laboratory helped students perform better on exams.
Correspondingly, in the Spring semester we obtained exam
results that did not yield any statistically significant
improvement in test results by pair programmers. Educators
can be concerned that pairs will learn less because they had
the ability to lean on their partner. We have certainly not
found this to be the case.

(H2) We hypothesized that Students’ participation in pair-
programming in CS1 will lead to better performance
measured by higher scores on the examinations. Our results
have not validated this claim to a statistically significant
level.
4.3 Performance on Programming Projects
In the fall semester, students in the paired section performed
better on the first two of three programming projects, as
shown in Table 3.

 Table 3: Programming Projects-Fall 2001
Exam Paired

Mean
Paired
Std Dev

Solo
Mean

Solo
Std Dev

Project 1 94.6 5.3 78.2 26.5
Project 2 86.3 19.7 68.7 33.7
Project 3 73.7 27.1 74.4 29.0

To validate the statistical significance of these results, we ran
an ANCOVA test on the data (again examining possible
correlation between project scores and the student’s SAT-
Math scores). The ANCOVA demonstrated a statistically
significant improvement in performance of the pairs on
Project 1 (F(1,94)=8.12, p<0.0054) and Project 2
(F(1,78)=4.52, p<0.0367). However, this analysis did not
demonstrate improved performance on Project 3. Perhaps,
this is because by Project 3 the lower performing students
had dropped in the solo section but were still working in the
paired section. In the Spring 2002 semester, we saw no
statistically significant difference in project scores by either
group, though the paired students often performed
marginally better.
(H3) We hypothesized that students who pair programmed
would have higher project scores compared with the solo
programmers. From our results, paired and solo
programmers have comparable scores in the projects,
though in some cases paired programmers have marginally
higher scores than the solo students.
4.4 Results Commentary
We wish to discuss two factors that may influence these
results on both the examinations and the projects. First, the
implementation of pairing in the lab portion of the course
may have enough of a positive influence to keep students
from dropping out of the course, or it could have boosted
their grades enough to allow them to pass the course. As a
result, the poorer performing students may have negatively
influenced the calculation results of the paired section.
These poorer performing students dropped the class or did
not take exams in the solo section, removing themselves
from the calculation pool. Researchers at UC-Santa Cruz
have also made this same speculation, [5] because their
paired section also did not achieve statistically significant
higher test scores than the unpaired section. Additionally,
only approximately 40% of the exam content required
program code to be written in the answers. The rest of the
exams were short answer and multiple choices. Quite
feasibly, pair programming might not help improve students’
answers to short-answer and multiple-choice questions.

4.5 Attitude
Students in paired labs will have a positive attitude toward
working in collaborative software development
environments. A survey was conducted among the students
who worked in pairs throughout the spring semester. Eighty
percent of the students in the paired section indicated that
they were neutral (19.8%) or positive (59.9%) about pairing
in the future.
(H5) We hypothesized that students in paired labs will have a
positive attitude towards working in collaborative software
development environments. Our survey results supported
these claims.

5. Challenges
As with all learning methodologies there were certain
challenges we encountered during this experiment over the
fall and spring semesters.

• In a small percentage of cases, the random pairing led to
incompatible partners, which led to conflicts during
working. We hope to address this in our future work by
matching people according to personality profile and/or
skill type.

• The LIs have to monitor that one partner does not
dominate the pair or that one partner is burdened with
the entire workload. Student peer evaluations often to
not reflect such difficulties. However, to certain degree,
students to not want to “turn in” their partner. As a
result, the LIs must also be observant of the chemistry
and working of the pair in the closed labs

6. Conclusions and Future Work
Our study provides strong results of the following findings:

• Pair programming helps in the retention of more
students in the introductory computer science stream.

• Students in paired labs have a more positive attitude
toward working in collaborative environments; this
should ultimately help the student in his/her
professional life.

• Pair programming in an academic environment reduces
the burden on the LI because the pairs helped each
other, enabling the LI to perform more efficiently.

• From the results we have obtained regarding the tests
and the projects, we can conclude significantly that pair
programming among students is in no way a deterrent
to student performance.

We plan to continue the experiment in the 2002-3 academic
year with some modifications. Personality profiles like the
Myer-Briggs personality tests will be used to determine a
student’s personality. We will experiment with successful
matching patterns. This will help to provide us with more
insight as to how personality profile matters in pair
programming. We will also gather results for minority and
female students to obtain meaningful results for these
important groups.

7. Acknowledgements
The National Science Foundation Grant DUE CCLI 0088178
provided funding for the research in this pair programming
experiment.

References
[1] Bevan, J., Werner, L., and McDowell, C., "Guidelines

for the User of Pair Programming in a Freshman
Programming Class," presented at Conference on
Software Engineering Education and Training,
Kentucky, 2002.

[2] Cockburn, A. and Williams, L., "The Costs and Benefits
of Pair Programming," in Extreme Programming
Examined, G. Succi and M. Marchesi, Eds. Boston,
MA: Addison Wesley, 2001, pp. 223-248.

[3] DeMarco, T. and Lister, T., Peopleware. New York:
Dorset House Publishers, 1977.

[4] Ferzli, M., Wiebe, E., and Williams, L., "Paired
Programming Project: Focus Groups with Teaching
Assistants and Students," North Carolina State
University, Raleigh, NC CSC TR-2002-16, 2002.

[5] McDowell, C., Werner, L., Bullock, H., and Fernald, J.,
"The Effect of Pair Programming on Performance in an

Introductory Programming Course," presented at ACM
Special Interest Group of Computer Science Educators,
Kentucky, 2002.

[6] Slavin, R., Using Student Team Learning. Boston: The
Center for Social Organization of Schools, The Johns
Hopkins University, 1980.

[7] Slavin, R., Cooperative Learning: Theory, Research
and Practice. New Jersey: Prentice Hall, 1990.

[8] Williams, L., Kessler, R., Cunningham, W., and
Jeffries, R., "Strengthening the Case for Pair-
Programming," in IEEE Software, vol. 17, 2000, pp. 19-
25.

[9] Williams, L., Wiebe, E., Yang, K., Ferzli, M., and
Miller, C., "In Support of Pair Programming in the
Introductory Computer Science Course," Computer
Science Education, vol. September, 2002.

[10] Williams, L., Yang, K., Wiebe, E., Ferzli, M., and
Miller, C., "Pair Programming in an Introductory
Computer Science Course: Initial Results and
Recommendations," presented at OOPSLA Educator's
Symposium, Seattle, WA, 2002.

[11] Williams, L. A., "The Collaborative Software Process
PhD Dissertation," in Department of Computer Science.
Salt Lake City, UT: University of Utah, 2000.

A Multi-institutional Study of Peer Instruction in
Introductory Computing

Leo Porter1, Dennis Bouvier2, Quintin Cutts3, Scott Grissom4, Cynthia Lee5,

Robert McCartney6, Daniel Zingaro7, and Beth Simon1

1University of California, San Diego
2Southern Illinois University Edwardsville

3University of Glasgow
4Grand Valley State University

5Stanford University
6University of Connecticut

7University of Toronto Mississauga

ABSTRACT

Peer Instruction (PI) is a student-centric pedagogy in which
students move from the role of passive listeners to active
participants in the classroom. Over the past five years, there
have been a number of research articles regarding the value of
PI in computer science. The present work adds to this body
of knowledge by examining outcomes from seven introductory
programming instructors: three novices to PI and four with
a range of PI experience. Through common measurements
of student perceptions, we provide evidence that introduc-
tory computing instructors can successfully implement PI
in their classrooms. We find encouraging minimum (74%)
and average (92%) levels of success as measured through
student valuation of PI for their learning. This work also
documents and hypothesizes reasons for comparatively poor
survey results in one course, highlighting the importance of
the choice of grading policy (participation vs. correctness)
for new PI adopters.

1. INTRODUCTION
Peer Instruction (PI) has gained considerable traction

among computer science educators and there have been a
number of studies demonstrating its efficacy in a variety of
dimensions. Students value PI [5, 8, 10] and learn more in
PI classes compared to traditional lecture classes [11, 13].
PI is also associated with low failure rates [6] and increased
retention of majors [9].
The vast majority of PI studies in CS take the form of

evaluating a single instructor [5, 8, 10] or implementation at
a single institution [5, 6, 9]. As such, one concern is that the
reported PI results overrepresent those occasions where PI

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE ’16, March 02-05, 2016, Memphis, TN, USA

c© 2016 ACM. ISBN 978-1-4503-3685-7/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2839509.2844642

has proven successful. Given the current trend of increased PI
adoption, it is important to establish the kinds of outcomes
that can be expected across larger datasets and institution
types. In addition, it is important to begin studying the
ways in which new adopters adopt PI. To what extent is PI
adopted wholesale? How are the steps of PI altered to suit
the instructor or student demands?
This paper reports on a set of PI adoptions with a broad

range of class parameters and types of institutions. Only one
other paper has offered such a multi-institution view, but it
examined only small classes at private liberal-arts colleges [8].
In the present study, seven instructors and their students,
from multiple institutions of different types, were surveyed.
The instructors range from new adopters of PI to experienced
PI users. The level of success was not uniform across the
instructors.

Our key findings are:

• Consistent with previous studies, a supermajority of
students in all studied classes liked and would recom-
mend PI.

• Successful PI implementation requires that the instruc-
tor’s motivations for using PI are clear to students.

• The grading policy attached to in-class PI question
responses appears to have an effect on student engage-
ment and satisfaction.

2. RELATED WORK
PI is characterized by asking challenging, in-class concep-

tual questions of students. For each question, students indi-
vidually respond, discuss the question in small groups, and
respond again based on their new understanding [1]. These
questions should target common misconceptions and/or core
course concepts. To be most effective, PI requires other
supporting course changes. For example, many instructors
require additional preparation from students before class in
order to make best use of limited class time. This preparation
can consist of pre-lecture reading and associated quizzes [1,
14] or clicker quizzes at the start of class [14].

Interactive classrooms, including PI classrooms, have shown
significant increases in student learning in physics [4]. In

358

Table 1: Institution, course, and instructor characteristics. For major, (decl.) and (ant.) denote declared and anticipated,
respectively. N/A denotes data not available.

Identifier N-A N-B N-C E-D E-E E-F E-G

Institution R1 PUI PUI R1 R1 R1 PUI
Size Large Large Large Large Large Large Small
Public/Private Public Public Public Public Public Public Private
Course CS1.5 CS1 CS1 CS1 CS0 CS1 CS1
Language Java Java Java Python Alice Matlab Java
Times Taught this Course 6 10+ 10+ 10+ 2 1 0
Courses Taught using PI 0 0 0 0a 10 3 1
Students Enrolled at End of Course 64 30 36 151 87 98 19
Survey participants 62 29 13 65 87 92 15
Percentage of CS majors 34% (decl.) 50% 29% 70% 1% 6.4% 44%

59% (ant.) (decl.) (ant.) (ant.)
Freshman 3% 40% 36% >95% 34% 34% 37%
Sophomore 40% 27% 42% N/A 45% 16% 26%
Junior 37% 27% 13% N/A 14% 33% 22%
Senior 21% 6% 9% N/A 8% 17% 16%
Percentage of Students who Previously used Clickers 77% 28% 22% 3% N/A 31% 25%
Avg. # of PI Questions per class 7 7 6 5 5 4 5

Length of class (min) 75 50 75 60 80b 50 80
(D)eveloped or (A)dopted Questions D D D D D D A
a Instructor of course E-D had not taught a class using PI, but had been part of PI research and course development. As such,
that instructor is considered experienced in PI.

b 30 minutes each week was spent on a practice code-writing quiz.

CS, a number of studies have reported on the success of PI,
including improved student satisfaction [5, 8, 10], student
learning [7, 15], final exam grades [11, 13], failure rates [6],
and retention of majors [9].
The present work provides additional evidence that, for

both new and seasoned adopters of PI, students widely laud
the change to the course structure. As noted in earlier
research [10], it is not always the case that PI is adopted
following all recommended practices. The results of the
present work lead us to examine ways in which PI is adopted,
and we find suggestive evidence that student satisfaction
can be significantly impacted by grading clicker results on
correctness rather than participation.

3. METHOD
Each of the seven instructors in this study reported the

teaching of one introductory programming course. Four of
the instructors had experience with PI, either by having
taught a course in PI or by having participated significantly
in the development of a PI course. The other three instructors
were new to PI. We label our courses with two letters: N
(novice) or E (experienced) to indicate the instructor’s PI
experience, and a letter A-G to differentiate each course
(assigned, within N and E categories, by decreasing years of
teaching experience for the instructor). Course and instructor
characteristics are provided in Table 1.

A brief description of each course is provided below.
Course N-A: CS 1.5 - Object-Oriented Design and

Programming: This course concentrates on the object-
oriented paradigm, particularly encapsulation, inheritance,
and polymorphism. Programming assignments emphasize
graphics and event-driven interaction.

Course N-B: CS1 – Computer Science I: This course is
an introduction to programming and computer science whose
topics include: simple and structured data types, program
control structures, problem analysis, algorithm design, and
implementation using a high-level language (Java).
Course N-C CS1– Introduction to Computing I: This
Java course covers types/variables, assignment, conditions,
loops, classes/objects, files, and arrays.
Course E-D: CS1: This course is an introduction to proce-
dural programming in Python for CS majors covering basic
types, expressions, state, control structures, function defini-
tion and use, and lists.
Course E-E CS0 – Fluency in Information Technol-

ogy: This non-majors computing course is required for all
psychology majors and as a general education requirement
for a subset of university students (those within a specific
“college”). The goals of this “general education” course in
computing include computational thinking and communicat-
ing and collaborating about computational artifacts (in this
case Alice programs and Excel sheets).
Course E-F: CS1 – Introduction to Programming in

Matlab: This course is an introduction to MATLAB pro-
gramming for the Cognitive Science department and uses the
Media Computation approach [3]. Students study founda-
tional programming constructs such as data manipulation,
conditional statements, for-loops, while-loops, and various
types of vector and matrix indexing.
Course E-G: CS1 – Computer Science I: This course
is a required course for CS and Mathematics majors taught
using Media Computation [3]. Concepts include variables,
objects, methods, loops, conditionals, and class design.

359

Table 2: Student feedback on the value of PI. Percentages reflect student agreement. Agreement values under 80% are
highlighted.

Question/Identifier N-A N-B N-C E-D E-E E-F E-G

Thinking about clicker questions on my own, before discussing
with people around me, helped me learn the course material.

68% 86% 100% 94% 95% 95% 100%

Most of the time my group actually discusses the clicker question. 90% 93% 100% 88% 98% 97% 100%
The immediate feedback from clickers helped me focus on weak-
nesses in my understanding of the course material.

74% 96% 100% 95% 99% 91% 100%

Knowing the right answer is the only important part of the clicker
question.*

37% 14% 15% 12% 23% 17% 20%

Generally, by the time we finished with a question and discussion,
I felt pretty clear about it.

69% 90% 100% 94% 97% 84% 93%

Clickers helped me pay attention in this course compared to tradi-
tional lectures.

58% 93% 100% 95% 90% 90% 100%

Clickers with discussion is valuable for my learning. 74% 93% 100% 100% 94% 91% 93%
I recommend that other instructors use this approach (reading
quizzes, clickers, in-class discussion) in their courses.

71% 90% 100% 98% 93% 87% 100%

One instructor, experienced in teaching PI, is known by
all instructors and actively assisted the novice instructors in
weekly half-hour Skype meetings during their first PI term.
The instructors surveyed their students using a common
instrument, which enabled comparison of responses across
courses.

4. RESULTS
In student self-report surveys, we asked for views on the

value of the PI approach in supporting various aspects of the
learning experience and views on the instructor’s implemen-
tation of PI in the classroom.

4.1 Student Perception of the Value of PI
Students reported on their perception of the value of PI

(see Table 2). For all but one question (denoted with a *),
higher percentages are better. Responses below 80% positive
are highlighted. We note two trends in Table 2.
The first trend is that students overwhelmingly value PI.

They report that they pay better attention in class, believe
it helps them identify weaknesses earlier, and believe the
process helps them learn. As a result, the vast majority of
students (91% per class on average) recommend that more
instructors use PI in their courses. In two classes, 100%
of students would recommend that other instructors use
PI. These results demonstrate that across a wide range of
institutions and instructors, students both value PI and
desire that PI be used by more instructors.
The second trend is that the students in Course N-A

perceive PI considerably differently than students in other
courses. Compared to students in other courses, the students
in Course N-A recommend PI less often, felt discussion was
less valuable, and generally reported less value from the PI
process. Perhaps most striking is the large percentage (37%)
of students who believe the value of a clicker question is only
in having the correct answer. We will revisit this anomalous
result in the Discussion.

4.2 Student Perception of PI Implementation
Table 3 indicates student satisfaction with how PI was

implemented regarding difficulty and timing. To express

dissatisfaction, students could respond either “too long”/”too
difficult” or “too short”/“too easy.”
The majority of classes saw high degrees of satisfaction

with the PI implementation. Both Courses N-A and E-
F stand out as having lower levels of satisfaction with the
implementation, but recall that only Course N-A experienced
the overall lower value of PI.
Question Difficulty. In Course N-A, some students (23%)
felt that questions were too difficult. Only two other courses
had more than 4% of students who reported that questions
were too difficult: Course E-F with 14% and Course E-G
with 13%.

Question Time Allowed. In general, if students were
unsatisfied with the time allowed for the initial vote, then
they felt that they had too little time (notably in Courses N-A,
N-C, E-D, E-E, and E-G) rather than too much time. Course
N-A was again an outlier with 21% of students responding
that they had too little time relative to 7% who felt they
had too much time. Although instructors set the questions
(and drive the pace), it is critical for students to be given
time to think through the questions on their own. Question
design (e.g. word choice, clarity, answer options) can seriously
impact student time needed to read the question.

Discussion Time Allowed. An interesting trend appears
regarding time allowed for peer discussion. Of those students
who were not satisfied with the time allowed for peer discus-
sion in the courses of all four experienced instructors, more
students felt that too much time was allowed. A possible
reason for this is that experienced PI instructors are more
comfortable spending time on peer discussion, and may have
personal evidence suggesting the value of providing students
with more time to talk among themselves. For novice instruc-
tors, time circulating in the classroom or silently standing
up-front can be initially unnerving, and at the very least is
a change in their teaching style. However, results in Course
N-A more closely match those of courses taught by experi-
enced instructors in that unsatisfied students felt that too
much time was allowed. As can be observed from Figure 1,
this may be related to the comparatively fewer students in
Course N-A who report always discussing with their peers:
if some students are not discussing, then they are waiting for
class to move forward.

360

Table 3: Student feedback on the implementation of PI. Percentages reflect students responding “OK” or “About right”. Values
under 80% are highlighted.

Question/Identifier N-A N-B N-C E-D E-E E-F E-G

From the point of helping me learn, the content of clicker questions
was: (too hard, okay, too easy)

76% 83% 100% 88% 94% 78% 80%

In general, the instructor gave us enough time to read and understand
the questions before the first vote: (too short, about right, too long)

72% 89% 92% 81% 87% 78% 87%

The amount of time generally allowed for peer discussion was: (too
short, about right, too long)

89% 87% 92% 79% 86% 77% 73%

In general, the time allowed for class-wide discussion (after the group
vote) was: (too short, about right, too long)

70% 86% 100% 64% 81% 63% 93%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
I rarely discuss, I'm too shy

I rarely discuss, I don' t think I

get a lot out of it

I somet imes discuss, it depends

I always discuss with the group

around me, I don' t really learn,

but I st ay awake

I always discuss with the group

around me, it helps me learn

Figure 1: Student responses to the question: Which of the
following describes your discussion practices this term?

Class-wide Discussion Time Allowed. Regarding class-
wide discussions, unsatisfied students felt that they had too
much time in Courses N-A, E-D, E-E, and E-F. Course E-F
had the most students reporting that too much time was
spent on class-wide discussion (26% too much compared with
11% too little). This instructor had little experience with the
programming language used in the course; it is possible that
this caused a mismatch between where students struggled
and where the instructor anticipated struggles.

Student Behavior during Discussion. Figure 1 provides
the breakdown of student responses regarding their discus-
sion habits. For all but one course, the majority of students
reported valuing the discussion with their group as it helped
them learn. For all courses, only a small minority of students
either did not discuss because they did not value discussion
or because they were too shy.

Explanation of the Purpose of PI. Figure 2 provides the
breakdown of student responses regarding the explanation
from the instructor on why clickers were being used. For all
but Instructor N-A, more than 90% of students thought that
the instructor explained the use of clickers well or did so too
much. Instructor N-A had a considerably larger percentage
of students reporting that they were unclear why they were
using clickers. The other anomalous course result was Course
E-G, where 20% of students felt that the instructor explained
the use of clickers too much.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Yes, they explained it

too much

Yes, they explained it

well

Somewhat , but I was

st ill unclear why we

were doing it

Not at all

Figure 2: Student responses to the prompt: The professor
explained the value of using clickers in this class.

5. DISCUSSION

5.1 Value to Students and Instructors
Our results suggest that PI can be successfully adopted at

a variety of institutions in introductory computing courses.
At least 71% of students (avg. 91%) would recommend that
other instructors use this approach in their courses.

The seven instructors in this work all reported a dramatic
change in their usual classroom experience upon implement-
ing PI. These instructors varied in terms of reasons for adop-
tion, amount and type of adoption support, and teaching
experience. Instructors had varying comfort levels with the
courses and varying support for developing and implementing
clicker questions. In fact, some had no more to go on than a
notion of allowing students to “test” their knowledge. Some
read publications on its use, some reviewed clicker slides
prepared and used in computing courses, and some had the
opportunity to TA for or repeatedly observe an experienced
PI instructor. Independent of these background factors, all
instructors report that the next time they teach this class,
they will teach it with PI.

This said, one course (N-A) stands out as yielding poor
survey results compared to the other courses. We next reflect
on why this may be the case.

5.2 Exploring Course N-A Differences
Differences between N-A and the other courses can be seen

fairly uniformly in both the valuation and implementation

361

surveys. Through reflective discussion and our reading of PI
reports in other disciplines, we highlight two structural issues
for discussion. First, the instructor required correctness for
a portion of the PI grade (each question was worth 2 points:
1 for correctness and 1 for participation). Second, a notable
25% of the class felt that the instructor did not sufficiently
explain why clickers were being used. Together, we posit that
these two issues contributed to a very different classroom
culture regarding PI, as evidenced by the markedly different
student survey responses. In sum, students in Course N-A
(more than those at other institutions):

1. Felt that clicker questions were too hard
2. Felt that too little time was allotted to read and un-

derstand questions
3. Did not always discuss with their peers
4. Did not find value in hearing other students provide

explanations in class-wide discussion and,
5. Reported lesser perception of the value of PI for their

learning.

5.2.1 Grading on Correctness

We suspect that the change from grading on participa-
tion to grading on correctness fundamentally changes the
atmosphere of the course. Consider the first four points in
the above list. This kind of student affect — feelings that
questions are too hard and that discussion is not useful —
make sense if students perceive PI questions as “standard
quiz” questions rather than peer discussion questions. The
fact that Instructor N-A gave points for correctness, even
though he/she also gave points for participation, may have
factored into students perceiving questions as a test of some-
thing they should already know, rather than tools designed
to build their understanding.
There are two other concerns related to grading on cor-

rectness rather than participation. The first is that students
become concerned about arguing their interpretation of the
question, and this can disrupt the learning process. A focus
on learning is hampered when an incorrect answer in the
learning process itself has grade-based implications. The
second, related issue, is that questions cannot be too difficult
or will be viewed as unfair. This is problematic when the
recommended correctness range for the individual vote on PI
questions is 35-70% [1] and when there is evidence that stu-
dents benefit considerably more from difficult questions [15].
Instructors who both grade on correctness and recognize the
limits that this poses on difficulty may respond in-kind by
offering easier questions. This shying away from difficult
questions may explain why many students thought that PI
was not beneficial for their learning.

We can see evidence of students experiencing Course N-
A differently than the other courses through open-ended
student responses. For example, a student in Course N-A
reports:
In this lecture I am more focused on trying to guess the
answers to the questions than on internalizing and under-
standing the course content. In standard lectures I am focused
on taking clear and thorough notes and absorbing the mate-
rial.
–Student in Course N-A

A quote from a student in Course E-G may provide more
insight into the importance of the grading structure, based
on their report of clicker use in a different class:

I have another clicker course, this one is far better. In the
other course, every clicker question is graded. It feels too
much like the professor just wants to play game show host
and puts to [sic] much weight on the correct answers and not
the process of getting the answer. This is opposite for this
course. I feel like participation should just be graded.
–Student in Course E-G

Given this criticism of grading on correctness, it is essential
to examine Course E-E. Like Course N-A, Course E-E had a
correctness requirement, but it was differently implemented
in a manner that reinforced the role of clicker questions in
the learning process rather than the assessment process. In
Course E-E, students were graded on participation, but they
had to get at least 50% of all questions (including individual
and group responses) in each lecture period correct to get
those participation points. This approach was devised based
on experience in an earlier offering of the course, which
required only participation and where students were noted
answering randomly and engaging in unrelated activities in
the classroom. The instructor believed that a change in
policy was needed based on the fact that the course was
a required, non-majors course. Students generally did not
start the course with a great deal of enthusiasm, nor much
understanding of what value the course held for them. In
explaining the “half correct” policy, the instructor was able to
reiterate that clicker questions are for helping students engage
in developing expert analysis and argumentation skills. The
policy reinforced Instructor E-E’s primary course learning
goal: getting students to learn how computing people see
problems.
A student from Course E-E discusses this policy, noting

his/her need to prepare, but expressing satisfaction with the
awarding of discussion points:
This class was very different from my other classes as it
truly made me be on top of my game. I did like the grading
structure and how participation points were fair.
–Student in Course E-E

And some students did appear to get the message that
their engagement in reasoning about the question, not simply
getting points, was the goal.
[I]n [this course], discussion and proof of understanding is a
vital part of lecture. With clicker questions, as a student, I
was able to engage in thoughtful reasoning.
–Student in Course E-E

5.2.2 Explaining Pedagogical Change

It is critically important to explain (repeatedly) to students
any deviation from expected classroom norms. Students have
both experience with and expectations of college classroom
learning. They know what happens in a lecture and have
techniques that they expect to use in order to learn and
measure their progress toward success. From our collective
experience, we can report that students claim that they“have
to sit at the front of the class” in order to learn/stay awake,
want the instructor to “just explain it,” or complain that the
lack of lecture“forced me to learn it all myself.” PI completely
pulls the rug out from under the students by challenging
them to re-examine their established, comfortable, and often
perceived successful learning habits.

In a popular 2-page “Tips for Successful Clicker Use” sum-
mary, Douglas Duncan (Univ. of Colorado, Astronomy) lists
as his second tip: “You MUST MUST MUST explain to
students why you are using clickers. If you don’t, they often

362

assume your goal is to track them like Big Brother, and
force them to come to class. Students highly resent this.”
(emphasis original)[12]. Perhaps more tellingly, the first item
on his list of Practices that Lead to Failure is “1. Fail to
explain why you are using clickers.” [2]

In Course N-A, 74% of students report that their instructor
explained to the class why he/she was using clickers. How-
ever, the remaining 26% of students who felt that clickers
were not explained adequately (or at all) was the highest per-
centage among the courses. This emphasizes the importance
of explaining the value of PI not just once and in not just
one way. Moreover, for Course N-A, it is likely that students
were especially sensitive to this issue as most students had
previously taken an introductory course where the instructor
used clickers to take attendance. The presence of these kinds
of non-pedagogical uses of clickers only heightens the need
to explain the pedagogical goals of PI.

5.2.3 Other Factors

Note that, in addition to the two structural issues we have
highlighted, Course N-A also differs from other courses in
other ways. The course is a CS 1.5 course (not a CS1 course),
many of the students used clickers in the past, and the
proportion of freshmen is lower. There is little precedence for
these differences contributing to the outlying survey results
for this course, however. The earliest experience reports of
PI in CS report on successful adoption in CS1.5 courses [10],
and we know of no evidence suggesting that any novelty of
clickers wears off after a single course.

6. CONCLUSION
In this multi-institutional study of student satisfaction

in Peer Instruction (PI) courses, we find further evidence
of PI being highly valued by students. We also find that
one course yielded lower student satisfaction than the other
courses. We have argued that this lower satisfaction may have
stemmed from two adoption decisions: grading on correctness,
and not convincingly arguing to students why clickers and
PI are being used. We offer two conclusions here. First,
new adopters of PI can expect levels of success similar to
those reported by others with considerable PI teaching and
development experience. Second, it is important to evaluate
adoption decisions. A pedagogy so widely-applicable as PI
will inevitably engender debate over the particulars of day-
to-day implementation and interaction with students. We
encourage all PI instructors to reflect on and make explicit
the reasons undergirding their PI-based decisions so as to
maximize the value of PI for students.

7. ACKNOWLEDGEMENTS
Thank you to the reviewers for their helpful suggestions.

This work was supported in part by NSF grant 1140731.

8. REFERENCES
[1] C. H. Crouch and E. Mazur. Peer instruction: Ten

years of experience and results. American Journal of
Physics, 69, 2001.

[2] D. Duncan. Tips for Successful “Clicker” Use, 2008.
Accessed 8/24/15.

[3] M. Guzdial. A media computation course for
non-majors. ACM SIGCSE Bulletin, 35(3):104–108,
2003.

[4] R. R. Hake. Interactive-engagement vs. traditional
methods: A six-thousand-student survey of mechanics
test data for introductory physics courses. American
Journal of Physics, 66(1), 1998.

[5] C. B. Lee, S. Garcia, and L. Porter. Can peer
instruction be effective in upper-division computer
science courses? Transactions on Computing Education,
13(3):12:1–12:22, Aug. 2013.

[6] L. Porter, C. Bailey Lee, and B. Simon. Halving fail
rates using peer instruction: A study of four computer
science courses. In Proceeding of the 44th ACM
Technical Symposium on Computer Science Education,
2013.

[7] L. Porter, C. Bailey-Lee, B. Simon, and D. Zingaro.
Peer instruction: Do students really learn from peer
discussion in computing? In 7th Annual International
Computing Education Research Workshop, 2011.

[8] L. Porter, S. Garcia, J. Glick, A. Matusiewicz, and
C. Taylor. Peer instruction in computer science at
small liberal arts colleges. In Proceedings of the 18th
ACM Conference on Innovation and Technology in
Computer Science Education, 2013.

[9] L. Porter and B. Simon. Retaining nearly one-third
more majors with a trio of instructional best practices
in cs1. In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education, 2013.

[10] B. Simon, M. Kohanfars, J. Lee, K. Tamayo, and
Q. Cutts. Experience report: Peer instruction in
introductory computing. In Proceedings of the 41st
SIGCSE technical symposium on computer science
education, 2010.

[11] B. Simon, J. Parris, and J. Spacco. How we teach
impacts student learning: Peer instruction vs. lecture
in cs0. In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education, 2013.

[12] C. Wieman. Clicker Resource Guide. CWSEI - Carl
Wieman Science Education Initiative at the University
of British Columbia, 2015. Accessed 8/24/15.

[13] D. Zingaro. Peer instruction contributes to self-efficacy
in cs1. In Proceedings of the 45th ACM technical
symposium on Computer Science Education, pages
373–378, 2014.

[14] D. Zingaro, C. Bailey Lee, and L. Porter. Peer
instruction in computing: The role of reading quizzes.
In Proceeding of the 44th ACM Technical Symposium
on Computer Science Education, 2013.

[15] D. Zingaro and L. Porter. Peer instruction in
computing: The value of instructor intervention.
Computers & Education, 71:87–96, 2014.

363

Constructivism in Computer Science Education∗

[Journal of Computers in Mathematics and Science Teaching, in press.]

Mordechai Ben-Ari
Department of Science Teaching, Weizmann Institute of Science

Constructivism is a theory of learning which claims that students construct knowledge rather
than merely receive and store knowledge transmitted by the teacher. Constructivism has been
extremely influential in science and mathematics education, but much less so in computer sci-
ence education (CSE). This paper surveys constructivism in the context of CSE, and shows
how the theory can supply a theoretical basis for debating issues and evaluating proposals. An
analysis of constructivism in computer science education leads to two claims: (1) students do
not have an effective model of a computer, and (2) computers form an accessible ontological
reality. The conclusions from these claims are that: (1) models must be explicitly taught, (2)
models must be taught before abstractions, and (3) the seductive reality of the computer must
not be allowed to supplant construction of models.

Introduction

The dominant theory of learning today is called constructivism. This theory claims that knowledge is ac-
tively constructed by the student, not passively absorbed from textbooks and lectures. Since the construction
builds recursively on knowledge that the student already has, each student will construct an idiosyncratic
version of knowledge. To the extent that such knowledge is not identical with ‘standard’ scientific knowl-
edge, the student is said to have misconceptions. Teaching techniques derived from the theory of construc-
tivism are supposed to be more successful than traditional techniques, because they explicitly address the
inevitable process of knowledge construction.

Constructivism has been intensively studied by researchers of science education (Glynn, Yeany, & Britton,
1991) and mathematics education (Davis, Maher, & Noddings, 1990), to the extent that “radical construc-
tivism represents the state of the art in epistemological theories for mathematics and science education”
(Ernest, 1995, p. 475). However, there has been much less work on constructivism in computer science
education.

This article is logically divided into two parts. The first part—after a motivating example—is a survey of
the theory of constructivism and its application in science education. The second part of the paper contains
my analysis of the theory in the context of computer science and my attempts to apply the theory to issues
that are of current interest in CSE.

The discussion will be concentrated within the framework of novice programmers, but constructivist prin-
ciples are applicable at all levels of computer science education. Given the rapid rate of change of software

∗This article is an extended version of a paper was presented at the Twenty-Ninth SIGCSE Technical Symposium on Computer
Science Education, Atlanta, GA, 1998.

tools and applications, most software engineers in industry and business are continually engaged in ed-
ucation: not only in formal training sessions, but also—perhaps more importantly—in the development
of manuals, interfaces and help files. They will find the theory and its applications to be both thought-
provoking and relevant to their day-to-day work.

Computer science education (though not perhaps theoretical computer science) probably has more in com-
mon with engineering education than with science education. Readers with a background in engineering
are invited to speculate about the applicability of my analyses to their fields.

Previous work

There is a large literature on the psychology of programming (Hoc, Green, Samurçay, & Gilmore, 1990;
Soloway & Spohrer, 1989; Mayer, 1988); in particular, researchers interested in teaching programming to
children or to non-majors are often cognitive psychologists deeply immersed in Piagetian principles. Oc-
casionally, these researchers explicitly acknowledge their commitment to constructivist principles (diSessa,
Abelson, & Ploger, 1991, p. 12).

The literature on constructivism in computer science education is in no way comparable with the vast liter-
ature in mathematics and physics education. Even today, a search of ‘constructivism’ in the ACM Digital
Library returns only a handful of papers. While many computer science educators have been influenced
by constructivism, only recently has this been explicitly discussed in published work (Boyle, 1996; Brandt,
1997; Gray, Boyle, & Smith, 1998; Hadjerrouit, 1998).

Motivation

WYSIWYG (What You See Is What You Get) word processors are considered to be the epitome of user-
friendliness, because working with them is supposed to be exactly analogous to writing with pen or pencil
on a sheet of paper—a routine familiar to everyone who has graduated from elementary school. But con-
sider the following scenario. You type in the title of your term paper, select the text and request boldface
font. Unfortunately, as you begin to type the text of the paper, it is also displayed in boldface font! Your
pre-existing knowledge of a WYSIWYG word processor is almost certainly the metaphor of ordinary writ-
ing which consists of placing blobs of ink sequentially, but arbitrarily, on a sheet of paper (Figure 1).
This metaphor cannot furnish an explanation for the phenomenon you have encountered, so you become
frustrated, anxious and lose self-confidence.

(Place Figure 1 here.)

Of course, the explanation is trivial: the word processor is not storing blobs of ink, but symbols including
implicit symbols for font changes and for indicating the end of a line (Figure 2). (Here we are arbitrarily
using HTML notation: . . . to delimit boldface font and
 to indicate a line break.) If your
selection of the text fragment to change to boldface included an invisible(!) line break character, text typed
before the line break will be mysteriously displayed in boldface.

(Place Figure 2 here.)

The correct explanation of WYSIWYG should now be clear. What you get is: (1) a data structure for
storing text and formatting specifications, and (2) a set of operations on that data structure. What you see
is: (1) a rendering of the data structure on the screen, and (2) icons and menus to invoke the operations.
To learn how to use the word processor, you must: (1) create a mental model of the data structure and the
effect of each operation, and (2) attribute to each icon and menu item a meaning as an operation.

Constructivism claims each individual necessarily creates cognitive structures (models) when learning to
use the word processor. Furthermore, it claims that each individual will perform the construction differ-
ently, depending on his or her pre-existing knowledge, learning style and personality traits. Hopefully, the

2

construction is viable and the user can successfully use the word processor. Unfortunately, but perhaps
inevitably, many users construct non-viable models.

Teaching how to do a task can be successful initially, but eventually this knowledge will not be sufficient. As
the example tries to show, a student who only knows the procedure for changing from ordinary to boldface
font will be helpless when faced with this novel situation. The problem is caused not by stupidity on the
part of the novice, nor by incorrectly following the instructions, but by a misconception that is attributable
to the lack of a viable model that can explain the behavior of the word processor. The teacher must guide
the student in the construction of a viable model so that new situations can be interpreted in terms of the
model and correct responses formulated.

The word-processor example illustrates two aspects of learning that are characteristic of computer science.
First, since computer science deals with artifacts—programming languages and software, the creator of the
artifact employed a very detailed model and the learner must construct a similar, though not necessarily
identical, model. Second, knowledge is not open to social negotiation. Given that the word processor is an
extant artifact, you cannot argue that its method of using fonts is incorrect, discriminatory, demeaning, or
whatever. You may be able to choose another software package, or to request modifications in an existing
one, but meanwhile you must learn the existing reality. These two points will be extensively discussed in
the rest of the paper.

Epistemology and Constructivism

Educational paradigms

An educational paradigm is composed of four components (Ernest, 1995):

• An ontology which is a theory of existence.

• An epistemology which is a theory of knowledge, both of knowledge specific to an individual and of
shared human knowledge.

• A methodology for acquiring and validating knowledge.

• A pedagogy which is a theory of teaching.

(See Scheffler (1965) for an introduction to epistemology in the framework of education. Scheffler gives a
slightly different decomposition; in particular, he includes evaluation: deciding what knowledge is reliable
or important.)

We can use this framework to succinctly describe the classical educational paradigm:

• There is an ontological reality. Even though scientists accept the theories of relativity and quantum
mechanics, the Newtonian model of absolute space and time is the model we generally use for reality.
Furthermore, we function as Platonist mathematicians who hold that mathematics has an existence
independent of ourselves in which 2 + 2 = 4 is absolutely true.

• Epistemology is foundational. The truth is out there. We come to believe foundations—necessary
truths such as 2 + 2 = 4 and empirical sensory data—and then use valid forms of logical deduction
to expand the extent of true knowledge.

• The mind is a clean slate that can be filled with knowledge. Once you know enough facts and rules
of inference, you can create new knowledge by logical deduction. Carroll (1990) cites the legend of
the Nurnberg Funnel which can be used to ‘pour’ knowledge directly into the learner’s head.

3

• Listening to lectures and reading books are the primary means of knowledge transmission. Repetition
(drill and practice) will ensure that the knowledge is retained.

The constructivist paradigm is dramatically different:

• Ontological reality is either rejected or at best considered irrelevant. Since we can never truly ‘know’
anything, ontology cannot influence our educational paradigm.

• The epistemology of constructivism is nonfoundationalist and fallible. Absolute truth is unattainable,
so there is no foundation of truth on which to build. Even 2 + 2 = 4 is not a necessary truth (Barnes,
Bloor, & Henry, 1996, Chapter 7)! Knowledge is constructed by each individual and thus necessarily
fallible.

• Knowledge is acquired recursively: sensory data is combined with existing knowledge to create new
cognitive structures, which are in turn the basis for further construction. Knowledge is also cre-
ated cognitively by reflecting on existing knowledge. These concepts come from the seminal work
of Jean Piaget on the acquisition of knowledge by children; Piaget’s work was instrumental in the
development of constructivist theories.

• Passive learning will likely fail, because each student brings a different cognitive framework to the
classroom, and each will construct new knowledge in a different manner. Learning must be active:
the student must construct knowledge assisted by guidance from the teacher and feedback from other
students.

Constructivists believe that effective learning demands not just discovery of facts, but the construction of
viable mental models, and that teachers must actively guide the student in this effort. The task of the teacher
in the constructivist paradigm is significantly more difficult than in the classical one, because guidance must
be based on the understanding of each student’s currently existing cognitive structures.

Note that constructivism does not reject classical means of instruction such as lecturing and reading books.
As Mason notes, tongue-in-cheek: “Many educators espousing constructivism have been known to attend
lectures on constructivism, and even to have enjoyed them!” (Mason, 1994, p. 197). The problem is not the
lecture itself, but the assumption that ‘students know what the lecturer told them’. And Mason continues
with the suggestion that:

. . . when preparing a lecture, it is the fact of the imminent audience which enables the lecturer
to contact the content in fresh ways, in a state conductive to creativity and connection-finding.
(Mason, 1994, p. 198)

The concept that the student is trying to construct a model from what are, after all, only words is an ap-
pealing theoretical framework for an educator to use in assessing the success or failure of a lecture or other
teaching activity.

Conversely, constructivism in not co-extensive with ‘modern’ teaching methods such as group projects,
discovery learning and active tasks. These methods are favored by constructivists only if they are designed
to enable the students’ to build a viable mental model based on pre-existing knowledge. A hands-on activity
is useless if “their hands are on, but their heads are out” (Resnick, 1997, p.28).

Constructivism does have a lot in common with discovery or inquiry learning, where students are expected
to discover knowledge by themselves when placed in the appropriate situation. The benefits of discovery
are claimed to be:

4

. . . (1) the increase in intellectual potency, (2) the shift from extrinsic to intrinsic rewards, (3)
the learning of the heuristics of discovering, and (4) the aid to conserving memory. (Bruner,
1962, p. 83)

Note that Bruner (1962, p. 85) seems to agree with the constructivist viewpoint that unfettered discovery
is not helpful; he distinguishes between episodic empiricism, where the student accumulates unconnected
facts, and cumulative constructionism, where the discovery is organized.

Constructivists differ among themselves as to the relative importance ascribed to the individual learner and
to the group in constructing knowledge; these variants are known as radical and social constructivism,
respectively. A discussion of the variants of constructivism is beyond the scope of this article; see Ernest
(1995), Phillips (1995).

Constructivism in science education

Studies have shown that relatively few students reach an acceptable level of achievement in high-school
science and mathematics (Duit, 1991). Physics teachers seem to have the worst time, as students retain
a naive theory of physics despite intensive instruction in Newtonian mechanics (McCloskey, 1983). For
constructivists this is not surprising: everyone who has ever thrown a ball—that is, everyone—knows that
if you don’t keep applying force, an object in motion will eventually come to rest. Apparently, these ideas
are so entrenched that mere lectures and even experiments have a difficult time evicting them. At most, a
certain facility in manipulating formulas is achieved, but this fails as soon as the student attempts to solve a
problem that requires deep understanding.

The discrepancy between performance and understanding has also been noted in mathematics education:

The pupil’s fundamental problems with such ideas as negative or complex numbers tend to be
overlooked by the teacher mainly because the latter’s own implicit beliefs make him or her
oblivious to the possibility of somebody having a different ontological stance. . . . Another cir-
cumstance that helps in concealing ontological difficulties is the fact that a student may become
quite skilful in manipulating concepts even without reifying them. (Sfard, 1994, p. 268)

Physics educators are very receptive to constructivist principles. After all, physicists have undergone two
massive restructurings of their world within a short period of history: from Aristotelian physics to New-
tonian physics and then to Einsteinian physics. One cannot fault them for their reluctance to believe that
E = mc2 is an absolute truth. This openness is demonstrated by their willingness to attribute to the student
alternative frameworks rather than misconceptions.

In fact, von Glasersfeld, a pioneer of constructivism, would never say that something is wrong, because
he does not believe in the possibility of establishing universal truths. Instead, he says that concepts are
viable “if they prove adequate in the contexts in which they were created” (Glasersfeld, 1995, p. 7). This
is analogous to the use of the word in biology to denote an organism adapted to its environment. The
box metaphor for variables, and the communications model of reference parameters (discussed below) are
simply non-viable, because they cause the student to fail on programming tasks.

According to constructivism, a teacher cannot ignore the student’s existing knowledge; instead, he or she
must question the student in order to understand exactly what theory the student is currently using, and
only then attempt to guide the student to the ‘correct’ theory. It is perhaps axiomatic for a constructivist that
students have consistent theories—they just happen to be at variance with the (currently accepted) scientific
theory.

In most fields of science education including computer science, there is a large body of research that catalogs
misconceptions. A constructivist would view a misconception not as a mistake, but as a logical construction

5

based on a consistent, though non-standard theory, held by the student. Even Matthews—who is critical of
constructivism—is careful to point out that:

It is with respect to [contemporary physics] that [students] have misconceptions, it is not with
respect to the behavior of the natural world. (Matthews, 1994, p. 133)

Merely listing misconceptions is fruitless; a misconception must be accompanied by a description of the
underlying model that caused it, and by a suggestion how to base the construction of a viable model on the
existing one. Smith III, diSessa, and Roschelle (1993) go so far as to claim that misconceptions form the
prior knowledge that is essential to the construction of new knowledge!

It is important not to confuse the use of computers in science education with the study of computer science.
Computers are often seen as a tool to increase the constructive content of science education. For example,
Hatfield (1991) considers programming, or more generally algorithmics, as constructive. However, his
paper is essentially concerned with the contribution of algorithmics to mathematical education, rather than
to the constructivist aspects of computer science and programming. Similarly:

The role of the computer activities is . . . to provide an experiential basis for all other learning
modes. . . . the main point is spending the time and effort on the problem, not solving it. (Leron
& Dubinsky, 1995, pp. 231, 236)

In CSE, the computer is not just providing an experiential basis, nor is it creating a microworld (Harel &
Papert, 1991) in order to facilitate construction of knowledge in another domain. Instead, the students are
learning about computing itself—systems, algorithms, languages—and lessons from the use of computers
in other fields must be applied carefully.

Criticism of constructivism

Before continuing, we must stress that that there is strong opposition to constructivism. See the articles
by Matthews, Nola, Phillips and Ogborn in the Special Issue on Philosophy and Constructivism in Science
Education (January 1997) of the journal Science & Education. The articles are also available in Matthews
(1998).

One critic writes vehemently:

If radical constructivism is post-epistemological then it is also pre-Copernican and adopts views
of science similar to those of the Inquisition that interviewed Galileo. (Nola, 1997, p. 209)

The criticism is not so much of the constructivist theory of learning, but rather of extreme conclusions
drawn from constructivist epistemology:

The one-step argument from the psychological premise (1) “the mind is active in knowledge
acquisition,” to the epistemological conclusion (2) “we cannot know reality,” is endemic in
constructivist writing. (Matthews, 1994, p. 151)

Carried to the extreme, radical constructivism leads to solipsism, the philosophical claim that the world is
one’s own mental creation. In turn, this can lead to a rejection of ethics: if the world is my own creation,
why should I care what happens to others? Boyle (1996, Section 6.4) takes radical constructivists to task
for putting too much emphasis on an individual’s cognition at the expense of the biological (Piaget) and
social (Vygotsky) foundations upon which cognition must be based.

Carried to the extreme, social constructivism leads to a view of science as a merely political enterprise de-
veloped by entrenched elitist groups whose sole purpose is to ensure their own survival. From the fallibility

6

of scientific knowledge, one slips into relativism of truth, and from the sociology of scientific practice,
into demands for empowerment detached from any attempt at objective evaluation of scientific knowledge.
The extreme position is stated in the Edinburgh ‘strong programme’ on the sociology of knowledge (Bloor,
1991; Barnes et al., 1996); for criticism of this position see the articles in Matthews (1998).

The essential question is whether being a constructivist requires an epistemological committment to em-
piricism and idealism (or social idealism), as opposed to rationalism and realism that seem to come more
naturally to scientists. This delicate question can perhaps be avoided by taking the position of ‘pedagogical
constructivists’:

. . . who concentrate solely on pedagogy, and improved classroom practices, For [whom],
the details of epistemological psychology are unimportant, and not worth disputing about.
(Matthews, 1997, p. 8)

Empirical Results in CSE

There is no question that many students find the study of computer science extremely difficult, especially
at elementary levels. Before proceeding with a theoretical analysis, it is worthwhile to survey some results
that demonstrate the depth of the problem:

• Sleeman, Putnam, Baxter, and Kuspa (1989), Samurçay (1989) and Paz (1996) found that the concept
of variable is extremely difficult for students. For example, students believe that a variable could
simultaneously contain two values, and that after executing A := B, the variable B no longer contains
a value. The students have constructed a consistent model using the analogy of a box; the model just
happens to be non-viable for successful programming.

• Haberman and Ben-David Kolikant (unpublished research) administered a test designed to check the
basic concepts of assignment, read and write statements in Pascal. Given the statements:

read(A, B);

read(B);

write(A, B, B);

many students are not at all sure what happens when you read twice to the same variable or write
twice from the variable. They find it difficult to construct a model that identifies ‘who’ is doing the
reading and the writing. Similarly, Samurçay (1989) claims that students’ models of read(A) may
not include the assignment to the variable A.

• Madison (1995) used extensive interviews to elicit the internal model of parameters (especially ref-
erence parameters) held by students in an introductory course. The students were taught a commu-
nications model for parameters, rather than a model of the implementation (copy and reference).
The interviews demonstrated that students had constructed consistent, but non-viable, models of the
implementation of parameters.

• Similarly, Fleury (1991) discovered ‘student-constructed rules’ for Pascal parameters that were oc-
casionally successful, but non-viable in the general case.

• Deep misconceptions are not limited to elementary programming. Holland, Griffiths, and Wood-
man (1997) show the extent of the misconceptions held by students studying object-oriented pro-
gramming. They found inappropriate conflation of the concept of an object with other concepts like
variable, class and textual representation.

7

• The difficulties that students have in elementary computer science studies are often attributed to the
need to spend too much time on the syntax of low-level procedural languages like Pascal and C. But
similar phenomena are encountered even when teaching Prolog, a language whose syntax is about as
simple as can be imagined. Taylor (1990) studied novice Prolog programmers and found that students
constructed models that were not viable:

Prolog’s behavioral component is complex, and because its syntax is noncommittal, learn-
ers are tempted to hallucinate onto it whatever they think appropriate, rather than referring
to an interpretation based upon underlying domain knowledge. (Taylor, 1990, p. 308)

• Algorithm and software visualization is an extremely active field of CSE research. Yet Mulholland
(1997) found that software visualization in itself does not necessarily help the student unless the
visualization is based on a careful analysis of the pedagogic task.

Constructivism in the Context of CSE

To what extent is constructivism applicable to CSE? According to constructivism, students construct knowl-
edge by combining the experiential world with existing cognitive structures. I claim that the application of
constructivism to CSE must take into account two characteristics that do not appear in natural sciences:

• A (beginning) computer science student has no effective model of a computer.

• The computer forms an accessible ontological reality.

By effective model, I mean a cognitive structure that the student can use to make viable constructions of
knowledge based upon sensory experiences such as reading, listening to lectures and working with a com-
puter. By accessible ontological reality, I mean that a ‘correct’ answer is easily accessible, and moreover,
successful performance requires that a normative model of this reality must be constructed. The rest of this
section expands on these claims.

The important word is effective. The naive theory of physics held by students is clearly effective, as anyone
who has seen professional ball players can testify. They have intuitive models that enable them to implicitly
calculate the forces required to achieve superb accuracy when throwing or kicking a ball. Note that diSessa
(1988) does not believe that students’ intuitive concepts form a well-developed theory. Rather, he claims
that they have a large number of fragments called p-prims, short for phenomenological primitives. This
does not materially change the argument, as it is doubtful that intuitive knowledge about computers reaches
even the level of diSessa’s p-prims.

The empirical results cited earlier (especially the work by Taylor (1990)) show just as clearly that intuitive
models of computers are doomed to be non-viable. At most, the model is limited to the grossly anthropo-
morphic giant brain, hardly a useful metaphor when studying computer science. Pea (1986) gives the name
‘superbug’ to the idea that a ‘hidden mind’ within the programming language has intelligence.

At the novice level, the claim is supported by many studies:

Even if no effort is made to present a view of what is going on ‘inside’ the learners will form
their own. (du Boulay, 1989, p. 285)

. . . [we] attribute students’ fragile knowledge of programming in considerable part to a lack of
a mental model of the computer. . . . (Perkins, Schwartz, & Simmons, 1988, p. 162)

. . . even after a full semester of Pascal, students’ knowledge of the conceptual machine under-
lying Pascal can be very fuzzy. (Sleeman, Putnam, Baxter, & Kuspa, 1988, p. 251)

8

The lack of an effective, even if flawed, model of a computer can be a serious obstacle to teaching com-
puter science if we accept the claim by Smith III et al. (1993) that prior knowledge, even in the form of
misconceptions, is essential to the construction of new knowledge.

Turning now to the question of ontological reality, the computer science student is faced with immediate
and brutal feedback on conclusions drawn from his or her mental model. More graphically, alternative
frameworks cause bugs. Computer science is unlike school physics: the consequences of misconceptions
are exposed immediately, not when you get your homework back a week later. Similarly, from the so-
cial viewpoint, there is not much point negotiating models of the syntax or semantics of a programming
language.

This claim is based on the fact that almost all introductory computer science instruction includes pro-
gramming. If, as Dijkstra (1989) suggested, we taught programs as mathematical objects that need not be
executed on a computer, the normal constructivist principles would apply. We could talk about the viability
of denotational semantics, or the social processes responsible for the belief in the Church-Turing Thesis.
If the latter were ever superseded, we would experience a shock no less intense than that experienced by
physicists in the early twentieth-century. Clearly, since computer science is unlikely to become a subject
that is primarily theoretical, we must generate the motivation to examine our teaching practices without the
benefit of an epistemological shock.

The claim cuts at the heart of constructivist epistemology, which is nonfoundationalist and fallible. But the
pedagogy of constructivism is relatively independent of its epistemology. A physicist has no way of deter-
mining if E = mc2 is true, but few of us can resist the temptation to use a computer if it helps us construct
knowledge about a language or system. In fact, one of the ultimate tests of your prowess as a computer
programmer or software engineer comes when you have to deal with a bug in the underlying hardware,
operating system or language compiler. Since you have come to look upon them as ontological reality—as
arbiters of truth so to speak—it is extremely difficult to diagnose a problem in the implementation of your
mental model, as opposed to a problem in your personal task such as writing a program.

Application of Constructivism in CSE

Many phenomena of CSE can be explained by constructivism:

• The construction of even elementary computer science concepts is haphazard, leading to frustration
and to the perception that computer science is hard. This is due to the fact that—in the absence of a
viable pre-existing model—models must be self-constructed from the ground up.

• Autodidactic programming experience is not necessarily correlated with success in academic com-
puter science studies. These students, like most physics students, come with firmly held mental
models that are not viable for academic studies.

• Graphical user interfaces (GUI) are often touted as ‘intuitive’ and ‘user-friendly’, yet many people
earn a comfortable living giving courses to anxiety-ridden users. Icons, scroll bars and menus are
merely representations, and seeing a representation alone contributes very little to the construction of
a model.

• The reality feedback obtained by working on a computer can be discouraging to students who prefer
a more reflective or social style of learning.

In the rest of the paper, I will apply constructivist principles to specific issues in CSE. To avoid misun-
derstanding, it is important to clarify what is being claimed here. I am not (necessarily) saying that one

9

approach is superior to another; rather, I am saying that certain conclusions seem to follow directly from
constructivist principles, so that if you accept constructivism—which you are not required to do of course—
then you must be willing to analyze your teaching methods in light of these conclusions.

GUI and WYSIWYG Angst

Turkle and Papert (1990) wax poetic on the virtues of icons. Yet an icon is just a representation; it is useful
only to the extent that the user can construct a mental model of object being represented. The icon must
undergo semiosis: “the process whereby something comes to stand for something else, and thus acquires the
status of a sign” (Husén & Postlethwaite, 1994, p. 5411). Today’s software packages, both those intended
for the general public such as word processors and professional software such as integrated development
environments, display dozens of icons. From a semiotic point of view, it may be true that that an icon is
better than text, but from a constructivist point of view, what is important is the construction of the model
and not the sign that denotes it.

Icons are intuitive to the extent that the analogy between the object shown and the object represented is
perfect. But as Glynn (1991) shows, analogies are rarely, if ever, perfect, so one must not lose patience
with a novice who has yet to construct a viable model of the underlying machine. For example, consider
an icon for the paste operation. The icon is two steps removed from the operation. First, the icon must
be deciphered as representing the word paste. (This first step can be skipped if paste is selected from a
menu.) Second, the word whose original meaning is ‘form a permanent chemical bond between one item
and another’ must be related to the operation ‘insert a copy of the material held in an internal buffer into the
current working document at the place pointed to by the cursor’. To understand this operation, you must
have a mental model that enables you to understand the four concepts in this sentence. Even if the word
‘paste’ is avoided, it is hard to see how so many concepts can be contained within an icon.

WYSIWYG (What You See Is What You Get) is another concept that could benefit from constructivist
analysis as we showed above. The relevance for CSE is this: courses, help files and tutorials must explicitly
address the construction of a model, and not limit themselves to behaviorist practices of the form ‘to do
X, following these steps’. It is a reasonable conjecture that document preparation systems with transparent
models like LATEX and HTML should engender less anxiety among their users than WYSIWYG systems
on complex tasks. If the underlying model is not accessible, there is a genuine trepidation associated with
trying out new or advanced features, for fear that the document will be irrevocably trashed; with a trans-
parent model you can easily insert and then comment-out or remove the explicit commands. Many users of
WYSIWYG systems overcome the anxiety and eventually construct viable models, but the anxiety returns
as new features are tried or familiar ones used in new contexts. Of course the claims in this paragraph are
anecdotal and need empirical verification.

Explicitly Teach the Model

If the student does not bring a preconceived model to class, we must ensure that a viable hierarchy of
models is constructed and then refined as learning progresses. This means that the model of a computer—
CPU, memory, I/O peripherals—must be explicitly taught and discussed, not left to haphazard construction
and not glossed over with facile analogies. Furthermore, the choice of language is not arbitrary (as is often
claimed) because the “simplicity and visibility of the notional machine can be spoiled by poor language
design or implementation” (du Boulay, O’Shea, & Monk, 1989, p. 436).

Teaching the model can be done using diagrams Mayer (1975) or epistemic games—formalized procedures
for constructing knowledge—such as a model computer (Sherry, 1995) or a notional machine (du Boulay,
1989). Kieras and Bovair (1984) showed that a block diagram of an instrument facilitates the learning
of an operational procedure, and Mulholland showed that software visualization (SV) of Prolog programs

10

is most successful if “there is a clear, simple mapping between the SV and the underlying source code”
(Mulholland, 1997). Based on observations of expert programmers and electronics engineers, Petre (1991)
believes that declarative reasoning does not really occur; instead, the experts reason operationally in terms
of an underlying machine.

An important question is: how detailed should a model be? Does an introductory computer science student
have to construct a model in terms of the electronic properties of semiconductors?! The extent and fidelity
of the model that must be taught to the students can only be discovered from the experience of teachers
of the subject. Sherry’s model seems to be too detailed; a better approach is demonstrated by Naps and
Stenglein (1996) who created a visualization of a specific concept—parameter passing. Much can be done
even with non-computerized epistemic games. For example, take three cheap calculators and attach them
to a board (Figure 3), covering up all the non-numeric keys except for ’=’. Each calculator represents
one variable and it is possible to practice assignment statements without ever touching a programmable
computer.

(Place Figure 3 here.)

Don’t Start with Abstractions

My conclusion that a model of the computer be explicitly taught has implications for the teaching of object-
oriented programming (OOP) in introductory courses. The abstraction inherent in OOP is essential as a
way of forgetting detail, and software development would be impossible without abstraction, but it seems
to me that there must be an object-oriented paradox: how is it possible to forget detail that you never knew
or even imagined? If students find it difficult to construct a viable model of variables and parameters, why
should we believe that they can construct a viable model of an object such as a window object? Advocates
of an objects-first approach seem to be rejecting Piaget’s view that abstraction (or accommodation) follows
assimilation.

Professional software engineers who use abstractions generally have a fairly good idea of the underlying
model. For example, few software engineers have actually written programs for manipulating windows on a
screen. But even a general understanding of how images are represented in the computer by bitmaps should
be sufficient to enable the engineer to construct a viable model.

I appreciate the attractiveness of an objects-first approach; the gap between the standard libraries (especially
the GUI libraries) of a modern programming environment and the model of a computer is so great that
motivating beginners has become a serious problem. Furthermore, OOP can be used to teach good software
development practice from the beginning because “OOP allows—even encourages—one to address the “big
picture” by emphasizing a strategic approach to programming” (Decker & Hirshfeld, 1993, p.271).

Turkle and Papert go further and claim that OOP is:

. . . not only more congenial to those who favor concrete approaches, but it also puts an in-
tellectual value on a way of thinking that is resonant with their own. (Turkle & Papert, 1990,
p. 155)

This claim is strange, because the point of studying OOP is to learn to create abstractions, not just to use
existing concrete objects. The concreteness of reading and using objects is at most a stepping-stone to
modifying, extending and defining them, as advocates of OOP are careful to point out (Decker & Hirshfeld,
1993).

Given these advantages of the objects-first approach, it cannot be dismissed out of hand; on the contrary, the
trade-offs probably favor this approach. But if the constructivist viewpoint is valid, teachers of introductory
courses that use OOP should be very, very careful not to assume that the students will construct the model
that the instructor has, nor even to assume that they will construct a viable model at all.

11

This viewpoint is supported by the literature on teaching OOP:

• While Adams (1996) opposes deferring the teaching of OOP until late in the curriculum by which
time it is difficult to cure students of the low-level paradigms they have developed, neither does
he believe that OOP should be taught first when the students are not mature enough to master the
concepts involved:

CS1 novices do not have the cognitive framework to grasp the concepts underlying object-
oriented design, because they have no experience dealing with types and functions, much
less classes, function members or inheritance. (Adams, 1996, p.79)

He advocates a middle road where objects are introduced early but only after sufficient procedural
programming has been learned to provide an underlying mental model.

• Wolz and Conjura (1994) propose a three-tiered model for teaching introductory computer science
which includes mathematical theory (unusual but refreshing!), implementation and mechanical trivia.
They report that teaching OOP using C++ in CS2 is successful because students are able to build on
previous knowledge learned from CS1: expressing algorithms procedurally in Scheme. On the other
hand, they claim that:

There is no reason that students in a first course can’t learn to use [data types such as
queues, stacks, lists, trees and graphs] before learning how they are implemented. (Wolz
& Conjura, 1994, p.224)

From a constructivist point of view, one must evaluate the mental models these students construct; if
they are non-viable, they can impede further study.

• Holland et al. (1997) summarize students’ misconceptions in an introductory course that uses OOP.
Many of these misconceptions are due to conflation of concepts (object/variable, object/class) that
can be attributed to the lack of an effective mental model. Based on experience in other disciplines
of science education, cataloging and analyzing misconceptions will not be sufficient to improve stu-
dents’ understanding. Instead, research must be done to identify the mental models that cause these
specific misconceptions, and guidelines must be developed so that teachers can diagnose and correct
the problems.

For an objects-first approach to work, teachers will have to develop ways of explaining the underlying
models without destroying the abstractions. My current belief is that introductory CSE should be based
on the functional or logic programming paradigm, not only because these languages minimize mechanical
trivia, but also (and primarily) because the underlying models can be explained in relatively high-level,
hardware-free terms.

Bricolage

Bricolage is a term coined by the anthropologist Claude Lévi-Strauss, who used it in a derogatory sense
for the ‘science of the concrete’ in primitive societies, as opposed to abstract European science. Turkle and
Papert (1990) transferred the concept to the context of learning to program, and vehemently defend it as a
learning style as valid as the normative ‘planning’ style that we attempt to teach. This is consistent with a
constructivist view of education: different students will approach the construction of knowledge in different
ways, and the educational environment must be supportive of these differences.

The manifestation of bricolage in computer science is endless debugging: try it and see what happens. While
we all practice a certain amount of bricolage and while concrete thinking can be especially helpful—if not

12

essential—for students in introductory courses, bricolage is not an effective methodology for professional
programming, nor an effective epistemology for dealing with the massive amount of detailed knowledge
must be constructed and organized in levels of abstraction (cf. object-oriented programming). The norma-
tive planning style that we call software engineering must eventually be learned and practiced.

This belief is likely to be shared by anyone who has studied or worked on non-deterministic systems involv-
ing concurrency, real-time or communications, subjects that are simply not amenable to bricolage and can
be mastered only through abstract techniques. Students who excel at bricolage often cannot make the tran-
sition to master the thought patterns and methods required by these systems. This claim has implications
for counselling students. If software development is ultimately about abstraction, a students incapable of
or uncomfortable with abstract thought should be discouraged from studying for the profession of software
engineer.

Gender

Turkle and Papert (1990) published their article arguing for tolerance of concrete thinking in a journal
subtitled Women in Culture and Society, and they chose two women to exemplify college students who are
concrete thinkers. Since the concrete way of thinking advocated by Turkle and Papert can only go so far in
computer science, their coupling of a learning style with a gender stereotype would lead to the unacceptable
conclusion that women are not suited for careers as computer scientists.

On the other hand, constructivism—especially social constructivism—has much to say about the task of
the teacher and the role of peers in education, and the theory can contribute to the analysis of the well-
documented social difficulties faced by women in the computer science classroom and laboratory.

Minimalism

Minimalism (Carroll, 1990, 1998) is an approach to instruction that arose in the design of manuals for
software documentation. It is apparently little known outside of this community. (For a good introduction
see Van der Meij and Carroll (1998).) The minimalist approach to training and documentation can be
summarized as follows:

. . . (1) allowing learners to start immediately on meaningful realistic tasks, (2) reducing the
amount of reading and other passive activity in training, and (3) helping to make errors and
error recovery less traumatic and more pedagogically productive. (Carroll, 1990, p. 7)

Minimalism has much in common with constructivism as explicitly noted by Van der Meij (1992, p. 7) and
Carroll and Van der Meij (1998, p. 84):

• A preference for active learning to enable the student to construct mental models.

• Recognition of the importance of pre-existing knowledge.

• The employment of the inevitable errors and misconceptions as a pedagogical device rather than as a
symptom of failure.

Minimalism seems to part company with constructivism in its emphasis—even insistence—on eliminating
conceptual material, or at least on deferring it as long as possible:

It is quite common for training manuals to present a “welcome to the system” preface, a con-
ceptual model of how the system works, And none of this, even in the end, does much to
facilitate the user’s desire to get started on meaningful activity. Rather, it obstructs this goal.
(Carroll, 1990, p. 80)

13

The success of minimalism has been empirically demonstrated in straightforward training tasks like learning
to use a word processor. But once the user needs to go beyond elementary tasks, the absence of a viable
mental model means that the user’s attempts to master advanced material will be frustrating and lead to a
reluctance to learn new concepts.

To test this conjecture, I performed an experiment which required the subjects to modify documents in
Microsoft Word (Ben-Ari, 1999). The tasks were chosen to be easy if you understand the underlying con-
cepts, but quite difficult if you do not. The (sophisticated) subjects almost invariably used bricolage. They
restricted themselves to elementary techniques learned in a minimalist setting—behaviorist explanations
from colleagues—and made no attempt to investigate the concepts or even to use the Help facility.

Some authors now claim that the dismissal of conceptual material by naive minimalism was mistaken and
some way must be found to strike a balance. See the articles by Rosenbaum, Hackos, Redish, Farkas and
Draper in the retrospective volume by Carroll (1998). For example:

. . . a manual must: Help users grasp the big picture of the product, that is, help users develop a
mental model that helps them predict what to do. (Redish, 1998, p. 240).

Given the empirically proven success of minimalism in the narrow field of technical documentation, it
would be interesting to explore a closer integration of minimalist writing techniques with constructivist
teaching techniques.

Don’t run to the computer

Constructivism suggests that programming exercises should be delayed until class discussion has enabled
the construction of a good model of the computer. Too often students become infatuated with the absolute
ontology supplied by the computer. Premature attempts to write programs lead to bricolage and delay
the development of viable models. While formal methods in computer science education are extremely
important, you need not go to the extreme that Dijkstra advocates and entirely give up compilation and
execution of programs. There is nothing wrong with experimentation and bricolage-style debugging, as
long as it supplements, rather than supplants, planning and formal methods.

Unfortunately, computer science education is heavily weighted on the side of bricolage. A high-school
course we are developing comes in for scathing criticism from many students (and some teachers!) because
we insist on ‘wasting time’ on algorithm development and analysis, instead of just getting on with writing
and debugging programs.

Laboratory organization

One of the debates in CSE concerns the choice between closed labs—where students work on assignments
at an appointed time in a supervised setting, and open labs—where students work on assignments whenever
convenient. From a constructivist viewpoint, especially from a social constructivist one, closed labs should
be preferable, not only because they soften the brutality of the interaction with the computer, but also
because they facilitate the social interaction that is apparently necessary for successful construction. In fact,
Thweatt (1994) found empirical evidence for the superiority of closed labs over open labs.

The type of problems assigned is also important; as opposed to minimalism’s emphasis on task performance,
problems should encourage cognitive operations such as reflection and exploration:

Another common failing in lab design is to make every task so constrained and explicit that stu-
dents never need to think about what techniques to use. . . . The production of an ill-structured
problem is likely to add an element of reality to the lab, and allows the students to have

14

their own Eureka!s about the underlying nature of the exercise. (Fekete & Greening, 1996,
pp. 295, 298)

Assessment

Performance on a test is a poor guide to the students’ construction of the rich conceptual models of computer
science. A student’s failure to construct a viable model is a failure of the educational process, even if the
failure is not immediately apparent. Furthermore, in the case of group work, performance-based assessment
can mask the misconceptions of individual students (Sleeman et al., 1988). Ideally, constructivist-inspired
assessment would be based on an instructor’s observation and questioning of students engaged in an un-
constrained activity such as a lab project. Unfortunately, this is almost always impractical, and instructors
must attempt to designed written questions that elicit information about the student’s mental model rather
than about the contents of his or her factual memory.

Implications for Research

In their book, Maykut and Morehouse (1994) claim that practitioners of qualitative research must under-
stand its philosophical underpinnings, which are essentially constructivist in nature. The claim can be
turned around: a researcher working from a constructivist viewpoint should use qualitative methods.

We are now starting to see more empirical research in CSE done using qualitative methods (Madison, 1995;
Mulholland, 1997). These techniques which elicit the internal structures of the student are far more helpful
than research that measures performance alone and then draws conclusions on the success of a technique.

As computer literacy becomes common, if not universal, students will begin their academic studies with an
effective model of a computer. Research must be done to determine if these models are stepping-stones to
the construction of effective models, or obstacles like naive physics.

A Guide for Educators

To summarize the paper, here is a guide for educators on the practical application of constructivism.

• Regardless of your teaching technique (lectures, labs, assignments), you must articulate to yourself
the cognitive change that you wish to bring about in the students and structure the activity to achieve
this aim. Merely transferring knowledge is not a meaningful aim.

• You must dig underneath your own expert knowledge to expose the prior knowledge needed to con-
struct a viable model of the material that you are teaching. You must ensure that that the students
have this prior knowledge.

• In any particular course you will be teaching a specific level of abstraction; you must explicitly
present a viable model one level beneath the one you are teaching.

• When a student makes a mistake or otherwise displays a lack of understanding, you must assume that
the student has a more-or-less consistent, but non-viable, mental model. Your task as a teacher is to
elicit this model and guide the student in its modification.

• You must provide as much opportunity as possible for individual reflection (for example, analysis of
errors) and social interaction (for example, group labs).

Clearly, each educator must decide how to apply these aphorisms in a concrete situation.

15

Conclusion

My analysis of constructivism has led me to conclude that the epistemology of computer science is signif-
icantly different than that of, say, physics. Nevertheless, the basic tenet of the theory—that knowledge is
constructed by the student—applies to computer science, and its central implication is that models must be
explicitly taught.

Given the central place of constructivist learning theory and its influence on pedagogy, computer science
educators should study the theory, perform research and analyze their educational proposals in terms of
constructivism. Software and language designers should be guided by constructivist principles, though the
individuality of the construction by learners implies that no system will ever be universally easy-to-learn,
and we educators must learn how to teach these extant artifacts.

Acknowledgements

I would like to thank Abraham Arcavi, Yifat Ben-David Kolikant, Tom Boyle, Bat-Sheva Eylon, Ann
Fleury, Sandra Madison and the referees for their critiques of drafts of this article.

References

Adams, J. C. (1996). Object-centered design: A five-phase introduction to object-oriented programming in CS 1–2.
SIGCSE Bulletin, 28(1), 78–82.

Barnes, B., Bloor, D., & Henry, J. (1996). Scientific knowledge: A sociological analysis. Chicago, IL: University of
Chicago Press.

Ben-Ari, M. (1999). Bricolage forever! In Eleventh workshop of the psychology of programming interest group (pp.
53–57). Leeds, UK.

Bloor, D. (1991). Knowledge and social imagery (second edition). Chicago, IL: University of Chicago Press.

Boyle, T. (1996). Design for multimedia learning. Hemel Hempstead: Prentice-Hall.

Brandt, D. S. (1997). Constructivism: Teaching for understanding of the Internet. Communications of the ACM,
40(10), 112–117.

Bruner, J. S. (1962). On knowing: Essays for the left hand. Cambridge, MA: Harvard University Press.

Carroll, J. M. (1990). The Nurnberg Funnel: Designing minimalist instruction for practical computer skill. Cambridge,
MA: MIT Press.

Carroll, J. M. (Ed.). (1998). Minimalism beyond the Nurnberg Funnel. Cambridge, MA: MIT Press.

Carroll, J. M., & Van der Meij, H. (1998). Ten misconceptions about minimalism. In J. M. Carroll (Ed.), Minimalism
beyond the Nurnberg Funnel (pp. 55–90). Cambridge, MA: MIT Press.

Davis, R. B., Maher, C. A., & Noddings, N. (Eds.). (1990). Constructivist views of the teaching and learning of
mathematics. Reston, VA: National Council for the Teaching of Mathematics.

Decker, R., & Hirshfeld, S. (1993). Top-down teaching: Object-oriented programming in CS 1. SIGCSE Bulletin,
25(1), 270–273.

Dijkstra, E. W. (1989). On the cruelty of really teaching computer science. Communications of the ACM, 32(12),
1398–1404.

diSessa, A. A. (1988). Knowledge in pieces. In G. Forman & P. B. Pufall (Eds.), Constructivism in the computer age
(pp. 49–70). Hillsdale, NJ: Lawrence Erlbaum Associates.

diSessa, A. A., Abelson, H., & Ploger, D. (1991). An overview of Boxer. Journal of Mathematical Behavior, 10, 3–15.

16

du Boulay, B. (1989). Some difficulties of learning to program. In E. Soloway & J. C. Spohrer (Eds.), Studying the
novice programmer (pp. 283–299). Hillsdale, NJ: Lawrence Erlbaum Associates.

du Boulay, B., O’Shea, T., & Monk, J. (1989). The black box inside the glass box: Presenting computing concepts to
novices. In E. Soloway & J. C. Spohrer (Eds.), Studying the novice programmer (pp. 431–446). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Duit, R. (1991). Students’ conceptual frameworks: consequences for learning science. In S. M. Glynn, R. H. Yeany,
& B. K. Britton (Eds.), The psychology of learning science (pp. 65–85). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Ernest, P. (Ed.). (1994). Constructing mathematical knowledge: Epistemology and mathematics education. London:
The Falmer Press.

Ernest, P. (1995). The one and the many. In L. P. Steffe & J. Gale (Eds.), Constructivism in education (pp. 459–486).
Hillsdale, NJ: Lawrence Erlbaum Associates.

Fekete, A., & Greening, A. (1996). Designing closed laboratories for a computer science course. SIGCSE Bulletin,
28(1), 295–299.

Fleury, A. E. (1991). Parameter passing: The rules the students construct. SIGCSE Bulletin, 23(1), 283–286.

Glasersfeld, E. von. (1995). A constructivist approach to teaching. In L. P. Steffe & J. Gale (Eds.), Constructivism in
education (pp. 3–15). Hillsdale, NJ: Lawrence Erlbaum Associates.

Glynn, S. M. (1991). Explaining science concepts: a teaching-with-analogies model. In S. M. Glynn, R. H. Yeany,
& B. K. Britton (Eds.), The psychology of learning science (pp. 219–240). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Glynn, S. M., Yeany, R. H., & Britton, B. K. (Eds.). (1991). The psychology of learning science. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Gray, J., Boyle, T., & Smith, C. (1998). A constructivist learning environment implemented in Java. SIGCSE Bulletin,
30(3), 94–97.

Hadjerrouit, S. (1998). A constructivist framework for integrating the Java paradigm into the undergraduate curriculum.
SIGCSE Bulletin, 30(3), 105–107.

Harel, I., & Papert, S. (Eds.). (1991). Constructionism. Norwood, NJ: Ablex.

Hatfield, L. L. (1991). Enhancing school mathematical experience through constructive computing activity. In L. P.
Steffe (Ed.), Epistemological foundations of mathematical experience (pp. 238–259). New York, NY: Springer-
Verlag.

Hoc, J., Green, T., Samurçay, R., & Gilmore, D. (1990). Psychology of programming. London: Academic Press.

Holland, S., Griffiths, R., & Woodman, M. (1997). Avoiding object misconceptions. SIGCSE Bulletin, 29(1), 131–134.

Husén, T., & Postlethwaite, T. N. (Eds.). (1994). The international encyclopedia of education. Oxford: Pergamon.

Kieras, D. E., & Bovair, S. (1984). The role of a mental model in learning to operate a device. Cognitive Science, 8,
255–273.

Leron, U., & Dubinsky, E. (1995). An abstract algebra story. American Mathematical Monthly, 102(3), 227–242.

Madison, S. K. (1995). A study of college students’ construct of parameter passing: Implications for instruction.
Unpublished doctoral dissertation, U. of Wisconsin.

Mason, J. (1994). Enquiry in mathematics and mathematics education. In P. Ernest (Ed.), Constructing mathematical
knowledge: Epistemology and mathematics education (pp. 190–200). London: The Falmer Press.

Matthews, M. R. (1994). Science teaching: The role of history and philosophy of science. New York, NY: Routledge.

Matthews, M. R. (1997). Introductory comments on philosophy and constructivism in science education. Science &
Education, 6(1-2), 5–14.

Matthews, M. R. (Ed.). (1998). Constructivism in science education. Dordrecht: Kluwer Academic Publishers.

17

Mayer, R. E. (1975). Different problem-solving competencies established in learning computer programming with and
without meaningful models. Journal of Educational Psychology, 67(6), 725–734.

Mayer, R. E. (Ed.). (1988). Teaching and learning computer programming. Hillsdale, NJ: Lawrence Erlbaum Asso-
ciates.

Maykut, P., & Morehouse, R. (1994). Beginning qualitative research. London: The Falmer Press.

McCloskey, M. (1983). Naive theories of motion. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 299–323).
Hillsdale, NJ: Lawrence Erlbaum Associates.

Mulholland, P. (1997). Using a fine-grained comparative evaluation technique to understand and design software
visualization tools. Paper presented at the Empirical Studies of Programmers: Seventh Workshop.

Naps, T. L., & Stenglein, J. (1996). Tools for visual exploration of scope and parameter passing in a programming
languages course. SIGCSE Bulletin, 28(1), 295–299.

Nola, R. (1997). Book review of Kenneth Tobin (ed.), The practice of constructivism in science education. Science &
Education, 6(1-2), 197–201.

Paz, T. (1996). Computer science for vocational high-school studuents: Processes of learning and teaching. Unpub-
lished master’s thesis, Technion—Israel Institute of Technology. (in Hebrew)

Pea, R. D. (1986). Language-independent conceptual “bugs” in novice programming. Journal of Educational Com-
puting Research, 2(1), 25–36.

Perkins, D., Schwartz, S., & Simmons, R. (1988). Instructional strategies for the problems of novice programmers.
In R. E. Mayer (Ed.), Teaching and learning computer programming (pp. 153–178). Hillsdale, NJ: Lawrence
Erlbaum Associates.

Petre, M. (1991). Shifts in reasoning about software and hardware systems: do operational models underpin declarative
ones? Paper presented at the Psychology of Programming Interest Group Workshop.

Phillips, D. (1995). The good, the bad, and the ugly: The many faces of constructivism. Educational Researcher,
24(7), 5–12.

Redish, J. (1998). Minimalism in technical communication: Some issues to consider. In J. M. Carroll (Ed.), Minimalism
beyond the Nurnberg Funnel (pp. 219–245). Cambridge, MA: MIT Press.

Resnick, M. (1997). Turtles, termites, and traffic jams: Explorations in massively parallel microworlds. Cambridge,
MA: MIT Press.

Samurçay, R. (1989). The concept of variable in programming: Its meaning and use in problem-solving by novice
programmers. In E. Soloway & J. C. Spohrer (Eds.), Studying the novice programmer (pp. 161–178). Hillsdale,
NJ: Lawrence Erlbaum Associates.

Scheffler, I. (1965). Conditions of knowledge: An introduction to epistemology and education. Chicago, IL: University
of Chicago Press.

Sfard, A. (1994). Mathematical practices, anomalies and classroom communications problems. In P. Ernest (Ed.),
Constructing mathematical knowledge: Epistemology and mathematics education (pp. 248–273). London: The
Falmer Press.

Sherry, L. (1995). A model computer simulation as an epistemic game. SIGCSE Bulletin, 27(2), 59–64.

Sleeman, D., Putnam, R. T., Baxter, J. A., & Kuspa, L. (1988). An introductory Pascal class: A case study of student
errors. In R. E. Mayer (Ed.), Teaching and learning computer programming (pp. 237–257). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Sleeman, D., Putnam, R. T., Baxter, J. A., & Kuspa, L. (1989). A summary of misconceptions of high school Basic
programmers. In E. Soloway & J. C. Spohrer (Eds.), Studying the novice programmer (pp. 301–314). Hillsdale,
NJ: Lawrence Erlbaum Associates.

Smith III, J. P., diSessa, A. A., & Roschelle, J. (1993). Misconceptions reconceived: A constructivist analysis of
knowledge in transition. The Journal of The Learning Sciences, 3(2), 115–163.

18

Soloway, E., & Spohrer, J. C. (Eds.). (1989). Studying the novice programmer. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Steffe, L. P., & Gale, J. (Eds.). (1995). Constructivism in education. Hillsdale, NJ: Lawrence Erlbaum Associates.

Taylor, J. (1990). Analysing novices analysing Prolog: What stories do novices tell themselves about Prolog. Instruc-
tional Science, 19, 283–309.

Thweatt, M. (1994). CS1 closed lab vs. open lab experiment. SIGCSE Bulletin, 26(1), 80–82.

Turkle, S., & Papert, S. (1990). Epistemological pluralism: Styles and cultures within the computer culture. Signs:
Journal of Women in Culture and Society, 16(1), 128–148.

Van der Meij, H. (1992). A critical assessment of the minimalist approach to documentation. In Tenth annual ACM
conference on systems documentation (SIGDOC92) (pp. 7–17). Ottawa, Canada.

Van der Meij, H., & Carroll, J. M. (1998). Principles and heuristics for designing minimalist instruction. In J. M.
Carroll (Ed.), Minimalism beyond the Nurnberg Funnel (pp. 19–53). Cambridge, MA: MIT Press.

Wolz, U., & Conjura, E. (1994). Integrating mathematics and programming into a three tiered model for computer
science education. SIGCSE Bulletin, 26(1), 223–227.

M y T e r m P a p e r

T h e q u i c k f o x

Figure 1: What you (think you) see

» cursor

T h e q u i c k f o x

 M y T e r m P a p e r

 M y T e r m P a p e r

Figure 2: What you (really) get

19

0 . =

1 2 3

4 5 6

7 8 9

0 . =

1 2 3

4 5 6

7 8 9

0 . =

1 2 3

4 5 6

7 8 9

X: Real Y: Real Z: Real

12.7 18.0 12.7

Figure 3: An epistemic game for studying variables

20

Using Software Testing to Move Students from Trial-and-
Error to Reflection-in-Action

 Stephen H. Edwards
Virginia Tech, Dept. of Computer Science

660 McBryde Hall, Mail Stop 0106
Blacksburg, VA 24061 USA

+1 540 231 5723

edwards@cs.vt.edu

ABSTRACT
Introductory computer science students rely on a trial and error
approach to fixing errors and debugging for too long. Moving to
a reflection in action strategy can help students become more
successful. Traditional programming assignments are usually
assessed in a way that ignores the skills needed for reflection in
action, but software testing promotes the hypothesis-forming and
experimental validation that are central to this mode of learning.
By changing the way assignments are assessed—where students
are responsible for demonstrating correctness through testing, and
then assessed on how well they achieve this goal—it is possible to
reinforce desired skills. Automated feedback can also play a
valuable role in encouraging students while also showing them
where they can improve.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education; D.2.5 [Software Engineering]: Testing and
Debugging—testing tools.

General Terms
Verification

Keywords
Pedagogy, test-driven development, CS1, extreme programming,
automated grading.

1. INTRODUCTION
Despite our best efforts as educators, student programmers con-
tinue to develop misguided views about their programming activi-
ties, particularly during freshman and sophomore courses:

• Once the compiler accepts my code without complaining, I
have removed all the errors.

• Once my code produces the output I expect on a test value or
two, it will work well all the time.

• My code looks “correct” to me. If it produces the wrong
answer, that does not make sense, so there must be some-
thing hidden that I do not understand about my code. I will
try switching around a few things to see if I can make the
problem go away.

• Once my code gives the correct answer for the instructor’s
sample data, I am finished.

While many computer science students acquire a more balanced
view of software development as they learn, other students do not
reach such a perspective for many semesters, and some never do
so. This situation places both the student and the educator at a
significant disadvantage. Anecdotally, many educators report
difficulties along these lines [12, 8, 5].
Computer science students will be more successful at learning if
they move from this trial and error approach to practicing reflec-
tion in action. “Reflection in action,” as originally described by
Schön [13], is a characterization of how practitioners complete
tasks in the face of uncertainty and novelty. When a technique or
part of a solution fails to work, difficulties or confusion cause the
practitioner to switch to a reflective mode, examining both the
phenomenon at hand and also prior understandings that may have
been implicit in his or her behavior. From this reflection, the
practitioner then “carries out an experiment which serves to gen-
erate both a new understanding of the phenomenon and a change
in the situation” [13]. This on-going experimentation is central to
finding a viable solution when past experiences do not work in a
new context without modification.
Many educators would agree that steering students toward reflec-
tion in action is a desirable goal, but typical programming as-
signments are poor devices for promoting this behavior. Students
receive feedback only on the end result they produce and tend to
equate a program that “produces the right output” with an “effec-
tive solution.” The learning process matters little in grade out-
comes, and students only receive indirect feedback on what and
how they learn via comments on their final solution. Students are
often able to succeed at simpler CS1 and CS2 assignments using a
trial-and-error approach, which only reinforces a strategy that will
handicap their performance in more advanced courses.
This situation can be improved through careful use of software
testing in programming assignments. From the very first pro-
gramming activities in CS1, a student should be given the respon-
sibility of demonstrating the correctness of his or her own code.
Such a student is required to submit test cases for this purpose
along with the code. While coding design and style are typically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
SIGCSE’04, March 3–7, 2004, Norfolk, Virginia, USA.
Copyright 2004 ACM 1-58113-798-2/04/0003…$5.00.

assessed using an independent reading of the source code, we
must change the way we assess program correctness. Rather than
assessing student performance on whether their programs pro-
duce the correct output, students should be meaningfully assessed
on how well they have demonstrated the correctness of their pro-
gram through testing, that is, how correctly and thoroughly their
tests conform to the problem.

2. WHY STUDENTS STICK WITH TRIAL
AND ERROR
Trial and error is a well-established technique for beginners in
any discipline, and it is no surprise that this is where students start
out. But why do students persist in this practice long after it be-
comes a handicap? Buck and Stucki describe one possible reason
[4, 5]: most undergraduate curricula focus on developing program
application and synthesis skills (i.e., writing code), primarily
acquired through hands-on activities. In addition, students must
master basic comprehension and analysis skills. Without these
skills, they are poorly equipped for any strategy beyond trial and
error.
Bloom’s taxonomy describes six increasing levels of cognitive
development that can be used to frame and organize learning
objectives, labeled in increasing order of sophistication as: knowl-
edge, comprehension, application, analysis, synthesis, and evalua-
tion. Buck and Stucki provide a concise description of Bloom’s
taxonomy in a CS education context [4]. Bloom’s work suggests
that students must master basic comprehension and analysis skills
as a prerequisite for effective program writing. Students must
develop their abilities in reading and comprehending source code,
envisioning how a sequence of statements will behave, and pre-
dicting how a change to the code will result in a change in behav-
ior. Yet typical undergraduate curricula focus first and foremost
on writing programs: application and synthesis skills.
Many educators try to foster comprehension and analysis abilities
through code reading assignments or requiring students to ma-
nipulate and reason about non-code artifacts [12]. Buck and
Stucki propose an “inside/out” pedagogy for introducing CS1
concepts in a manner inspired by Bloom’s levels [4, 5]. While
this is a powerful approach in organizing assignments, their focus
has been on appropriately situating code writing tasks in a context
that constrains and directs students as they learn. Others have
added small analytical tasks to regular lab assignments [6].
To advance to reflection in action, however, students need more
than just an ability to predict how changes in code will result in
changes in behavior. In addition, they need continually rein-
forced practice in hypothesizing about the behavior of their pro-
grams and then experimentally verifying (or invalidating) their
hypotheses. Further, students need frequent, useful, and immedi-
ate feedback about their performance, both in forming hypotheses
and in experimentally testing them.
These activities are at the heart of software testing. To write an
effective test, students must do more than just come up with a
sequence of code actions—they must also hypothesize what re-
sulting behavior they expect. Yet, in most mainstream CS curric-
ula, students get little feedback on their performance in this area.
This idea is complementary to Buck and Stucki’s focus on the
middle levels of Bloom’s taxonomy—without mastering those
levels, students cannot effectively test. However, while mastering
those levels is necessary for a student to move toward reflection

in action, it is not sufficient. Basic software testing provides the
experience and setting for natural, recurring hypothesis testing
that is important for reflection in action.

At the same time, however, there are five perceived roadblocks
to adopting software testing practices in assignments:
1. Software testing requires experience at programming, and

may be something introductory students are not ready for
until they have mastered other basic skills.

2. Instructors just do not have the time (in terms of lecture
hours) to teach a new topic like software testing in an al-
ready overcrowded course.

3. The course staff already has its hands full assessing program
correctness—it may not be feasible to assess test cases too.

4. To learn from this activity, students need frequent, concrete
feedback on how to improve their performance at many
points throughout their development of a solution, rather
than just once at the end of an assignment. The resources for
rapid, thorough feedback at multiple points during program
writing just are not available in most courses.

5. Students must value any practices we require alongside pro-
gramming activities. A student must see any extra work as
helpful in completing working programs, rather than a hin-
drance imposed at the instructor’s desire, if we wish for stu-
dents to continue using a technique faithfully.

By combining a suitable testing technique with the right assess-
ment strategy, and supporting them with the right tools, including
an automated assessment engine, it is possible to overcome all
five of these difficulties.

3. TEST-DRIVEN DEVELOPMENT
To include software testing in student assignments, one must first
choose a testing approach in which students will be instructed.
Unfortunately, students are likely to view the software testing
methods in most student-oriented software engineering texts as
something that professional programmers do “out in the real
world” but that has little bearing on—and provides little benefit
for—the day-to-day tasks required of a student. In this case, the
practice of test-driven development (TDD) is a better pedagogical
match. TDD has been popularized by extreme programming [2].
TDD is a practical, concrete technique that students can practice
on their own assignments. In TDD, one always writes one or
more test cases before adding new code. The test cases capture
what behavior you are attempting to produce. Then, as you write
new code, these tests tell you when you have achieved your latest
(small) goal.
TDD is attractive for use in an educational setting for many rea-
sons. It is easier for students to understand and relate to than
more traditional testing approaches. It promotes incremental
development, promotes the concept of always having a “running
version” of the program at hand, and promotes early detection of
errors introduced by coding changes. It directly combats the “big
bang” integration problems that many students see when they
begin to write larger programs, where testing is saved until all the
code writing is complete. It dramatically increases a student’s
confidence in the portion of the code they have finished, and al-
lows them to make changes and additions with greater confidence
because of continuous regression testing. It increases the stu-

dent’s understanding of the assignment requirements, by forcing
them to explore the gray areas in order to completely test their
own solution. It also provides a lively sense of progress, because
the student is always clearly aware of the growing size of their
test suite and how much of the required behavior has already been
completed. Most importantly, students begin to see these benefits
for themselves after using TDD on just a few assignments.
The tool support that is available for TDD is also important. TDD
frameworks are readily available, including JUnit [10] for Java,
and related XUnit frameworks for other languages. Although
these frameworks are aimed at professional developers, similar
educational tool support is also becoming available. For example,
DrJava [1], which is designed specifically as a pedagogical tool
for teaching introductory programming, provides built-in support
to help students write JUnit-style test cases for the classes they
write. Similarly, BlueJ [11], another introductory Java environ-
ment designed specifically for teaching CS1, also provides sup-
port for JUnit-style tests. BlueJ allows students to interactively
instantiate objects directly in the environment without requiring a
separate main program to be written. Messages can be sent to
such objects using pop-up menus. BlueJ’s JUnit support allows
students to “record” simple object creation and interaction se-
quences as JUnit-style test cases. Such tools make it easy for
students to write tests from the beginning, and also mesh nicely
with an objects-first pedagogy.

4. AUTOMATED GRADING
Providing appropriate feedback and assessment of student per-
formance is critical. Many educators have used automated sys-
tems to assess and provide rapid feedback on large volumes of
student programming assignments, but past approaches focus on
the traditional view of program assessment—does the student
submission “produce the correct output.” Such a system has been
in use at Virginia Tech for many years with success. Unfortu-
nately, such tools often do little to address the issues raised here.
Instead, students focus on output correctness first and foremost;
all other considerations are a distant second at best (design, com-
menting, appropriate use of abstraction, testing one's own code,
etc.). This is due to the fact that the most immediate feedback
students receive is on output correctness, and also that students
are given a clear message (say, from a zero score) when submis-
sions do not compile, do not produce output, or do not terminate.
In addition, students are not encouraged or rewarded for perform-
ing testing on their own. In practice, students do less testing on
their own, often relying solely on instructor-provided sample data
and the automated grading system.
In order to make classroom use of TDD practical, the challenges
faced by existing automated grading systems must be addressed.
Web-CAT, the Web-based Center for Automated Testing, is a
new prototype tool developed at Virginia Tech for this purpose.
The Web-CAT Grader grades student code and student tests to-
gether, requiring both to be present on every submission [9]. It
places the burden of demonstrating correctness on the student, and
then uses an assessment formula that focuses on testing perform-
ance. The Web-CAT Grader assigns scores using three measures:
a score of code correctness, a score of test completeness with
respect to the code, and a score of test completeness and validity
with respect to the problem.

First, the code correctness score measures how “correct” the stu-
dent’s code is. To empower students in their own testing capa-
bilities, this score is based solely on how many of the student’s
own tests the submitted code can pass. No separate test data from
the instructor or teaching assistant is used in this score.

Second, the test completeness score with respect to the code
measures how thoroughly the student’s tests cover the student‘s
code. For Java code, the Web-CAT Grader uses Clover [7] to
instrument the student code. Coverage data is collected as student
tests are run. The instructor has the option of using method cov-
erage, statement coverage, branch coverage, or some mathemati-
cal combination to derive a measure of how thoroughly the stu-
dent’s code has been exercised by the student’s tests.

Third, the test completeness and validity score with respect to the
problem measures how thoroughly the student’s tests cover the
behavior required in the assignment. Mechanically, this is similar
to a more traditional program assessment—an instructor-provided
reference test suite that captures all essential behaviors is run
against the student program. However, if the student program
passes all the student tests, and the student tests provide reason-
able coverage of the student code, then the only reason any of the
reference tests can fail is because either (a) the corresponding
behavior is not implemented, and thus not tested for by the stu-
dent, or (b) one or more of the student-provided tests are inconsis-
tent with the behavior required in the assignment.

All three of these measures are taken on a 0%–100% scale, and
then multiplied together to produce a single composite score. As a
result, the score in each dimension becomes a “cap”—it is not
possible for a student to do poorly in one dimension but do well
overall. Also, a student cannot accept so-so scores across the
board. Instead, near-perfect performance in at least two dimen-
sions becomes the expected norm.

To support the rapid cycling between writing individual tests and
adding small pieces of code that is characteristic of TDD, the
Web-CAT Grader allows unlimited submissions from students up
until the assignment deadline. Students can get feedback any time,
as often as they wish. However, their program correctness is only
assessed by the tests they have written, so to find out more about
errors in their own programs, a student must write the correspond-
ing test cases. Currently, the Web-CAT Grader also applies
Checkstyle and PMD, two industrial-quality static analysis tools,
to assess how well the student has conformed to expected coding
conventions, and all such feedback is produced in one seamless
source code markup report viewable by the student on the web.

5. EXPERIENCES IN A JUNIOR COURSE
This approach has been piloted using an early version of Web-
CAT in CS 3304: “Comparative Languages,” a typical junior-
level programming languages course at Virginia Tech. Students
in the course normally write four program assignments, each re-
quiring two to three weeks to complete. Basic instruction in TDD
was provided to students, consisting of about one lecture hour of
course time and several reading assignments outside of class.
In spring 2003, 59 students in the course used Web-CAT to sub-
mit all programming assignments. These students were given the
same assignments used during the Spring 2001 offering of the
course, where a conventional output-correctness-based automated
grading system was used without TDD (students were still in-

structed to test their own code before submission and given edu-
cational materials on basic testing practices). 59 students com-
pleted the course during spring 2001. Program submissions from
both semesters were then available for detailed analysis. After
assignments were turned in, the final submission of each student
in both semesters was analyzed. This analysis was restricted to
the first programming assignment due to manpower limitations.
Table 1 summarizes the results obtained when comparing the
program submissions between the two groups. Because Web-
CAT and the earlier grading system called the Curator use differ-
ent grading approaches, the spring 2001 submissions were also
submitted through Web-CAT for scoring. In spring 2001, how-
ever, students did not write test cases. Rather than using a fixed
set of instructor-provided test data, the 2001 programs were
graded using a test data generator provided by the instructor. This
generator produced a random set of 40 test cases for each submis-
sion, providing broad coverage of the entire problem. To re-score
each 2001 submission using Web-CAT, the generator-produced
test cases originally produced for grading that submission in 2001
were submitted as if they were produced by the student.
In Table 1, “Recorded grades” represents the average final as-
signment score recorded in the instructor’s grade book. Half of
each score came from the automated assessment and half from an
independent review of the student’s source code by a graduate
teaching assistant. “TA assessment” reflects the average amount
of credit received for the TA portion of the student’s grade. “Cu-
rator assessment” reflects the average amount of credit given by
the traditional automated grading approach, while the “Web-CAT
assessment” is the amount of credit given by the new automated
assessment prototype tool.
While the “Curator assessment” average for 2003 students is
slightly higher than that for 2001 students, the difference is not
statistically significant. One possible interpretation for this situa-
tion is that, if any difference exists between the code produced by
the two groups, the assessment approach used in 2001 was not
sensitive enough to detect it. The “Web-CAT assessment” differ-
ences are significant, however. This result is understandable,
since students in 2003 were given explicit feedback about how
thoroughly they were testing all aspects of the problem specifica-
tion, and thus had an opportunity to maximize the completeness
of their tests to the best of their ability.
Finally, the student programs were analyzed to uncover the bugs
they contained. One of the most common ways to measure bugs
is to assess defect density, that is, the average number of defects
(or bugs) contained in every 1000 non-commented source lines of

code (KSLOC). On large projects, defect density data can often
be collected by analyzing bug tracking databases. For student
programs, however, measuring defects can be more difficult.
To provide a uniform treatment in this experiment, a comprehen-
sive test suite was developed for analysis purposes. A suite that
provided 100% condition/decision coverage on the instructor’s
reference implementation was the starting point. Then all test
suites submitted by 2003 students and all randomly generated
suites used to grade 2001 submissions were inspected, and all
non-duplicating test cases from this collection were added to the
comprehensive suite. For this experiment, two test cases are “du-
plicating” if each program in each of the student groups produces
the same result (pass or fail) on both test cases. Non-duplicating
test cases are thus “independent” for at least one program under
consideration, but may provide redundant coverage for others.
Once the comprehensive test suite was constructed, every pro-
gram under consideration was run against it.
While the resulting numbers capture the relative number of de-
fects in programs, they do not represent defect density. To get
defect density information, a selection of 18 programs were se-
lected, 9 from each group. These programs had all comments and
blank lines stripped from them. They were then debugged by
hand, making the minimal changes necessary to achieve a 100%
pass rate on the comprehensive test suite. The total number of
lines added, changed, or removed, normalized by the program
length, was then used as the defects per KSLOC measure for that
program. A linear regression was performed to look for a rela-
tionship between the defects/KSLOC numbers and the raw num-
ber of test cases failed from the comprehensive test suite in this
sample population. This produced a correlation significant at the
0.05 level, which was then used to estimate the defects/KSLOC
for the remaining programs in the two student groups.
Table 1 summarizes the results of this analysis, which show that
students who used TDD and Web-CAT submitted programs con-
taining approximately 45% fewer defects per 1000 lines of code.
While the defects/KSLOC rates shown here are far above indus-
trial values, with values often cited around 4 or 5 defects/KSLOC,
this is to be expected for student-quality code developed with no
process control and no independent testing.
While the results summarized in Table 1 indicate that students do
produce higher quality code using this approach, it is also impor-
tant to consider how students react to TDD and Web-CAT. The
2003 students completed an anonymous survey designed to elicit
their perceptions of both the process and the prototype tool. All
students in the spring 2003 semester had used an automated grad-

Table 1: Score comparisons between both groups (bold differences are significant).

Comparison Spring 2001
Without TDD

Spring 2003
With TDD

t-score Assuming Un-
equal Variances

Critical t-value
p = 0.05

Recorded grades 90.2% 96.1% t(df = 62) = 2.67 2.00
TA assessment 98.1% 98.2% t(df = 65) = 0.06 2.00
Curator assessment 93.9% 96.4% t(df = 71) = 1.36 1.99
Web-CAT assessment 76.8% 94.0% t(df = 61) = 4.98 2.00
Time from first submission until
assignment due 2.2 days 4.2 days t(df = 112) = 3.15 1.98

Test case failures from master
suite (out of 1064)

390 (36.7%) 265 (24.9%) t(df = 84) = 3.48 1.99

Estimated Defects/KSLOC 70.0 38.3

ing/submission system before (the Curator). Students expressed a
strong preference for Web-CAT over their past experiences.
They found that Web-CAT was more helpful at detecting errors in
their programs than the Curator (89.8% agree or strongly agree).
In addition, they believed it provided excellent support for TDD
(83.7% agree or strongly agree).
Students also expressed a strong preference for the benefits pro-
vided by TDD. Using TDD increases the confidence that students
have in the correctness of their code (65.3% agree or strongly
agree). Using TDD also increases the confidence that students
have when making changes to their code (67.3% agree or strongly
agree). Finally, most students would like to use Web-CAT and
TDD for program assignments in future classes, even if it were
not required for that course (73.5% agree or strongly agree).

6. EXPERIENCES IN CS1
As a result of experiences with this approach at the junior level, it
is now being integrated into Virginia Tech’s core curriculum.
The fall 2003 semester began with incoming freshmen in CS1
writing basic tests of their own code in the very first laboratory
session during the first week of classes. CS1 is taught in Java
using BlueJ. Students are taught using an aggressive objects-first
pedagogy, and begin with a variation of Bergin’s Karel J. Robot
simulator [3] for initial assignments. Bergin’s implementation
allows students to write pure Java programs using a provided
Karel class library, and also provides support for JUnit-style test-
ing. With minimal introduction to testing concepts, students read-
ily use BlueJ to interactively instantiate objects, and then interac-
tively “record” sequences of actions—and assertions about ex-
pected outcomes—as test cases. Finally, the Web-CAT Grader
supports BlueJ’s assignment submission abilities, so a student can
send an assignment to the grading system just using a menu entry
in their IDE, with the results popping up in their web browser.
To date, the experience has been quite positive. Allowing unlim-
ited submissions, with a web-viewable, color-highlighted feed-
back report available in less than a minute, encourages frequent
use by students. Further, students readily grasp the up-front em-
phasis that the assessment strategy gives to testing, and their natu-
ral pursuit of higher scores reinforces the desired skills. The sim-
plicity of the tools does make this accessible, even at the CS1
level, and with minimal class time devoted to teaching testing
concepts. The natural benefits that students see, together with the
assessment approach, drives their use of the technique.

7. CONCLUSION
Despite the best efforts of computer science educators, CS stu-
dents often do not acquire the desired analytical thinking skills
that they need to be successful until later than we would like, if at
all. It is possible to infuse continual practice and development of
comprehension, analysis, and hypothesis-testing skills across the
programming assignments in a typical CS curriculum using TDD
activities. Using automated grading and feedback generation to
provide for frequent, quick-turnaround assessments of student
performance helps to encourage and reinforce desired behaviors.
Furthermore, students see real benefits from using this approach,
an important factor for its continued use across multiple courses.
Preliminary experience with TDD in the classroom and with
automated assessment is very positive, indicating a significant
potential for increasing the quality of student code. We plan to

assess the outcomes of apply this technique in our introductory
programming sequence to better characterize its impact.

8. ACKNOWLEDGMENTS
This work is supported in part by the National Science Founda-
tion under grant DUE-0127225, and by a research fellowship
from Virginia Tech’s Institute for Distance and Distributed Edu-
cation. Any opinions, conclusions or recommendations expressed
in this paper are those of the authors and do not necessarily reflect
the views of NSF or IDDL.

9. REFERENCES
[1] Allen, E., Cartwright, R., and Stoler, B. DrJava: a light-

weight pedagogic environment for Java. In Proc. 33rd SIG-
CSE Technical Symp. Computer Science Education, ACM,
2002, pp. 137-141.

[2] Beck, K. Test-Driven Development: By Example. Addison-
Wesley, Boston, MA. 2003.

[3] Bergin, J., Stehlik, M., Roberts, J., Pattis, R. Karel J. Robot:
A Gentle Introduction to the Art of Object-Oriented Pro-
gramming in Java. Unpublished manuscript available at:
<http://csis.pace.edu/~bergin/KarelJava2ed/>

[4] Buck, D., and Stucki, D.J. Design early considered harmful:
graduated exposure to complexity and structure based on
levels of cognitive development. In Proc. 31st SIGCSE
Technical Symp. Computer Science Education, ACM, 2000,
pp. 75-79.

[5] Buck, D., and Stucki, D.J. JKarelRobot: a case study in
supporting levels of cognitive development in the computer
science curriculum. In Proc. 32nd SIGCSE Technical Symp.
Computer Science Education, ACM, 2001, pp. 16-20.

[6] Comer, J., and Roggio, R. Teaching a Java-based CS1
course in an academically-diverse environment. In Proc.
33rd SIGCSE Technical Symp. Computer Science Education,
ACM, 2002, pp. 142-146.

[7] Cortex, Inc. Clover: a code coverage tool for Java. Web
page accessed Mar. 21, 2003:
<http://www.thecortex.net/clover/>

[8] Decker, R. and Hirshfield, S. The top 10 reasons why ob-
ject-oriented programming can’t be taught in CS 1. In Proc.
25th Annual SIGCSE Symp. Computer Science Education,
ACM, 1994, pp. 51-55.

[9] Edwards, S.H. Rethinking computer science education from
a test-first perspective. In Addendum to the 2003 Proc. Conf.
Object-oriented Programming, Systems, Languages, and Ap-
plications, ACM, to appear.

[10] JUnit Home Page. Web page last accessed Mar. 21, 2003:
<http://www.junit.org/>

[11] Kölling, M. BlueJ—The Interactive Java Environment.
Web page, last accessed Mar. 21, 2003:
<http://www.bluej.org/>

[12] Krause, K.L. Computer science in the Air Force Academy
core curriculum. In Proc.13th SIGCSE Technical Symp.
Computer Science Education, ACM, 1982, pp. 144-146.

[13] Schön, D. The Reflecting Practitioner: How Professionals
Think in Action. London: Temple Smith, 1983.

Contributing to Success in an Introductory Computer Science
Course: A Study of Twelve Factors

Brenda Cantwell Wilson
Department of Computer Science

Murray State University
Murray, Ky 42071

brenda.wilson@murraystate.edu

Sharon Shrock
Department of Curriculum & Instruction

Southern Illinois University
Carbondale, IL 62901

sashrock@siu.edu

Abstract

This study was conducted to determine factors that promote
success in an introductory college computer science course.
The model included twelve possible predictive factors
including math background, attribution for success/failure
(luck, effort, difficulty of task, and ability), domain specific
self-efficacy, encouragement, comfort level in the course,
work style preference, previous programming experience,
previous non-programming computer experience, and
gender. Subjects included 105 students enrolled in a CS1
introductory computer science course at a midwestern
university. The study revealed three predictive factors in
the following order of importance: comfort level, math, and
attribution to luck for success/failure. Comfort level and
math background were found to have a positive influence
on success, whereas attribution to luck had a negative
influence. The study also revealed by considering the
different types of previous computer experiences (including
formal programming class, self-initiated programming,
internet use, game playing, and productivity software use)
that both a formal class in programming and game playing
were predictive of success. Formal training had a positive
influence and games a negative influence on class grade.

1 Introduction

Numerous studies of success in computer science including
various previous computing experiences as possible
predictors [2, 3, 7, 11, 12] have been conducted. Factors
such as work style preference [4] and self-efficacy [1, 9,
10] as predictors have also been studied. Although
attribution theory has been included in studies of other

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGCSE 2001 2101 Charlotte, NC, USA
© 2001 ACM ISBN 1-58113-329-4/0110002. . .$5.00

disciplines [3, 5, 6, 8], few studies have used the theory as
a basis for explaining success in computer science.
Attribution theory involves explanations that people give
for their successes and failures. The explanations can be of
a stable nature (attributing outcome to ability or difficulty
of task) or an unstable nature (attributing outcome to luck
or effort). The theory suggests that when people attribute
their successes to unstable causes (luck or effort) and their
failures to stable causes (ability or task difficulty), the
probability of persistence is low.

This study was different; it included all of these factors
plus other factors such as encouragement to study computer
science and comfort level in the computer science course in
an effort to explain success. Success was operationalized as
midterm course grade. (Because of the high attrition rates
in introductory computer science courses and because of
the desire to study this phenomenon as it relates to the
factors contributing to success in the introductory computer
science course, midterrn grades were used to determine
success in the course to enable the inclusion of the students
who drop out of the course before the end of the semester.)

2 Methodology

The study attempted to determine what relationship exists
between the factors of previous programming experience,
previous non-programming experience, attribution for
success/failure, self-efficacy, comfort level, encouragement
from others, work style preference, math background, and
gender of introductory computer programming students and
their midterm course grade. Also, the study sought to
discover which of the above mentioned factors are
predictive of midterm course grade. Also, a look at
different types of previous computing experiences to
determine whether they are predictive of success in CS1
was included.

2.1 Subjects
Approximately 130 students were enrolled in six sections
of CS 202 Introduction to Computer Science at a
comprehensive Midwestern university (approximately
22,000 student population) during the spring of 2000.

184

There were 105 students who voluntarily participated in the
study. CS 202 is the first programming class required in the
computer science major and uses C++ as the programming
language.

2.2 Instruments

Two instruments were used to collect data from the
subjects: a questionnaire and the Computer Programming
Self-Efficacy Scale developed by Ramalingam &
Wiedenbeck [10]. The questionnaire collected data on the
following items: gender, math background (number of
semesters of high school math classes taken), previous
programming experiences, previous non-programming
computer experiences, encouragement by others to pursue
computer science as a career, comfort level, work style
preference, and attribution for perceived "success" or
"failure" on the midterm exam. A pilot test was given to
enable the researcher to find any ambiguities in the
questionnaire, and revisions were made appropriately. One
expert in the field of psychology research and two experts
in the field of testing and evaluation were asked to evaluate
the face validity of the questionnaire. Four seasoned
computer science professors examined the content of the
instrument. The questionnaire was found to have high
content validity for measuring the variables in the study. A
test-retest was used to examine the reliability of the
questionnaire. The instrument was administered to
students in two sections of an introductory computer
science course at another university. Because the
questionnaire was intended to measure different attributes,
it was necessary to determine eight correlations. The
Pearson Correlation coefficients were .98 for math
background, 1.0 for previous programming course, .72 for
previous self-initiated programming experience, .95 for
previous non-programming experience, .80 for work style
preference, .88 for comfort level, .72 for attributions to
success/failure, and 1.0 for encouragement. The Computer
Programming Self-Efficacy Scale was used to collect data
on domain-specific self-efficacy as it relates to tasks in the
C++ prograrnrning language. The authors reported an
overall alpha reliability of .98 on the instrument.

2.3 Predictor Variables

Twelve predictor variables were included in the study. The
way in which each variable was measured is described
below: (all of this data except for self-efficacy, and
midterm course grade were collected via the questionnaire)

1. Gender - a dichotomous variable (male or female).

2. Previous programming experience - a dichotomous
variable determined by whether the subject had engaged in
any programming prior to the course.

In order to study the types of previous programming
experience, this variable was subdivided into two
areas: (a) formal programming course taken - a
dichotomous variable determined by whether the
subject had a previous programming course or not and
(b) self-initiated programming experience - a

dichotomous variable determined by whether the
subject learned to write programs separate and apart
from a formal class.

3. Previous non-programming experience - a dichotomous
variable determined by whether the subject had engaged in
non-programming computer activities.

In order to study the types of previous non-
programming experience, this variable was subdivided
into three areas: (a) intemet experience - a continuous
variable determined by the number of hours per week
each subject reported using the internet, e-mail, chat-
rooms, and/or on-line discussion groups, (b) games - a
continuous variable determined by the number of
hours per week the subject reported spending time
playing games on the computer, and (c) use of
productivity software - a continuous variable
determined by the number of hours per week the
subject reported using productivity software such as
word processing, spreadsheets, databases, and/or
presentation software packages.

4. Encouragement to pursue computer science - a
dichotomous variable representing whether the subject
received encouragement to pursue computer science or not.

5. Comfort level - a continuous variable derived from
seven questions on the questionnaire regarding asking and
answering questions in class, in lab, and during office
hours; anxiety level while working on computer
assignments; perceived difficulty of course; perceived
understanding of concepts in the course as compared with
classmates; and perceived difficulty of completing the
programming assignments. Numbers were appropriately
assigned to the choices of the BAR (Behaviorally
Anchored Rating) scale in these questions and summed for
a composite score of comfort level.

6. Work style preference- a dichotomous variable
(competitive or cooperative) representing the answer to a
question about preference for writing computer programs
and/or studying for exams.

7. Attributions - four continuous variables derived from
the subject's rating of possible reasons for success or
failure on the midterm exam. They are: (a) attribution to
ability, (b) attribution to task ease/difficulty, (c) attribution
to luck, and (d) attribution to effort.

8. Self-efficacy - a continuous variable, which is the
summation of the choices made on a Likert-type scale from
the Computer Programming Self-Efficacy Scale.

9. Math background - a continuous variable represented by
the number of semesters of high school math courses
reported by the subject.

2.4 Criterion Variable

The criterion variable of the study was the midterm grade
in the introductory computer science class for each student.
This was a continuous variable representing a number
between 0 and 100.

185

To ascertain that the use of the midterm grade was a viable
choice for determining success in the computer
programming class, a correlation coefficient was generated
using the midterm scores and the final scores in two
sections of the first course in Computer Science from the
fall semester of 1999. The Pearson Correlation Coefficient
was extremely high and significant, _r = .97173, N = 48, 12
=.0001, therefore, it seemed reasonable that the midterm
grade was a good indicator of success in the class.

2.5 Procedure

During the spring semester the questionnaire and Computer
Programming Self-Efficacy Scale were distributed after the
exam and before midterm of the semester at a class lecture
session. Data was collected from 105 students.

2.6 Analysis of Data

Although no study could be found that combined all of the
predictor variables that are included in this study, some of
the previous research could be used to determine an
expected hierarchy of predictor variables. Therefore, based
on the literature review and on the researcher's experience
of teaching computer science, a hierarchical model was
generated and tested using the general linear model. The
model included twelve predictor variables in the following
order: math, previous programming experience, attribution
to luck, attribution to difficulty of task, comfort level, non-
programming experience, work style preference, domain-
specific self-efficacy, encouragement to study computer
science, attribution to effort, attribution to ability, and
gender. This model was tested and compared to the
findings of the previous research studies in computer
science success. All analyses used an alpha level of .05 to
determine significance.

A residual plot was generated from the data confirming the
multi-linear model. A correlation matrix was generated to
examine how each of the 12 factors correlated with
midterm grade and with each of the other predictor
variables. By examining the R 2 and its p-value of the full-
model regression equation, the proportion of variance in
midterm grade accounted for by the twelve predictor
variables was determined. The Type I sums of squares and
Type HI sums of squares with associated p-values were
examined to determine the contribution of each factor over
and above the other factors. The parameter estimates from
the 'multiple regression tests were also examined to see
whether each factor had a positive or negative effect on
midterm grade. The full model for the twelve predictor
variables was:

Y = aoU + alX1 + a2X2 + a3X3 + a4X4 + a5X5 + avX6 +
aTX7 + asX8 + a9X9 + al0X10 + aHXl l + al2X12 + E
where Y = midterm course grade
X1 = 1 if previous programming; 0 otherwise
X2 = 1 if previous non-programming; 0 otherwise
X3 = rating for attribution to task difficulty
X4 = rating for attribution to luck
X5 = rating for attribution to effort
X6 = rating for attribution to ability

X7 = rating for self-efficacy
X8 = rating for comfort level
X9 = 1 if had encouragement; 0 otherwise
X10 = 1 if male; 0 if female
X11 = number of sem. of math courses
X12 = 0 if work style preference is cooperative; 1 if
competitive
E = the errors of prediction

To determine if any of the previous computing experiences
were predictive of success, a full model and four restricted
models were used. The restricted models were constructed
by dropping out one predictor variable from the full model.
Each restricted model was tested against the full model to
ascertain whether the contribution of each predicting factor
over and above the other factors in combination was
significant. The full model for previous computing
experiences was:

Y = b0U + blP1 + b2P2 + b3P3 + b4P4 + bsP5 + + E
where Y = midterm course grade
P1 = 1 if programming class; 0 otherwise
P2 = 1 if self-initiated programming; 0 otherwise
P3 = number of hours/week of Internet use
P4 = number of hours/week of games
P5 = number of hours/week of productivity software use
E = errors of prediction

3 Results

The proportion of variance in midterm score accounted for
by the linear combination of the 12 factors was
approximately .44, R 2 = .4443, which was statistically
significant, F_(12, 92) = 6.13, I~ = .0001. Three of the
predictor variables contributed a significant difference in
the midterrn grade at the .05 level even after being
considered last in the model. They were comfort level,
math background, and attribution of success/failure to luck
with p-values of .0002, .0050, and .0233 respectively. Two
of the three significant predictive factors (comfort level and
math) had positive correlations with the midterm score, but
attribution of success/failure to luck had negative parameter
estimation. (See Table 1.)

When stepwise multiple regression was used, two more
variables showed significant influence in a five factor
model. They were work style preference and attribution of
success/failure to task difficulty. These five variables
contributed to 40% of the variance. The work style
preference was positively correlated to the midterm score,
which indicated that an individual/competitive work style
preference had a positive influence on the midterm score.
Attribution to task difficulty was negatively correlated to
midterm score.

Two of the previous computing experience variables
showed significant influence in predicting the midterm
score: previous programming course and games with p-
values of .0006 and .0287 respectively. (See Table 2.) It
was also noted that while the previous programming course
variable had a positive influence on midterm grade, games

186

had a negative influence. Also the proportion of variance
accounted for by the five previous programming and non-
programming variables was .15 which was significant for
the sample, p = .0041.

Table 1: Summary of Type I and Type III Sums of Squares
General Linear Models Procedure
(R 2 = .444347, F = 6.13, P = .0001)
Source DF Type I SS P

F
Math 1 2348.67 15.17 .0002
Prg 1 1203.42 7.77 .0064
Luck 1 2014.73 13.02 .0005
Diff 1 766.75 4.95 .0285
Cm~lev 1 3460.21 22.36 .0001
NPrg 1 51.19 0.33 .5666
WPrf 1 625.34 4.04 .0474
SE 1 53.60 0.35 .5577
Eric 1 302.55 1.95 .1654
Effo~ 1 359.15 2.32 .1311
Ability 1 2.20 0.01 .9053
Gender 1 199.63 1.29 .2590

Source DF Type III SS F P
Math 1 1279.79 8.27 .0050
Prg 1 389.52 2.52 .1161
Luck 1 824.10 5.32 .0233
Diff 1 455.95 2.95 .0895
Cm~lev 1 2334.38 15.08 .0002
NPrg 1 169.47 1.09 .2981
WkPrf 1 482.72 3.12 .0807
SE 1 12.53 0.08 .7767
Eric 1 170.09 1.10 .2973
Effort 1 296.74 1.92 .1695
Ability 1 3.42 0.02 .8821
Gender 1 199.63 1.29 .2590

4 Conclusion
Comfort level in the computer science class was the best
predictor of success in the course. Math background was
second in importance in predicting success in this computer
science class. It is most interesting, in this study, that
comfort level was found to be more important than math
background. Most of the research studied for the literature
review, which included math as a predictor, concluded that
math and computer programming experience were the most
important factors in success in computer science, although
many of these studies did not include studying comfort
level as such. Although programming experience (which
included both a previous programming course and self-
initiated programming) was not found to be significant in
the full model, when the different types of computing
experiences were compared as predictors of midterm grade,
the previous programming course and game playing were
both significant. It should be noted that the notion that
game playing gives students an "edge" in a computer

science course was not supported in this study. Game
playing had a negative effect on the midterm grade.

The result for analysis of attribution to luck was also an
interesting finding. To support most of the attribution
research findings, attribution to luck would only be
positively correlated to success in the course for those
students who were unhappy with their score. In other
words, if they could attribute their "low" score to an
unstable cause such as luck, then they would continue to try
to do better. In this study, however, attribution to luck for
all students (whether happy or unhappy with their scores)
was negatively correlated to midterm.

Table 2: Summary of Multiple Regression Analysis on
Previous Programming and Non-Programming Experience

Analysis o ffVariance for Model
Source Df R 2 F value P

Model 5 .1577 3.706 .0041
Error 99
C Total 104

Parameter Estimates
Parameter Standard

Variable estimate error T P
Intercept 64.8755 2.6049 24.905 .0001

PrvPrgCs 10.6138 2.9944 3.545 .0006
SiPrg 1.8392 3.3532 .548 .5846
Int .0906 .1765 .514 .6087
Games -.4217 .1900 -2.219 .0287
Apps .2315 .1761 1.315 .1917

Note._ Variables
PrvPrgCs = previous programming course; SiPrg = self-
initiated programming; Int = use of the Internet; Games =
playing games on the computer; Apps = use of productivity
software

5 Recommendations

Although this study did not show that higher comfort levels
"cause" students to perform better in the computer science
class, because of the positive correlation in this study
between comfort level and success in the introductory
computer science course, the notion that providing the
optimum class environment for producing higher levels of
comfort for students is at least warranted. It is suggested
that professors of college computer science should
understand the importance of providing an environment in
the course which encourages students to ask and answer
questions, both in class and outside of class, in a way that
allows the students to feel comfortable and not intimidated.
Opportunities for students to be able to consult with
faculty, teaching assistants, or tutors were also indicated.
The recent move in many universities to force students into
large lecture sections for computer science, which by its
very nature discourages dialogue between students and
faculty, is an indication of the misunderstanding of the
importance of the level of comfort students may need in
this difficult discipline. Also, advisers should stress an
appropriate mathematical background for students wanting

187

to pursue computer science. Finally, since attribution to
luck showed a negative correlation with success, professors
should endeavor to match class assignments and exam
questions in the hope that students will not perceive luck as
a reason for success or failure on the exams. Again, this
suggestion is warranted even though the study only showed
a negative correlation and not causation.

References

[1] Bandura, A. Self-efficacy: Toward a unifying theory
of behavioral change. Psychological Review, 84(2),
(1977), 191-215.

[2] Bunderson, E.D., & Christensen, M.E.. An analysis of
retention problems for female students in university
computer science programs. Journal of Research on
Computing in Education 28(1), (1995), 1-15.

[3] Clarke, V.A., & Chambers, S.M. Gender-based factors
in computing enrollments and achievement: Evidence
from a study of tertiary students. Journal of
Educational Computing Research, 5(4), (1989), 409-
429.

[4] Cottrell, J. I 'm a stranger here myself: A consideration
of women in computing. Proceedings of the 1992
A CM SIG UCCS User Services Conference~ (1992), 71 -
76.

[5] Deboer, G.E. Factors related to the decision of men
and women to continue taking science courses in
college. Journal of Research in Science Teaching,
21(3), (1984), 325-329.

[6] Dweck, C.S., & Leggett, E.L. A social-cognitive
approach to motivation and personality. Psychological
Review (95), (1988), 256-273.

[7] Kersteen, Z.A., Linn, M.C., Clancey, M., & Hardyck,
C. Previous experience and the learning of computer
programming: The computer helps those who help
themselves. Journal of Educational Computing
Research 4(3), (1988).

[8] Maeher, M.L. On doing well in science: Why Johnny
no longer excels; why Sarah never did. In S.G. Paris,
G.M. Olsen, & H.W. Stevenson (Eds.), Learning and
Motivation in the Classroom (Chapter 8), (1988).

[9] Miura, I.T. The relationship of computer self-efficacy
expectations to computer interest and course
enrollment in college. Sex Roles, 16(5), (1987), 303-
311.

[10] Ramalingam, V., & Wiedenbeck, S. Development and
validation of scores on a computer programming self-
efficacy scale and group analyses of novice
programmer self-efficacy. Journal of Educational
Computing Research, 19(4), (1998), 367-381.

[l l] Taylor, H., & Mounfield, L. An analysis of success
factors in college computer science: High school
methodology is a key element. Journal of Research on
Computing in Education, 24(2), (1991), 240-245.

[12]Taylor, H., & Mounfield, L. Exploration of the
relationship between prior computing experience and
gender on success in college computer science.
Journal of Educational Computing Research 11(4),
(1994), 291-306.

188

Teaching Objects-first In Introductory Computer Science

Stephen Cooper*
Computer Science Dept.
Saint Joseph's University
Philadelphia, PA 19131
scooper@sju.edu

Wanda Dann*
Computer Science Dept.
Ithaca College
Ithaca, NY 14850
wpdann@ithaca.edu

Randy Pausch
Computer Science Dept.
Carnegie Mellon University
Pittsburgh, PA 15213
pausch@cmu.edu

Abstract
An objects-first strategy for teaching introductory computer
science courses is receiving increased attention from CS
educators. In this paper, we discuss the challenge of the objects-
first strategy and present a new approach that attempts to meet this
challenge. The new approach is centered on the visualization of
objects and their behaviors using a 3D animation environment.
Statistical data as well as informal observations are summarized to
show evidence of student performance as a result of this approach.
A comparison is made of the pedagogical aspects of this new
approach with that of other relevant work.

Categories and Subject Descriptors
K.3 [Computers & Education]: Computer & Information
Science Education – Computer Science Education.

General Terms
Documentation, Design, Human Factors,

Keywords
Visualization, Animation, 3D, Objects-First, Pedagogy, CS1

1 Introduction
The ACM Computing Curricula 2001 (CC2001) report [8]
summarized four approaches to teaching introductory computer
science and recognized that the “programming-first” approach is
the most widely used approach in North America. The report
describes three implementation strategies for achieving a
programming-first approach: imperative-first, functional-first, and
objects-first. While the first two strategies have been utilized for
quite some time, it is the objects-first strategy that is presently
attracting much interest. Objects-first “emphasizes the principles
of object-oriented programming and design from the very
beginning…. [The strategy] begins immediately with the notions
of objects and inheritance….[and] then goes on to introduce more
traditional control structures, but always in the context of an
overarching focus on object-oriented design” [8, Chapter 7].
__
*This work was partially supported by NSF grant DUE-0126833

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGCSE’03 February 19-23, 2003, Reno, Nevada, USA.
Copyright 2003 ACM 1-58113-648-X/03/0002…$5.00.

The Challenge of Objects-first: The authors of CC2001 admit
that an objects-first strategy adds complexity to teaching and
learning introductory programming. Why is this so? The classic
instruction methodology for an introduction to programming is
to start with simple programs and gradually advance to complex
programming examples and projects. The classic approach allows
a somewhat gentle learning curve, providing time for the learner to
assimilate and build knowledge incrementally. An objects-first
strategy is intended to have students work immediately with
objects. This means students must dive right into classes and
objects, their encapsulation (public and private data, etc.) and
methods (the constructors, accessors, modifiers, helpers, etc.). All
this is in addition to mastering the usual concepts of types,
variables, values, and references, as well as with the often-
frustrating details of syntax. Now, add event-driven concepts to
support interactivity with GUIs! As argued by [11], learning to
program objects-first requires students grasp "many different
concepts, ideas, and skills…almost concurrently. Each of these
skills presents a different mental challenge."

The additional complexity of an objects-first strategy is
understood when considered in terms of the essential concepts to
be mastered. The functional-first strategy initially focuses on
functions, deferring a discussion of state until later. The
imperative-first strategy initially focuses on state, deferring a
discussion of functions until later. The objects-first strategy
requires an initial discussion of both state and functions. The
challenge of an objects-first strategy is to provide a way to help
novice programmers master both of these concepts at once.

2 Instructional Support Materials
In response to interest in an objects-first approach, several texts
and software tools have been published/developed that promote
this strategy (such as [1, 12]). Four recent software tools are
worthy of mention as using an objects-first approach: BlueJ [9],
Java Power Tools [11], Karel J. Robot [2], and various graphics
libraries. Interestingly, all these tools have a strong
visual/graphical component; to help the novice “see” what an
object actually is – to develop good intuitions about
objects/object-oriented programming.

BlueJ [9] provides an integrated environment in which
the user generally starts with a previously defined set of classes.
The project structure is presented graphically, in UML-like
fashion. The user can create objects and invoke methods on those
objects to illustrate their behavior. Java Power Tools (JPT) [11]
provides a comprehensive, interactive GUI, consisting of several
classes with which the student will work. Students interact with
the GUI, and learn about the behaviors of the GUI classes through
this interaction. Karel J. Robot [2] uses a microworld with a robot
to help students learn about objects. As in Karel [10], Robots are

added to a 2-D grid. Methods may be invoked on the robots to
move and turn them, and to have the robots handle beepers. Bruce
et al. [3] and Roberts [13] use graphics libraries in an object-first
approach. Here, there is some sort of canvas onto which objects
(e.g. 2-D shapes) are drawn. These objects may have methods
invoked on them and they react accordingly.

In the remainder of this paper, we present a new tactic
and software support for an objects-first strategy. The software
support for this new approach is a 3D animation tool. 3D
animation assists in providing stronger object visualization and a
flexible, meaningful context for helping students to “see” object-
oriented concepts. (A more detailed comparison of the above tools
with our approach is provided in a later section.)

3 Our Approach
Our motivation in researching and developing this new approach
is to meet the challenge of an objects-first approach. Our approach
meets the challenge by:

• Reducing the complexity of details that the novice
programmer must overcome

• Providing a design first approach to objects
• Visualizing objects in a meaningful context

In this approach, we use Alice, a 3D interactive, animation,
programming environment for building virtual worlds, designed
for novices. The Alice system, developed by a research group at
Carnegie Mellon under direction of one of the authors, is freely
available at www.alice.org. A brief description of the interface is
provided.

Figure 1. The Alice Interface

Alice provides an environment where students can use/modify 3D
objects and write programs to generate animations. A screen-
capture of the interface is shown in Figure 1. The interface
displays an object tree (upper left) of the objects in the current
world, the initial scene (upper center), a list of events in this world
(upper right), and a code editor (lower right). The overlapping
window tabs in the lower left allow for querying of properties,
dragging instructions into the code editor, and the use of sound.

Student Programs: A student adds 3D objects to a small
virtual world and arranges the position of each object in the world.
Each object encapsulates its own data (its private properties such
as height, width, and location) and has its own member methods.
While it is beyond the scope of this paper to discuss all the details,

a brief example is discussed below to illustrate some of the
principles. Interested readers may wish to read [4, 6, 7] for a more
complete description. Figure 2 contains an initial scene that
includes a frog (named kermit), a beetle (ladybug), a flower
(redFlower), and several other objects around a pond.

Figure 2. An initial scene in an Alice world

Once the virtual world is initialized, the program code is created
using a drag-and-drop smart editor. Using the mouse, an object is
mouse-clicked and dragged into the editor where drop-down
menus allow the student to select from primitive methods that
send a message to the object. A student can write his/her own
user-defined methods and functions, and these are automatically
added to the drop-down menus.

In this example, the task is for kermit to hop over to the
ladybug. The code is illustrated in Figure 3. It is interesting to note
that the built-in predicates (“Questions” in Alice-lingo) “is at least
m meters away from n”, “is within x meters of y”, and “is in front
of z” all return spacial information about the objects in question.
(Users may define their own, user-defined, questions, at both the
world-level as well as at the character-level.) The bigHop(number
n) and littleHop() methods are both character-level. In other
words, the basic frog class has been extended to create a frog that
knows how to make a small hop and how to hop over a large
object (receiving a parameter as to how high it must hop).

This example illustrates some important aspects of our
approach. The mechanism for generating code relies on visual
formatting rather than details of punctuation. The gain from this
no-type editing mechanism is a reduction in complexity. Students
are able to focus on the concepts of objects and encapsulation,
rather than dealing with the frustration of parentheses, commas,
and semicolons. We hasten to note that program structure is still
part of the visual display and the semantics of instructions are still
learned. A switch is used to display Java-like punctuation to
support a later transition to C++/Java syntax.

Three-dimensionality provides a sense of reality for
objects. In the 3D world, students may write methods from scratch
to make objects perform animated tasks. The animation task
provides a meaningful context for understanding classes, objects,
methods, and events.

Figure 3. The code to have kermit hop over to the ladybug

4 Observations
We have been teaching and researching this new objects-first
approach in an introduction to programming course for the past 3
years. One of the authors uses this approach in a ½ semester
course that students take concurrently with CS1. Another author
uses this approach as part of a course that students take before
CS1. While early quantitative results are discussed in the next
section, we present more informal observations in this section.

Strengths: We have seen that students develop:

• A strong sense of design. In our approach, we use
storyboarding and pseudocode to develop designs. This may be
influenced by the nature of our open-ended assignments.
However, we see students in later classes writing down their
thoughts about an assignment on paper first, before going to the
computer.

• A contextualization for objects, classes, and object-oriented
programming. We believe that this is one of the big “wins” for
our approach. Everything in the student’s virtual world is an
object! Exercises and lab projects set up scenes where objects
fly, hop, swim, and interact in highly imaginative movie-like
simulations and games.

• An appreciation of trial and error. Students learn to "try
out" individual animation instructions as well as their user-
defined methods. Each animation instruction causes a visible
change in the animation. Students learn to relate individual
instructions, and methods to the animated action on the screen
[7]. This direct relationship can be used to support development
of debugging skills.

• An incremental construction approach, both for character
(class)-level as well as world-level methods. Students do not
write the whole program first. They program incrementally,
one method at a time, testing out each piece.

• A firm sense of objects. The strong visual environment
helps here.

• Good intuitions concerning encapsulation. Some state
information can be modified by invoking methods on an object.
For example, an object's position can be changed by invoking a
move method. But the actual spatial coordinates that represent
the object's position cannot be directly accessed.

• The concept of methods as a means of requesting an object
to do something. The way to make an object perform a task is
to send the object a message.

• A strong sense of inheritance, as students write code to
create more powerful classes.

• An ability to collaborate. Students work on building the
characters individually and then combine them to build virtual
worlds and animations in group projects.

• An understanding of Boolean types. Students are
prevented, by the smart-editor, from dragging incorrect data-
type expressions into if statements and loops, for example.

• A sense of the program state. This is of particular
importance, as mentioned earlier in this paper. This topic is
discussed at length in [7].

• An intuitive sense of behaviors and event-driven
programming.

One other observation is that it is possible to have students
either create their programs from scratch or to build virtual worlds
with characters which already have many specialized methods pre-
defined. This latter case allows students to experiment with
modifying existing classes/programs.

Weakness: A strength of our approach is also a source of
weakness. Students do not develop a detailed sense of syntax,
even with the C++/Java syntax switch turned on, as they only drag
the statements/expressions into the code window. They do not get
the opportunity to experience such errors as mismatched braces,
missing semicolons, etc. Our experience with students making the
transition from Alice to C++/ Java is that students quickly master
the syntax.

5 Results
Table 1 illustrates the results of students at Ithaca College and
Saint Joseph’s University who took a course using our proposed
approach during the 2001-2002 school year. The weakest 21 CS
majors (defined as those CS students who were not ready for
calculus and who had no previous programming experience) were
invited to take a course using our approach, either concurrent with,
or preliminary to CS1. 11 of the 21 students took the course,

while 10 did not. (Some students who did not take the course had
scheduling conflicts.)

Statistics All Test Control
Students 49 11 10
Mean 2.49 2.8 1.3
Median 2.75 3 1.25
Variance 1.62 0.75 1.22

Table 1: Students taking Alice, 2001-2002

The results show that the 11 students who took the Alice-based
course did better in CS1 than the total group, and significantly
better than the 10 students who were of a similar background. Not
only did the control group perform better in CS1, the lower
variance indicates that a smaller percentage of those students
performed poorly in CS1. Perhaps the most telling statistic is the
percentage of students who continued on to CS2, the next
computer science class. 65% of all the students who took CS1
continued on to CS2. Of the students in the test group (who took
our course with Alice), 91% continued on to CS2. Only 10% of
the control group enrolled in CS2. A larger group of students is
being studied (in much more detail) this current (2002-2003)
academic year, as part of an NSF supported study.

The authors have a textbook (to be published by
Prentice-Hall for Fall 2003). An early draft is available at
www.ithaca.edu/wpdann/alice2002/alicebook.html The URL for
the solutions is available by contacting the authors. And, a set of
lecture notes and sample virtual worlds is available at:
http://www.sju.edu/~scooper/fall02csc1301/alice.html

6 Comparison with other tools
In this section we explore what we consider to be our relative
strengths and weaknesses as compared to other object-first tools
mentioned earlier. It is important to note that, as we have not seen
studies detailing actual effectiveness of many of the other tools,
we are hesitant to state too strongly the degree to which we think
such tools do or do not work.

Events: JPT makes heavy use of GUIs, and both JPT and Bruce’s
ObjectDraw library rely on event-driven programming. Kölling
and Rosenberg [9] state that building GUIs is “very time
intensive”, and argue that the GUI code is an “example that has
very idiosyncratic characteristics that are not common to OO in
general.” Culwin [5] argues “the design of an effective GUI
requires a wider range of skills than those of software
implementation…. Even if an optimal interface is not sought at
this stage it must be emphasized to students…that there is much
more to the construction of a GUI than the collecting together of a
few widgets and placing it in front of the user.” While we might
not go as far as these criticisms, it is clear that event handling does
add a layer of complexity. In our approach, the use of events is
optional and is accomplished through the use of several powerful
primitives. This makes the presentation of events and event
handling quite simple. We disagree with the statement “it is not
possible to do Objects-first” without also doing GUI First!”[11],
as both our approach and some of the graphics libraries do
accomplish an object-first approach without the use of a GUI
(though adding events generally makes virtual worlds much more
fun for the students).

Modifying existing code: BlueJ and JPT depend on starting
with programs that consist of previously written code. Bruce is
concerned “these approaches will leave students feeling they have
no understanding of how to write complete programs.” The BlueJ
and JPT authors maintain that, due to complexity of object-
oriented design, it is favorable for novices to start with
partially/completely developed projects and to modify them. Our
approach allows the instructor to choose to use partially developed
programs in introductory worlds. But, we generally have students
build virtual worlds from scratch.

Use of the tool throughout the CS1 course: Each of these
tools, with the exception of Karel J. Robot, is (or at least seems to
be) capable of being used throughout the CS1 course. We have
designed lecture materials to be used as an initial introduction to
object-oriented programming, occupying the first 3-6 weeks of a
CS1 course. It would be possible to intersperse the teaching of
Alice with the teaching of, say, Java, throughout the semester.

Complexity of syntax: The use of graphics libraries is likely
the most complex approach. Even though libraries are provided,
students still must write Java/C++ programs from scratch,
mastering a non-trivial amount of syntax (regardless whether they
understand the semantics of what they are writing). Then they
need to understand the particulars of the graphics library. Karel J.
Robot has a fair bit of Java that needs to be mastered before being
able to write a program. The BlueJ and JPT approaches are
somewhat simpler, as students only modify existing code. Yet, it
is still necessary to write correct Java code, and certain errors
(such as missing brackets or trying to place code in the wrong
location, or invoking a method with a bad parameter) can lead to
errors in the code provided to the student -- and the student may
not know how to start debugging code that he/she did not write.

Concurrency: As Culwin writes [5], “if an early introduction of
GUIs is advocated within an object first approach, the importance
of concurrency cannot be avoided.” Alice supports concurrency,
providing primitives for performing actions simultaneously.

Examples: This is a challenge for all objects-first approaches.
Developing a large collection of examples (whether to be used as
instructional aids, assignments or exam questions) is a time-
consuming task that must be solved if these tools, together with
their associated approach are to be successful. One product of our
research efforts is a resource of examples, exercises, and projects
with solutions. It does need to be made larger, which we are doing
each semester.

7 Conclusions
The authors strongly believe that, as long as object-oriented
languages are the popular language of choice in CS1, the objects-
first approach is the best way to help students master the
complexities of object-oriented programming. We believe that
other tools mentioned here are quite useful in teaching objects-
first. (We have used most of them ourselves.) We have been
particularly impressed with the results we have seen so far with
the approach we have presented here – we have been able to
significantly reduce the attrition of our most at-risk majors. The
current NSF study will examine the effectiveness of our proposed
approach in greater detail, and with larger numbers of students.
Additionally, we hope to gain feedback from some of the
additional institutions that are using our materials and our
approach.

References
[1] Arnow, D. and Weiss, G. Introduction to programming

using Java: an object-oriented approach, Java 2 update.
Addison-Wesley, 2001.

[2] Bergin, J., Stehlik, M., Roberts, J., and Pattis, R. Karel
J. Robot a gentle introduction to the art of object
oriented programming in Java. Unpublished
manuscript, available [August 31, 2002] from:
http://csis.pace.edu/~bergin/KarelJava2ed/Karel++Java
Edition.html

 [3] Bruce, K., Danyluk, A., & Murtagh, T. A library to
support a graphics-based object-first approach to CS 1.
In Proceedings of the 32nd SIGCSE technical
symposium on Computer Science Education (Charlotte,
North Carolina, February, 2001), 6-10.

[4] Cooper, S., Dann, W., & Pausch, R. Using animated 3d
graphics to prepare novices for CS1. Computer Science
Education Journal, to appear.

[5] Culwin, F. Object imperatives! In Proceedings of the
30th SIGCSE technical symposium on Computer
Science Education (New Orleans, Louisiana, March,
1999), 31-36.

[6] Dann, W., Cooper, S., & Pausch, R. Using visualization
to teach novices recursion. In Proceedings of the 6th
annual conference on Innovation and Technology in
Computer Science Education (Canterbury, England,
June, 2001), 109-112.

[7] Dann, W., Cooper, S., & Pausch, R. Making the
connection: programming with animated small worlds.
In Proceedings of the 5th annual conference on
Innovation and Technology in Computer Science
Education (Helsinki, Finland, July, 2000), 41-44.

[8] Joint Task Force on Computing Curricula. Computing
Curricula 2001 Computer Science. Journal of
Educational Resources in Computing (JERIC), 1 (3es),
Fall 2001.

[9] Kölling, M. & Rosenberg, J., Guidelines for teaching
object orientation with Java. In Proceedings of the 6th
annual conference on Innovation and Technology in
Computer Science Education (Canterbury, England,
June, 2001), 33-36.

[10] Pattis, R., Roberts, J, & Stehlik, M. Karel the robot: a
gentle introduction to the art of programming, 2nd
Edition. John Wiley & Sons, 1994.

[11] Proulx, V., Raab, R., & Rasala, R. Objects from the
beginning – with GUIs. In Proceedings of the 7th
annual conference on Innovation and Technology in
Computer Science Education (Århus, Denmark, June,
2002), 65-69.

[12] Riley, D. The object of Java: Bluej edition. Addison-
Wesley, 2002.

[13] Roberts, E. & Picard, A. Designing a Java graphics
library for CS1. In Proceedings of the 3rd annual
conference on Innovation and Technology in Computer
Science Education (Dublin, Ireland, July, 1998), 213-
218.

View publication statsView publication stats

https://www.researchgate.net/publication/2551403

	Computing educators are often baffled by the misconceptions that their CS1 students hold. We need to understand these misconceptions more clearly in order to help students form correct conceptions. This paper describes one stage in the development of ...
	1. INTRODUCTION
	4. RESULTS
	5. DISCUSSION
	6. FUTURE WORK
	7. CONCLUSION
	8. ACKNOWLEDGMENTS
	9. APPENDIX
	10. REFERENCES
	Randy Pausch
	1 Introduction
	The Challenge of Objects-first: The authors of CC2001 admit that an objects-first strategy adds complexity to teaching and learning introductory programming. Why is this so? The classic instruction methodology for an introduction to programming is
	2 Instructional Support Materials
	
	
	
	
	3 Our Approach

	Figure 1. The Alice Interface
	Figure 2. An initial scene in an Alice world
	F
	Figure 3. The code to have kermit hop over to the ladybug
	5 Results

	Statistics
	
	
	6 Comparison with other tools

	7 Conclusions
	References

